
Learning Optimal Embedded Cascades
Mohammad Javad Saberian and Nuno Vasconcelos, Senior Member, IEEE

Abstract—The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges

are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best

tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to

address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier

penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the

design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches

over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined

into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate

constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting

detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

Index Terms—Computer vision, real-time object detection, embedded detector cascades, boosting.

Ç

1 INTRODUCTION

THE problem of fast object detection has received sub-
stantial attention in computer vision since the introduc-

tion of a real-time face detector by Viola and Jones (VJ) in [1].
This detector is a cascade of simple to complex classifiers,
designed with a combination of boosting and Haar wavelets
which rejects most nonfaces with a few machine operations.
Although the face detector has good performance, the
learning algorithm is mostly a combination of heuristics,
difficult to apply to other problems. One major difficulty is its
reliance on two classes of parameters: configuration para-
meters, such as the numbers of cascade stages or weak
learners per stage, and rate parameters, such as stage false
positive and detection rates. Since cascade performance can
vary nonintuitively with these parameters, their specification
is far from trivial. This is compounded by difficulties such as
an exponential increase of the miss rate on cascade length, or
the need for example bootstrapping during learning. As a
result, successful cascade training requires substantial
experience in the design process, a massive example
collection effort, and extensive trial-and-error.

Some of these problems have been addressed through

various enhancements [2], [3], [4], [5], [6], [7]. A promising

solution is the embedded cascade architecture, also known as

boosting chain [8]. In this architecture, each stage differs from

its predecessor by the addition of one or more weak

learners [8], [9], [10], [11], [12], [13]. Since this divides the

computation between stages very efficiently, and em-

bedded cascades have good classification performance, this

architecture underlies many recent cascade learning meth-
ods [9], [10], [11], [12], [13]. However, it is usually unclear
how many weak learners should be added, per stage, to
guarantee an optimal tradeoff between cascade speed and
accuracy. Furthermore, embedded cascades are frequently
learned with a two-step heuristic. A noncascaded classifier
is first learned and then converted to an embedded cascade
by introduction of intermediate exit points [11], [13]. Some
postprocessing, such as application of a support vector
machine (SVM) to the cascade outputs or threshold tuning,
is also possible [8], [13]. In general, these steps cannot
guarantee a cascade with the best tradeoff between
detection speed and accuracy.

Most cascade learning algorithms are also unable to
guarantee a specific detection rate. Since the cascade
detection rate is strictly smaller than the individual rates of
all its stages, a sensible value for the former requires the latter
to be high. This forces each stage to operate in the saturation
region of the receiver operating characteristic (ROC). Because
in this region minimal variations of detection rate can
produce large swings in false positive rate, it is critical that
the individual rates are met tightly. This has been identified
as a difficult problem since the early days of cascade design.
In fact, Viola and Jones [1] could only address it with
heuristics that require substantial manual guidance. Later
solutions include cost-sensitive (CS) boosting [2], [11], [12],
[14], [15], [16], [17], and optimal threshold adjustments [5],
[10], [13]. While more principled, these have strong limita-
tions of their own. In some cases, optimality requires
conditions that do not hold for practical cascade design. In
others, computationally intensive cross validation of learn-
ing parameters (e.g., classification cost factors) is required.

These problems are addressed by the two main con-
tributions of this work. The first is a new boosting
algorithm, RCBoost, that supports the specification of a
detection rate and produces classifiers that meet this rate at
all boosting iterations. This is done by formulating boosting
as a constrained optimization problem, which combines the
objective function of AdaBoost and a detection rate
constraint. The optimization is solved with a barrier

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012 2005

. The authors are with the Statistical Visual Computing Laboratory,
University of California, San Diego, Room 5512, 9500 Gilman Drive,
Mail code 0407, EBU 1, La Jolla, CA 92093-0407.
E-mail: {saberian, nvasconcelos}@ucsd.edu.

Manuscript received 5 July 2011; revised 15 Nov. 2011; accepted 12 Dec.
2011; published online 28 Dec. 2011.
Recommended for acceptance by H. Bischof.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-07-0438.
Digital Object Identifier no. 10.1109/TPAMI.2011.281.

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

method, assuring the feasibility of the solution at each
gradient descent iteration. This guarantees a detector that
meets the target detection rate without threshold adjustments
or cost cross validation. The second is a procedure,
ECBoost, that searches the space of embedded cascades for the
detector of optimal tradeoff between classification error and
speed. Optimality is defined by a Lagrangian that accounts
for the two factors. Rather than designing a noncascaded
classifier, the embedded cascade is optimized directly, using
boosting-like gradient descent. In this way, in the process of
searching for the cascade of optimal accuracy-speed trade-
off, ECBoost automatically determines the number of
learners per cascade stage.

The two procedures are combined into a single boosting
algorithm, RCECBoost, that jointly optimizes the cascade
configuration and each of its stages while guaranteeing that a
target cascade detection rate is met. The search for the cascade
of optimal tradeoff between false-positive rate and speed, at a
given detection rate, is performed in a single boosting run, with
no need for parameter tuning or cross validation. RCECBoost
is also shown to be fully compatible with standard boot-
strapping procedures [1], [18], and produces state-of-the-art
results on various object-detection tasks. The paper is
organized as follows: Section 2 briefly reviews the problem
of embedded cascade learning. RCBoost, ECBoost, and
RCECBoost are then introduced in Sections 3, 4, and 5,
respectively. Connections to previous work are discussed in
Section 6, and an experimental evaluation is presented in
Section 7. Finally, conclusions are drawn in Section 8.

2 EMBEDDED CASCADES

A binary classifier hðxÞ maps an example x 2 X to a class
label y 2 f�1; 1g. This is implemented as

hðxÞ ¼ sign½fðxÞ�; ð1Þ

where fðxÞ : X ! IR is a continuous-valued predictor
defined over the example space X . A classifier cascade
HðxÞ implements a sequence of binary decisions

hiðxÞ ¼ sign½fiðxÞ�; i ¼ 1 . . .m; ð2Þ

as illustrated in Fig. 1. An example x is declared a target
(y ¼ 1) if and only if it is declared a target by all stages,
(hiðxÞ ¼ 1; 8i). Otherwise, it is rejected. The classifiers hiðxÞ
are the cascade stages. They are usually implemented with
weak learner ensembles, learned with boosting [19]. The
cardinality of a cascade stage is the number of its weak
learners. The configuration of a cascade is the vector of its
stage cardinalities. The main advantage of this architecture
is computational efficiency. If many examples are rejected
by a few stages, the average classification time is very small.

An embedded cascade, or boosting chain [8], is a cascade
whose predictor has the embedded structure

fiþ1ðxÞ ¼ fiðxÞ þ wiðxÞ: ð3Þ

wiðxÞ is the predictor refinement at stage i, consisting of a single
[10], [11] or multiple weak learners [8], [12], [13]. In this way,
each predictor refines its predecessors, and computation is
shared by all stages. This enables cascade learning with a
single boosting run. In fact, embedded cascades are usually
learned by adding exit points to a noncascaded classifier.
Single weak learner refinements lead to faster cascades and
multiweak learner refinements to more accurate ones.

