Home o:p> |
People o:p> |
Research o:p> |
Publications o:p> |
Demos o:p> |
o:p> |
o:p> |
o:p> |
o:p> |
o:p> |
News o:p> |
Jobs o:p> |
Prospective |
About o:p> |
Internal o:p> |
![]()
| Pedestrian Detection | |||||
| The goal of this project is to build pedestrian detectors with low false-positive and high detection rates, which can operate in real-time. We combined integral channel features with our ECBoost algorithm for building cascaded detectors. Below we showed effect of each feature and performance comparison with state-of-the-art on caltech pedestrian dataset. | |||||
| Effect of different channel of features: | |||||
|
|||||
| Comparison with state-of-the-art for 100 pixel pedestrian: | |||||
![]() |
|||||
| Comparison with state-of-the-art for 50 pixel pedestrian (Context is our result): | |||||
![]() |
|||||
| Video demos from Caltech pedestrian dataset: | |||||
| Download | Download | ||||
| Video demos from UCSD campus: | |||||
| Download | Download | ||||
| Download | Download | ||||
| Download | Download | ||||
| Related Publications: | |||||
|
|||||
![]()
Copyright
@ 2009 www.svcl.ucsd.edu
o:p>
o:p>