Optimal cascade design includes two main problems.
The first is to determine the optimal cascade configuration. For
a given detection problem, this is the configuration of best
tradeoff between classification accuracy and speed. Given a
measure of cascade performance that accounts for the two
quantities, the search for the optimal cascade is a
combinatorial problem since a classifier of m weak learners
can be mapped into 2m�1 configurations. For realistic
cascades with hundreds of weak learners, exhaustive search
of all configurations is impossible.

Given the optimal cascade configuration, it remains to
find the optimal detector for each cascade stage. A common
assumption is that errors of different stages are independent:

DH ¼
Y
i

Di � min
i
fDig; ð4Þ

whereDH is the cascade detection rate andDi that of stage i. It
follows that DH decays exponentially with cascade length m
(e.g., if Di ¼ 0:95; 8i, DH ¼ 0:95m). This usually implies that
very highDi are required to guarantee an acceptableDH, and
all intermediate predictors fiðxÞ must guarantee high detec-
tion rates. This tends not to happen unless the cascade is
learned under an explicit detection rate constraint.

3 BOOSTING WITH RATE CONSTRAINTS

To address the second problem, we introduce a rate
constrained boosting algorithm (RCBoost) which supports a
detection rate constraint. We start by reviewing AdaBoost
to recall the main boosting concepts.

3.1 AdaBoost

Boosting gained popularity with the introduction of
AdaBoost [19], but has various interpretations. We adopt
the view of [20], [21], where AdaBoost iterations are
gradient descent steps with respect to the risk

RðfÞ ¼ EX;Y fe�yfðxÞg: ð5Þ

Let U be a set of weak learners. AdaBoost solves the
optimization problem

minfðxÞ RðfÞ
s:t: fðxÞ 2 Su;

�
ð6Þ

where Su ¼ SpanðUÞ is the set of linear combinations of
elements of U . Since information is only available through a
training sample St ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg, the optimiza-
tion is performed in the subspace Un defined by the training
points, e.g., projecting fðxÞ 2 Su into ½fðx1Þ; . . . ; fðxnÞ�T 2
IRn. R is then approximated by the empirical risk

ReðfÞ ’
1

jStj
X
xi2St

e�yifðxiÞ: ð7Þ

2006 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012

Fig. 1. The classifier cascade architecture.

Starting with f0ðxÞ ¼ 0, boosting updates follow the

negative gradient at the current solution, fkðxÞ:

�rReðfkÞðxiÞ ¼ �
@ReðfkðxÞ þ �Iðx ¼ xiÞÞ

@�

����
�¼0

ð8Þ

¼ �1

jStj
X
xj2St

@e�yj½f
kðxjÞþ�Iðxj¼xiÞ�

@�

�����
�¼0

ð9Þ

¼ �1

jStj
@

@�
e�yi½f

kðxiÞþ��
����
�¼0

ð10Þ

¼ yi
jStj

e�yif
kðxiÞ ¼ yiw

k
i

jStj
; ð11Þ

where IðxÞ is the indicator function

IðxÞ ¼ 1; if x holds
0; otherwise

�
ð12Þ

and

wki ¼ e�yif
kðxiÞ: ð13Þ

The negative gradient is projected into Un, and the direction

(weak learner) along which the projection has the largest

magnitude,

g�ðxÞ ¼ arg max
g2Un

gðxÞ;�rReðfkÞðxÞ
� �

ð14Þ

¼ arg max
g2Un

1

jStj
X
i

yiw
k
i gðxiÞ; ð15Þ

is selected, where <:; :> denotes the euclidean dot product.

The optimal step size is then

�� ¼ arg min
�

Reðfk þ �g�Þ: ð16Þ

If g�ðxÞ is binary, i.e., g�ðxÞ 2 fþ1;�1g, then [19]

�� ¼ 1

2
log

P
ijyi¼g�ðxiÞ w

k
iP

ijyi 6¼g�ðxiÞ w
k
i

: ð17Þ

These steps are summarized in Algorithm 1.

Algorithm 1. AdaBoost

Input: Training set St ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg, where
y 2 f1;�1g is the class label of example x. Number

of weak learners in the final classifier N .

Initialization:

Set k ¼ 0 and fkðxÞ ¼ 0.

while k < N do

Compute the weights wki ¼ e�yif
kðxiÞ.

Select the best weak learner g�ðxÞ with (15).

Find the optimal step size �� with (16).
Update fkþ1ðxÞ ¼ fkðxÞ þ ��g�ðxÞ.
k ¼ kþ 1

end while

Output: decision rule: sign½fNðxÞ�

3.2 RCBoost

RCBoost is a boosting algorithm for the constrained

optimization problem

minfðxÞ ReðfÞ
s:t RDðfÞ � DT ; fðxÞ 2 Su;

�
ð18Þ

where Re is the risk of (7), DT a target detection rate, and

RD the classifier’s detection rate

RDðfÞ ¼
Z
fðxÞ�0

pðxjy ¼ 1Þdx ð19Þ

¼
Z
u½fðxÞ�pðxjy ¼ 1Þdx ð20Þ

¼ EXjY fu½fðxÞ�jy ¼ 1g; ð21Þ

with uðxÞ ¼ Iðx � 0Þ the Heaviside step. To guarantee a

differentiable RD, we use the popular approximation

uðxÞ � ûðxÞ ¼ 1þ tanhð�xÞ
2

; ð22Þ

where � is a relaxation parameter. Combining this and the

projection into Un transforms (21) into

RDðfÞ ’
1

jV þj
X
xi2V þ

1þ tanhð�fðxiÞÞ
2

; ð23Þ

where V þ is a set of positive examples. These could be the

positive training examples or a validation set.
To meet the detection rate DT after each boosting

iteration, (18) requires a gradient descent algorithm that

guarantees a feasible solution at each step. We adopt the

family of barrier methods [22], which transform (18) into the

unconstrained minimization of

Jð�; fÞ ¼ ReðfÞ þ �BðRDðfÞ �DT Þ: ð24Þ

The barrier BðRD �DT Þ assigns infinite penalty to con-

straint violations, forcing the solution to remain in the

feasible set at all iterations. Gradient descent is repeated for

a decreasing sequence �l, where the minimizer of Jð�l�1; fÞ
is used to initialize the minimization of Jð�l; fÞ. This

guarantees continuous progress toward the solution of

(18). In practice, the precise choice of �l is not critical; any

positive decreasing sequence, convergent to zero, suffices.
We adopt a logarithmic barrier

BðzÞ ¼ � log z; z > 0
1; z < 0;

�
ð25Þ

leading to

Jð�; fÞ ¼ 1

jStj
X
xj2St

e�yjfðxjÞ

þ �B
X
xj2V þ

ûðfðxjÞÞ
jV þj �DT

0
@

1
A;

ð26Þ

where � > 0. Given a feasible solution fkðxÞ, the steepest

descent direction for iteration kþ 1 is

SABERIAN AND VASCONCELOS: LEARNING OPTIMAL EMBEDDED CASCADES 2007

�rJð�;fkÞðxiÞ ¼ �
@Jð�; fkðxÞ þ �Iðx ¼ xiÞÞ

@�

����
�¼0

ð27Þ

¼ �Iðxi 2 StÞjStj
X
xj2St

@

@�
e�yj½f

kðxjÞþ�Iðxj¼xiÞ�
����
�¼0

þ �Iðxi 2 V þÞ;
ð28Þ

@ logðRD½fkðxjÞ þ �Iðxj ¼ xiÞ� �DT Þ
@�

����
�¼0

¼ yiw
k
i

jStj
Iðxi 2 StÞ þ �

�ki
jV þj Iðxi 2 V

þÞ;
ð29Þ

with

wki ¼ e�yif
kðxiÞ; ð30Þ

�ki ¼
�

2

1� tanh2ð�fkðxiÞÞ
RDðfkÞ �DT

: ð31Þ

The optimal weak learner is

g�ðxÞ ¼ arg max
g2Un

gðxÞ;�rJð�;fkÞðxÞ
� �

ð32Þ

¼ arg max
g2Un

X
xi2St

yiw
k
i gðxiÞ
jStj

þ �
X
xi2V þ

�ki gðxiÞ
jV þj

()
ð33Þ

and the optimal step size

�� ¼ arg min
�
Jð�; fk þ �g�Þ: ð34Þ

In general, there is no closed form for��, which is determined

by a line search. Note that, by definition of barrier in (25),

Jð�; fÞ is infinite whenever the rate constraint is violated.

Hence, the step �� guarantees a feasible solution. The initial

classifier is chosen to accept every example, f1ðxÞ ¼ �, to

guarantee a feasible starting point. As is common for barrier

methods [22], � is divided by 2 at every Nd iterations

(e.g., Nd ¼ 5). RCBoost is summarized in Algorithm 2.

Algorithm 2. RCBoost

Input: Training set St, validation set V þ, desired detection

rate DT , positive numbers �; �; �, Total number of weak

learners in the classifier N and Nd number of iteration

before halving �.
Initialization:

Set f1ðxÞ ¼ �, k ¼ 1.

while k < N do

Compute the weights wki and �ki with (30) and (31).

Select the best weak learner g�ðxÞ with (33).

Find the optimal step size �� with (34).

Update fkþ1ðxÞ ¼ fkðxÞ þ ��g�ðxÞ.
k ¼ kþ 1

if Nd � 0 ðmod NdÞ then

� ¼ �=2
end if

end while

Output: decision rule: sign½fNðxÞ�

3.3 Properties

An analysis of �rJð�;fkÞðxiÞ provides insight on the proper-
ties of RCBoost. For a point xi in both St and V þ, (29) can be
written as

�rJð�;fkÞðxiÞ ¼
yi
jStj

wki þ
�

jV þj �
k
i : ð35Þ

The first term is identical to the AdaBoost gradient of (11). It
encourages classifiers of least error rate. As usual in boosting,
it is small for points of large positive margin, i.e., correctly
classified and far from the boundary. The second term
encourages classifiers with the target detection rate. Note that
ûð:Þ is a smooth approximation to the Heaviside step, and its
derivative a smooth approximation to the Dirac delta. Since �ki
is the derivative of ûð:Þ atxi, at iteration k it is nonzero only for
examples close to the boundary, increasing their impact on
the gradient. This effect is modulated by the ratio
�=½jV þjðRDðfkÞ �DT Þ�. For small �, this is a small quantity
wheneverRD is larger thanDT . In this case, the second term is
small, and the gradient is equivalent to that of AdaBoost.
However, as RD approaches DT , the modulation increases
and the second term enhances the influence of boundary
points on the gradient. This allows RCBoost to focus more on
boundary points when there is pressure to violate the detection rate
constraint. Hence, the gradient step is steered away from the
boundary, allowing the solution to stay within the feasible
region. In summary, RCBoost is identical to AdaBoost when
there is no pressure to violate the rate constraint, but can
behave very differently as the constraint is approached. It can
thus be seen as a generalization of AdaBoost, which inherits
its interesting properties, e.g., simplicity and margin max-
imization, but supports a rate constraint. This justifies the name
of rate-constrained boosting.

A second interesting property is that RCBoost can
combine training and validation if V þ is a validation set.
In this case, the contribution of the training examples to the
gradient is exactly the same as in AdaBoost, while examples
in the validation set are used to enforce the rate constraint.
Overall, the validation set provides a correction to
AdaBoost, steering the optimization from constraint viola-
tions. A third interesting property is that RCBoost guaran-
tees the target detection rate independently of the negative
training examples. It thus automatically supports boot-
strapping procedures that periodically replace easily
classified negative examples with difficult ones [1], [18].

4 CASCADE CONFIGURATION

We next consider the problem of optimal cascade config-
urations. The decision rule implemented by a cascade, H, of
predictors f1; . . . ; fm can be written as

Hðf1; ::fmÞðxÞ ¼ sign½Cðf1; ::fmÞðxÞ�; ð36Þ

where

Cðf1; ::fmÞðxÞ ¼
fjðxÞ if fjðxÞ < 0 and

fiðxÞ � 0 i ¼ 1::j� 1
fmðxÞ if fiðxÞ � 0 i ¼ 1::m� 1

8<
: ð37Þ

is denoted the cascade predictor. Let

CmðxÞ � Cðf1; ::fmÞðxÞ ð38Þ

2008 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012

and note that, for an example x, either 1) the prediction
CmðxÞ is identical to that of last cascade stage, fmðxÞ, or 2) x
is rejected by the cascade composed of the previous stages,

Cm�1. This can be summarized as

Cm ¼ Cm�1u½�Cm�1� þ u½Cm�1�fm; ð39Þ

where uð:Þ is the Heaviside step, and we have omitted the
dependence on x for notational simplicity. This recursion
has two interesting properties.

Property 1. The addition, to a cascade, of a stage identical to its

last does not change its predictions:

Cðf1; . . . ; fmÞðxÞ ¼ Cðf1; . . . ; fm; fmÞðxÞ: ð40Þ

A proof of this property is given in Appendix A, which can be

found in the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPAMI.2011.281.

Property 2. Cðf1; . . . ; fmÞ is a linear function of the last stage

predictor fm:

Cðf1; . . . ; fmÞðxÞ ¼ �ðxÞ þ 	ðxÞfmðxÞ; ð41Þ

with coefficients

�ðxÞ ¼ Cm�1ðxÞu½�Cm�1ðxÞ�; ð42Þ

	ðxÞ ¼ u½Cm�1ðxÞ�: ð43Þ

Proof. This property follows from (39) and the fact that �; 	

only depend on f1 . . . fm�1 not fm. tu

Note that

	ðxÞ ¼
Ym�1

j¼1

u½fjðxÞ�; ð44Þ

since u½Cm�1ðxÞ� > 0 if and only if fjðxÞ � 0 8j < m.

4.1 Cascade Risk Minimization

We next consider the minimization of the cascade risk:

Re½Cðf1; . . . ; fmÞ� ¼
1

jStj
X
xi2St

e�yiCðf1;...;fmÞðxiÞ: ð45Þ

As before, this is accomplished by gradient descent in Un. A
predictor Cðfk1 ; . . . ; fkmÞ, with m � k, is available after the
kth descent iteration. Two enhancements are possible at

iteration kþ 1. The first is to augment the last stage fkm with a
weak learner, i.e., to maintain the number of stages at m,
make fkþ1

j ¼ fkj ; 8j < m, and fkþ1
m ¼ fkm þ g. The second is to

add a new stage fkþ1
mþ1, i.e., make fkþ1

j ¼ fkj ; 8j � m and
append a new fkþ1

mþ1 to the cascade.

4.1.1 Updating the Last Stage

We start by considering the best update under the first

possibility. It follows from (41) that

C
�
fk1 ; . . . ; fkm þ g

�
ðxiÞ ¼ aki þ bki gðxiÞ ð46Þ

with

aki ¼ �ðxiÞ þ 	ðxiÞfkmðxiÞ; ð47Þ

bki ¼ 	ðxiÞ ¼
Ym�1

j¼1

u½fkj ðxiÞ�: ð48Þ

Note that, from (41) and (47),

aki ¼ C
�
fk1 ; . . . ; fkm

�
ðxiÞ: ð49Þ

Given the solution Ckm � Cðfk1 ; . . . ; fkmÞ at iteration k, the

steepest descent update of the last stage is

�rReðCkmÞðxiÞ ¼ �
@Re

�
C
�
fk1 ; . . . ; fkm þ �Iðx ¼ xiÞ

�	
@�

����
�¼0

ð50Þ

¼ �
@Re

�
aki þ �bki Iðx ¼ xiÞÞ

	
@�

����
�¼0

ð51Þ

¼ yib
k
i

jStj
e�yia

k
i : ð52Þ

Hence, the weak learner selection rule is

g� ¼ arg max
g2Un
hgðxÞ;�rReðCkmÞðxÞi ð53Þ

¼ arg max
g2Un

1

jStj
X
xi2St

yib
k
i w

k
i gðxiÞ ð54Þ

with

wki ¼ e�yia
k
i ¼ e�yiCðfk1 ;...;fkmÞðxiÞ: ð55Þ

Using (46) and (16), the optimal step size is

�� ¼ arg min
�
Re

�
C
�
fk1 ; . . . ; fkm þ �g�

��
ð56Þ

¼ arg min
�

X
xi2St

e�yiða
k
iþ�bki g�ðxiÞÞ; ð57Þ

where, for g�ðxÞ 2 fþ1;�1g,

�� ¼ 1

2
log

P
ijyi¼g�ðxiÞ b

k
i w

k
iP

ijyi 6¼g�ðxiÞ b
k
i w

k
i

: ð58Þ

4.1.2 Adding a New Stage

We next consider the best update under the second

possibility, where a new stage is added to the cascade. We

start by considering a cascade in general form, i.e., whose

stages are not embedded, with predictor Cðfk1 ; . . . ; fkm; gÞðxÞ.
Note that consistency of gradient descent requires that taking

no step, i.e., choosing gðxÞ ¼ 0, leaves the predictor unal-

tered. This does not hold trivially since

C
�
fk1 ; . . . ; fkm; 0

�
ðxÞ 6¼ C

�
fk1 ; . . . ; fkm

�
ðxÞ: ð59Þ

To guarantee that the cascade output remains unaltered

when gðxÞ ¼ 0, it is sufficient to exploit (40) and define the

new stage as

fkþ1
mþ1ðxÞ ¼ fkmðxÞ þ gðxÞ: ð60Þ

This provides a mathematical justification for the embedded

cascade structure: This structure is a sufficient condition for

SABERIAN AND VASCONCELOS: LEARNING OPTIMAL EMBEDDED CASCADES 2009

the learnability of detector cascades by gradient descent.
Using (46),

C
�
fk1 ; . . . ; fkm; f

k
m þ g

�
ðxiÞ ¼ aki þ dki gðxiÞ; ð61Þ

where

aki ¼ C
�
fk1 ; :::; f

k
m; f

k
m

�
ðxiÞ ð62Þ

¼ C
�
fk1 ; :::; f

k
m

�
ðxiÞ; ð63Þ

dki ¼
Ym
j¼1

u
�
fkj ðxiÞ

	
ð64Þ

¼ bki u
�
fkmðxiÞ

	
; ð65Þ

and (63), (65) follow from (40) and (48). The optimal weak
learner and step size are derived as in the previous section,
leading to

g� ¼ arg max
g2Un

1

jStj
X
xi2St

yid
k
i w

k
i gðxiÞ; ð66Þ

�� ¼ arg min
�

X
xi2St

e�yiða
k
iþ�dki g�ðxiÞÞ; ð67Þ

with the weights wki of (55). For binary g�ðxÞ,

�� ¼ 1

2
log

P
ijyi¼g�ðxiÞ d

k
i w

k
iP

ijyi 6¼g�ðxiÞ d
k
i w

k
i

: ð68Þ

4.2 ECBoost

From (45), (46), and (61), it follows that the update of the
last cascade stage and the addition of a new cascade stage
have similar risks. The only difference is the use of the
gating coefficients bki in (46) and dki in (61). Note, from (64),
that dki ¼ 0 if and only if xi is rejected by any of the stages of
Cðfk1 ; :::fkmÞ, i.e., if 9j � m such that fkj ðxiÞ < 0. Similarly,
from (48), bi ¼ 0 if and only if 9j < m such that fkj ðxiÞ < 0.
Hence, bki and dki are the same, up to the examples rejected
by the mth cascade stage, for which bki > 0 and dki ¼ 0. It
follows that these examples influence the boosting process
for the last stage update, but not for learning a new stage.
Since detectors learned from larger pools of examples
generalize better, the update of the last stage would always
be the best choice for the minimization of (45). On the other
hand, the elimination of examples is the mechanism by
which cascaded detectors achieve fast classification.

To account for the two goals, we resort to a Lagrangian
formulation, where the detector risk ReðCÞ of (45) is
minimized under a complexity constraint. Complexity is
measured by the number of machine operations, T ½CðxÞ�,
required to classify example x using detector C. This leads
to the Lagrangian

LðC;
Þ ¼ ReðCÞ þ
T ðCÞ ð69Þ

¼ 1

jStj
X
xi2St

e�yiCðxiÞ þ

jS�t j
X
xi2S�t

T ½CðxiÞ�; ð70Þ

where S�t is the set of negative training examples and
 a
Lagrange multiplier that controls the tradeoff between
detection rate and speed. The restriction to S�t is mostly for
compliance with the literature, where detector complexity is
only evaluated for negative examples (which are over-
whelmingly more frequent than positives, dominating
detection complexity).

Since, given
, the minimization of (69) guarantees the
optimal tradeoff between classification risk and complexity,
the search for the optimal cascade can be implemented with
an extension to this cost of the gradient descent procedure
above. This is the essence of ECBoost, which grows a
cascade by computing its updates under the two strate-
gies—1) adding a stage and 2) augmenting the last stage—
and selecting the configuration for which (69) is smallest. At
iteration k of ECBoost, the update ð��1; g�1Þ of the last stage,
and the new stage ð��2; g�2Þ are computed with (54), (57) and
(66), (67), respectively. The Lagrangian of (69) is then
computed for the two cascades, and the one with the
smallest cost selected. Note that, in this way, ECBoost can
learn embedded cascades with a variable number of weak
learners per stage. The coefficients akþ1; bkþ1; dkþ1 can be
computed with (49), (48), and (64), or recursively. In this
case, when the last stage is updated:

fkþ1
j ¼ fkj j � m� 1; ð71Þ

fkþ1
m ¼ fkm þ ��1g�1; ð72Þ

akþ1
i ¼ aki þ bki ��1g�1ðxiÞ; ð73Þ

bkþ1
i ¼ bki ; ð74Þ

dkþ1
i ¼ bki u

�
fkþ1
m ðxiÞ

	
; ð75Þ

while

fkþ1
j ¼ fkj j � m; ð76Þ

fkþ1
mþ1 ¼ fkm þ ��2g�2; ð77Þ

akþ1
i ¼ aki þ dki ��2g�2ðxiÞ; ð78Þ

bkþ1
i ¼ dki ; ð79Þ

dkþ1
i ¼ dki u

�
fkþ1
mþ1ðxiÞ

	
ð80Þ

holds if a new stage is added. The derivation of (73)-(80) is
given in Appendix B, available in the online supplemental
material.

4.3 Properties

ECBoost has various interesting properties. First, by compar-
ing (54) and (66) with (15), it generalizes AdaBoost. In fact,
the two algorithms only differ in the weights assigned to the
training examples. In both (13) and (55), the weight wki
measures how well the training example xi is classified at
iteration k. As in AdaBoost, these weights discount well-
classified examples, emphasizing the regions of X where the

2010 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012

current predictor underperforms. The only difference is that,
for ECBoost, the weights wki are multiplied by the gating
coefficients bki ; d

k
i 2 f0; 1g, which assign zero weight to regions

ofX rejected prior to the stage being updated or created. This
is intuitive since examples in these regions will not reach the
stage during cascade operation. It is also an advantage of
ECBoost over the combination of noncascaded learning and
rejection points, e.g., as in [11], [13]. Under the latter, the
(noncascaded) learning of a weak learner is influenced by
examples that it will never process once rejection points are
inserted, and thus suboptimal. Hence, while ECBoost
maintains the familiar emphasis of boosting on difficult
examples (through wi), the gating coefficients bi and di
prevent the mismatch between noncascaded training and
cascaded operation that is characteristic of cascade design
based on (a posteriori) threshold tuning.

A second significant property is that ECBoost learns the
cascade configuration which minimizes an optimality
criterion, the Lagrangian of (69), that accounts for both
classification speed and accuracy. This leads to a fully
automated cascade design process, which does not require
prespecification of the configuration or any form of
postprocessing. The inability to automate existing cascade
design procedures, namely, that proposed by Viola and
Jones [1], is a major bottleneck for the wide deployment of
the cascade architecture.

A third interesting property is that ECBoost provides a
mathematical justification for the bootstrapping procedure
commonly used in the literature [1], [18]. This is a heuristic
used to regenerate the training set after the design of each
cascade stage. Examples rejected by the current cascade are
eliminated from the training set of subsequent stages, and
replaced by false positives collected from a validation set.
Since the role of the gating coefficients of ECBoost is exactly
to remove rejected examples (by assigning them zero weight
for the subsequent design), ECBoost justifies the boot-
strapping heuristic as a necessary step of the search for the
cascade of best tradeoff between classification speed and
risk. Note, however, that this only applies to the example
removal component of bootstrapping. To replicate the
addition of false positives, ECBoost must still be combined
with the latter.

Finally, ECBoost is conceptually simple and can be
implemented efficiently. While we have closely followed
the derivation of AdaBoost, the procedures above can be
easily adapted to any boosting method that has an
interpretation as gradient descent, e.g., LogitBoost [20],
RealBoost [23], or TangentBoost [24]. In fact, we next
combine ECBoost with RCBoost.

5 CASCADES WITH RATE GUARANTEES

ECBoost does not guarantee a detection rate for either the
intermediate stages or the entire cascade. To overcome this
limitation, we combine it with RCBoost, by replacing the
Lagrangian of (69) with

LðC;
; �Þ ¼ Jð�; CÞ þ
T ðCÞ; ð81Þ

where

Jð�; CÞ ¼ ReðCÞ þ �BðRDðCÞ �DT Þ: ð82Þ

C is the embedded cascade predictor, � a decreasing

sequence, and BðzÞ the logarithmic barrier of (25). As in

ECBoost, the best cascade update is computed by gradient

descent with respect to Jð�; CÞ, under two strategies: adding

a new stage versus updating the last. Equation (81) is then

used to select the strategy of best tradeoff between false-

positive rate and complexity.
Let CkmðxÞ ¼ Cðfk1 ; . . . ; fkmÞðxÞ be the predictor after

k gradient descent iterations, and ak; bk; dk as in (48), (49),

and (64). If CkmðxÞ is a feasible solution, the gradient for

update of the last cascade stage is

�rJð�;CkmÞðxiÞ ¼

�
@J
�
�; C
�
fk1 ðxiÞ::fkmðxiÞ þ �Iðx ¼ xiÞ

	�
@�

����
�¼0

ð83Þ

¼ �
@J
�
�; aki þ �bki Iðx ¼ xiÞ

�
@�

����
�¼0

ð84Þ

¼ �
@Re

�
aki þ �bki Iðx ¼ xiÞ

�
@�

����
�¼0

Iðxi 2 StÞ

þ�Iðxi 2 V þÞ
@ log

�
RD

�
aki þ �bki Iðx ¼ xiÞ

�
�DT

�
@�

����
�¼0

ð85Þ

¼ yib
k
i w

k
i

jStj
Iðxi 2 StÞ þ

�bki �
k
i

jV þj Iðxi 2 V
þÞ; ð86Þ

where we have used (46) and

wki ¼ e�yiC
k
mðxiÞ ¼ e�yiaki ; ð87Þ

�ki ¼
�

2

1� tanh2
�
�CkmðxiÞ

�
RD

�
Ckm
�
�DT

: ð88Þ

The optimal weak learner is

g� ¼ arg max
g2Un

X
xi2St

yib
k
i w

k
i gðxiÞ
jStj

þ �
X
xi2V þ

bki �
k
i gðxiÞ
jV þj

()
ð89Þ

and the optimal step size

�� ¼ arg min
�
Jð�; ak þ �bkg�Þ: ð90Þ

Equation (90) does not have a closed-form solution, and a

line search is used to find ��. Due to the infinite penalty

assigned to constraint violations by (25), this step size

guarantees a feasible solution.
The gradient for the addition of a new stage is

�rJð�;Ckmþ1ÞðxiÞ ¼ �
@Jð�; aki þ �dki Iðx ¼ xiÞÞ

@�

����
�¼0

ð91Þ

¼ yid
k
i w

k
i

jStj
Iðxi 2 StÞ þ

�dki �
k
i

jV þj Iðxi 2 V
þÞ; ð92Þ

where wki ; �
k
i are given by (87), (88). The optimal weak

learner is

SABERIAN AND VASCONCELOS: LEARNING OPTIMAL EMBEDDED CASCADES 2011

g� ¼ arg max
g2Un

X
xi2St

yid
k
i w

k
i gðxiÞ
jStj

þ �
X
xi2V þ

dki �
k
i gðxiÞ
jV þj

()
ð93Þ

and the optimal step size

�� ¼ arg min
�
J
�
�; ak þ �dkg�

�
; ð94Þ

found by a line search.
The two gradient steps are computed and the cascade

configuration for which (81) is smallest is selected. Because
the cascade has the embedded structure, all recursions
previously derived for ak; bk; dk still hold. This procedure is
denoted rate-constrained embedded-cascade boosting, or RCEC-
Boost for short, and summarized in Algorithm 3. Similarly
to RCBoost, RCECBoost is initialized with fðxÞ ¼ � > 0 so as
to accept every example, and guarantees that the detection
rate of the whole cascade is higher than DT after each
iteration, with no need for cross validation.

Algorithm 3. RCECBoost
Input: Training set St, validation set V þ, desired detection

rate D, tradeoff parameter
, number of weak learners N ,

barrier coefficient � and Nd number of iteration before

halving �.

Initialization:

Set f1
1 ðxÞ ¼ �, a1

i ¼ �, b1
i ¼ 1, d1

i ¼ 1, m ¼ 1, k ¼ 1.

while k < N do

Compute wki and �ki with (87) and (88).
Find ð��1; g�1Þ for C0 ¼ Cðfk1 ; ::; fkm þ ��1g�1Þ, with wki ; �

k
i ; a

k
i ; b

k
i

and (89), (90).

Find ð��2; g�2Þ for C00 ¼ Cðfk1 ; ::; fkm; fkm þ ��2g�2Þ, with

wki ; �
k
i ; a

k
i ; d

k
i and (93), (94).

if LðC00;
; �Þ < LðC0;
; �Þ then

fkþ1
mþ1 ¼ fkm þ ��2g�2

Set fkþ1
j ¼ fkj 8j � m.

Increase number stages m ¼ mþ 1.
Compute akþ1

i ; bkþ1
i ; dkþ1

i with (76)-(80).

else

fkþ1
m ¼ fkm þ ��1g�1

Set fkþ1
j ¼ fkj 8j < m.

Compute akþ1
i ; bkþ1

i ; dkþ1
i with (71)-(75).

end if

k ¼ kþ 1

if Nd � 0 ðmod NdÞ then

� ¼ �=2

end if

end while

Output: decision rule: sign½CðfN1 ðxÞ; :::; fNm ðxÞÞ�

6 RELATION TO PREVIOUS WORK

The embedded cascade learning procedures in the litera-
ture can be divided into three broad classes: a posteriori
threshold tuning, threshold optimization, and cost-sensitive

boosting. We next discuss the advantages of the proposed
algorithms over these approaches.

6.1 Threshold Tuning

Threshold tuning methods start by designing a noncas-
caded detector. Thresholds are then introduced and tuned

to produce a cascade with the target detection rate. A

popular threshold tuning approach is the SoftCascade

method [13]. A very large noncascaded classifier,

F ðxÞ ¼
P

i �igiðxÞ, is first learned with AdaBoost and a

modified bootstrap scheme [13]. This classifier is then

converted to an embedded cascade by reordering weak

learners, introducing exit points, and tuning the corre-

sponding thresholds. This conversion can be seen as a

search for the cascade configuration that solves the

optimization problem

min
m;f1;::fm

RfpðH½f1; . . . fm�Þ
s:t RDðH½f1; . . . fm�Þ ¼ DT

T ðH½f1; . . . fm�Þ ¼ ST ;

8><
>: ð95Þ

where RfpðHÞ is the false positive rate of H, and DT and ST
are the target detection rate and complexity, respectively.

When compared to our approach, these methods have two

main problems.
The first is to compromise the generalization ability of

boosting. While Friedman et al. [20] have shown that

boosting learns the optimal predictor—the log-likelihood

ratio (LLR) surface—for the binary classification problem at

hand, this only holds asymptotically (infinite training

samples). In the finite sample regime, the predictor is well

approximated in a neighborhood, NðBÞ, of the classification

boundary B but poorly outside NðBÞ [25], [26]. This is not

surprising since boosting’s weighting mechanism, e.g., (13),

concentrates the weight of the learning sample on NðBÞ.
However, it has the consequence that varying the threshold

of a detector learned with AdaBoost is not equivalent to

varying the threshold of the LLR. In general, there are no

guarantees that a transformed classification boundary B0 of

detection rate DT is the optimal boundary BDT
(boundary of

smallest false positive rate) at that rate. Hence, threshold

tuning frequently produces suboptimal classifiers at the

new detection rates [25], [26]. This is unlike the approach

proposed in this work where boosting learns BDT
directly.

In this case, there is no loss of generalization.
A second problem is that, due to its combinatorial

nature, threshold tuning requires suboptimal approxima-

tions. For example, because boosting is a gradient descent

procedure in the space of weak learners, SoftCascade

learning can be interpreted as

. perform gradient descent on the set Un and store the
sequence of gradient steps in a set G 	 Un,

. expand G into Gþ by slightly perturbing each step,
e.g., by varying weak learner thresholds,

. find the sequence of perturbed gradient steps in Gþ
that best solves (95).

In general, it is unlikely that this search over a limited subset

of gradient steps can produce a solution superior to that of

direct gradient descent under the constraints of (95), e.g.,

RCECBoost. The SoftCascade attempts to solve this problem

by relying on a very large initial classifier (large G). This

substantially increases the learning complexity and does not

necessarily provide better guarantees of optimality.

2012 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012

6.2 Threshold Optimization

A second class of methods optimizes thresholds inside
boosting [7], [9], [10]. While the methods differ, a common
thread is the use of classical decision theory to either
1) predict optimal thresholds or 2) formulate the entire
problem. We will use WaldBoost [10], [27] as an example,
due to its popularity and a very elegant connection to
Wald’s sequential decision theory [28]. It is a procedure for
the solution of the optimization

min
m;f1;::fm

T ðH½f1; . . . fm�Þ
s:t 8i � m RDðfiÞ � DT

8i � m RfpðfiÞ � fpT ;

8><
>: ð96Þ

where DT and fpT are target detection and false positive
rates, respectively. The optimal solution is a sequential rule
that, at each step can accept, reject, or make no decision
about the example to classify. Learning is essentially a
combination of AdaBoost with two thresholds (that deter-
mine the reject/accept decisions) and bootstrapping. A stage
is created per boosting iteration, its thresholds set according
to Wald theory, and the training set bootstrapped.

While the connection to Wald’s theory is elegant, the
theory only applies to asymptotical sequential decision
making. This is not the case of cascades, which have finitely
many stages. Furthermore, the theory only applies to
independent measurements, which are not available in
cascade design. To address this and establish a connection
to boosting, WaldBoost relies on Friedman et al. [20]. As
discussed above, this only holds in the asymptotic regime,
this time in terms of sample size. In summary, the theory
behind WaldBoost only holds in the doubly asymptotical
regime of infinite data and infinitely long cascades. It thus
shares the limitations of the SoftCascade.

6.3 Cost-Sensitive Boosting

These problems are eliminated by cost-sensitive boosting
methods, which learn the optimal boundary directly, through
minimization of a risk that assigns a different cost to each
type of error. For example, for any optimal boundary BDT

of
high detection rate DT , there is a risk which assigns higher
costs to misses than false positives so as to concentrate the
sample weight on a neighborhood NðBDT

Þ. Rather than
1) learning the optimal boundary in a neighborhood NðBÞ
and 2) transferring it by threshold adjustments, the optimal
boundary BDT

is learned directly.
Many cost-sensitive extensions of AdaBoost have been

proposed. Some [14], [15], [16] are heuristic, simply adding
cost-factors to its weight update rule. These algorithms are
suboptimal, e.g., adopt suboptimal step sizes �, and
underperform methods, such as Asymmetric Boosting [11]
or AsymetricAdaBoost [2], derived from cost-sensitive
extensions of the risk of (7) [11], [26]. These extensions are
shown in Table 1, along with the resulting weight updates.
The cost of each example is defined as

cðxÞ ¼ CþI½yðxÞ ¼ 1� þ C�I½yðxÞ ¼ �1�; ð97Þ

and the ratio Cþ
C�

determines the relative importance of
positive and negative examples. For all methods,

�rReðfkÞðxiÞ ¼ yðxiÞwðxiÞ; ð98Þ

and implementation follows Algorithm 1, using the defini-
tions of Table 1.

While addressing the limitations of threshold tuning,
these methods have two substantial problems. First, while
the costs ðCþ; C�Þ can be very intuitive for some problems,
e.g., in fraud detection a false positive is known to cost Cþ
and a miss C� dollars, they are not available for cascade
design, where only the detection rate DT is specified. Albeit
Neyman-Pearson’s lemma guarantees that the optimal
classifier for a given ðCþ; C�Þ is also optimal for some DT ,
the mapping between ðCþ; C�Þ and DT is usually unknown.
In fact, this mapping varies from one problem to another.
Hence, cost factors have to be found by cross validation.
Second, even when cross validation is used and the overall
classifier meets the target DT , the same is not guaranteed for
each boosting iteration. Hence, an embedded cascade created
by adding exit points to a detector learned with CS-boosting
has unpredictable detection rate. Both problems are
compounded when the training set is modified, e.g., by
the use of bootstrapping. In this case, a good set of cost
factors before example replacement does not guarantee
good performance after it. As a result, CS-boosting
algorithms frequently misclassify too many positive exam-
ples to accommodate the new bootstrapped negatives.

6.4 RCECBoost

RCECBoost addresses all the problems above. The specifi-
cation of
 in the Lagrangian of (81) is equivalent to that of
an upper bound on complexity, ST ð
Þ, for the classification
problem under consideration. This encodes the value of
computational complexity to the cascade designer. Overall,
the minimization of (81) is equivalent to solving the
optimization problem

min
m;f1;::fm

ReðC½f1; . . . fm�Þ
s:t RDðC½f1; . . . fm�Þ � DT

T ðC½f1; . . . fm�Þ � ST ð
Þ;

8><
>: ð99Þ

where DT is a target detection rate and ST ð
Þ a target
average complexity. Like the CS-boosting algorithms, it
learns the optimal boundary directly in NðBDT

Þ. However,
because this is done with the barrier penalty of (82), there is
no need for cross validation of cost factors. The only
parameters are the target detection rate DT and the
complexity constraint parameter
. While the function
Stð
Þ can vary across detection problems, our experiments
(see Section 7) show that it is possible to learn detectors
with a good compromise between speed and classification
accuracy using a constant
. In RCECBoost, the rate DT is
guaranteed for all boosting iterations. In fact, because the

SABERIAN AND VASCONCELOS: LEARNING OPTIMAL EMBEDDED CASCADES 2013

TABLE 1
Weight Updates and Risk Functions

of Different Boosting Algorithms

yi denotes the label of example xi, f
kðxÞ the predictor learned at the kth

iteration, and ci the cost factor of example xi.

detection rate estimate of (23) only depends on a set V þ of
positive examples, RCECBoost even guarantees DT inde-
pendently of the negative training examples used. This is
unlike cost sensitive boosting, for which the cost factors that
guarantee DT vary with the negative training samples.

7 EVALUATION

In this section, we report on an extensive experimental
evaluation of the algorithms proposed in this work. Four
sets of experiments were conducted. The first addressed the
properties of RCBoost as a general tool for detector design
under detection rate constraints. Detector cascades were
then considered in the second set. These experiments tested
the ability of ECBoost to produce cascaded detectors with a
good balance between classification risk and complexity.
The third set addressed cascade learning under detection
rate constraints, comparing RCECBoost to previous cascade
learning methods. Finally, a fourth set compared RCEC-
Boost cascades to detectors from the broader object
detection literature. In all experiments, a pool of about
9,000 random images, provided by [17], was used for
bootstrapping, and weak learners were thresholds on Haar
wavelet features [1]. Since these features have nearly
identical computation, T was defined in (69) and (81) as
the average number of features evaluated, per example, by
the classifier. For RCBoost and RCECBoost, the positive
component of the training set was used as validation set V þ.

7.1 RCBoost

We start with two RCBoost experiments. Both addressed
the problem of face detection, using a data set of 9,000
positive and 9,000 negative examples, of size 24
 24. These
were split into a training set of 7,200 positives and 7,200
negatives, and a test set containing the remaining examples.
The first experiment tested the ability of RCBoost to
maintain a detection rate uniformly higher than a target,
across boosting iterations. For this, we trained detectors
under the six target detection rates of Fig. 2. The figure
presents plots of the detection and false positive rates as a
function of the boosting iteration. Note that, even on the test
set, the detection rates are quite close to the target. As

expected, detectors with looser detection rate constraints
achieve lower false-positive rates.

The second experiment tested the ability of RCBoost to
maintain the target detection rate in the bootstrapping
scenario. For this, we considered a variable training set,
where all correctly classified negative examples were
replaced by new false positives whenever the false positive
rate dropped below 50 percent.1 Fig. 3 presents the
evolution of the detection and false positive rates, for
DT ¼ 98%. The sharp increases in training set false positive
rate are aligned with the iterations where the training set
was bootstrapped. On the test set, detection rate is always
above target and false positive rate close to that obtained
without bootstrapping, (Test Set-NB on the bottom plot).

7.2 ECBoost

The second set of experiments aimed to evaluate the
performance of ECBoost. Besides face detection, they
addressed the problems of car and pedestrian detection.
The car data set was derived from the UIUC data [29]. In
particular, we used its 550 positive examples (plus flipped
replicas) as the positive set after resizing to 20
 50 pixels.
The negative examples were 12,000 random subwindows
(of size 20
 50) from the negative images of UIUC. The
pedestrian data were based on the Caltech Pedestrian data
set [30]. From the 11 sets of videos provided in this data set,
we extracted, from sets 0-5, 9,714 positive and 10,000
negative examples. These were resized to 43
 17 pixels. In
all experiments of this section, these data sets were split
fivefold and results averaged over five rounds. In each
round, fourfolds were used for training and one for testing.

Since ECBoost does not provide detection rate guaran-
tees, simply trading off classification speed for risk Re, the
detection rate of the resulting cascades quickly drops to
unacceptably low values. This creates difficulty in the
design of realistic cascades. The experiments in this set were
thus mostly designed to understand the tradeoffs between

2014 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012

Fig. 2. Detection (top) and false positive rate (bottom) of RCBoost on the
test set for target detection rates shown in the legend.

Fig. 3. Evolution of detection (top) and false positive (bottom) rates on the
train and test set for RCBoost with bootstrapping. The test set false
positive rate in the absence of bootstrapping is also shown (Test Set-NB)
for comparison.

1. We usually adopt a threshold of 95 percent. Fifty percent was used in
this experiment to magnify the variations, enabling easier visualization.

detection accuracy and complexity. In particular, ECBoost
was compared to 1) AdaBoost (equivalent to a version of
ECBoost that always updates the last cascade stage),
2) ECBoost(1) (a version of ECBoost that always adds a
new cascade stage), and 3) ChainBoost, where a detector is
first learned with AdaBoost and an exit point inserted per
weak learner. All detectors contained 24 weak learners.

We started by measuring the impact of the Lagrange
multiplier
 of (69) on the performance of ECBoost cascades.
Fig. 4 shows the classification risk, Re, as a function of
cascade complexity, T , on the face data set, for cascades
trained with different
 (
 ¼ 0:2 for leftmost point,
 ¼ 0 for
rightmost). As expected, cascades learned with lower
 have
lower error and higher complexity. We then set
 ¼ 0:02,
and compared ECBoost with ChainBoost and AdaBoost,
with the results of Table 2. As expected, AdaBoost had the
lowest classification risks Re, with the longest evaluation
times. The cascade speedups ranged from 4.4 to 13.3 times,
and most cascades were more than seven times faster than
the AdaBoost detector. On the other hand, the cascade risk
ranged from 1.2 to 2.4 times that of AdaBoost, and was
below 1.7 times for most cascades. Overall, the cascades
achieved a better tradeoff between speed and accuracy. This
is reflected by their lower Lagrangian L.

With regard to the performance of the various cascades,
ECBoost(1) produced the fastest car and pedestrian detec-
tors, while the face detector of ChainBoost was the fastest.
In all cases, ECBoost learned the cascades of lowest
Lagrangian L. This is not surprising since it explicitly
optimizes this quantity. It does, however, show that
significant gains (26 percent over AdaBoost, 9.3 percent
over ChainBoost, and 8.3 percent over ECBoost(1), on
average) can be obtained by explicitly seeking the best
tradeoff between speed and accuracy. Individually, a
comparison between ECBoost(1) and ChainBoost reveals
that accounting for the cascade structure during learning
decreases L by about 1 percent, while a comparison
between ChainBoost and ECBoost shows that an additional
search for the cascade configuration of lowest L has a gain

between 2 and 16 percent, depending on the data set. This
gain is achieved by trading a moderate increase in
complexity for a substantial decrease of the risk.

7.3 RCECBoost

The performance of RCECBoost was compared to a number
of algorithms in the literature. WaldBoost [10] was chosen
to represent threshold optimization methods, and the
multiexit cascade method of [12] to represent CS-boosting
methods. To the best of our knowledge, this is the method
that achieves the current best results in standardized data
sets. Since it has been previously shown to outperform
threshold tuning methods such as SoftCascade [12], these
were not implemented. For completeness, the comparison
also included the method of Viola and Jones (VJ) [1]. In all
experiments, WaldBoost, multiexit, and VJ were boot-
strapped when a new stage was added to the cascade. For
RCECBoost, we used
 ¼ 0:02, and bootstrapping whenever
the false positive rate dropped to 95 percent. For VJ and
multiexit cascades, we used 20 stages, each with a target
false positive rate of 50 percent and a detection rate D

1
20

T ,
respectively. For WaldBoost, following [10], we set B ¼ 0
and A ¼ 1

1�DT
.

Face detection. Since state-of-the-art face detectors are
based on the cascade architecture and face detection is the
standard benchmark for cascaded detectors, we start with
this task. For all methods, we trained a face detector with
99,638 Haar features and DT ¼ 95%. The VJ and Multiexit
cascades had 20 stages, while WaldBoost learned an
embedded detector with 1,000 stages, each containing one
new weak learner. RCECBoost produced an embedded
detector with about 640 stages, 57 percent of which had
one, 24 percent two, 9 percent three, and 10 percent more
new weak learners. Fig. 5 presents the resulting ROCs on
the MIT-CMU face data set. The legend also shows the
average detection complexity T of each method. The
RCECBoost cascade is more accurate than those of VJ and
WaldBoost, at 3.6 and 2.3 times faster, respectively. With
respect to multiexit, it has similar detection performance
but is about 6.5 times faster. Overall, RCECBoost has the
clear best performance.

Pedestrian detection. We next considered pedestrian
detection. Note that the combination of cascades and Haar
wavelets is not necessarily the best solution for this task
[30], where edge-like feature such as HOG [31] can obtain
better performance.2 Nevertheless, the pedestrian task can

SABERIAN AND VASCONCELOS: LEARNING OPTIMAL EMBEDDED CASCADES 2015

Fig. 4. Classification speed versus accuracy of ECBoost for different
values of
.

TABLE 2
Comparison of Cascade Learning Algorithms
(
 ¼ 0:02, Detectors of 24 Weak Learners)

Fig. 5. ROC of various face detectors on MIT-CMU face data. The
legend shows the average detection complexity T of each method.

2. According to [32], the best current pedestrian detection results are due
to [33]. This approach combines a cascaded detector with a fast multiscale
method to compute Haar-like features over multiple channels, including
gray scale, gradients, and color. The gradient information is an approxima-
tion to the HOG descriptor.

be used to compare detector cascades. For this, cascades
were learned with DT ¼ 98% and 114,771 Haar features.
Detection performance was evaluated on a test set, disjoint
from the training set, containing 1 out of every 30 frames of
videos in sets 0-5 of Caltech [30], using the software provide
by its authors. Again, the VJ and Multiexit cascades had
20 stages, and WaldBoost learned an embedded cascade of
about 1,800 stages, each containing a single new weak
learner. RCECBoost produced an embedded detector of
about 1,000 stages, 56 percent of which had one, 19 percent
two, 10 percent three, and 15 percent more new weak
learners. Fig. 6 shows the miss versus false positive rate of
all detectors, as computed by the software provided with
the data set, in the near scale regime [30]. For each method,
the legend shows the miss rate at one false positive per
image (first value) and the average detection complexity T
(second value). The RCECBoost cascade has the lowest miss
rate and is the fastest. The closest performance is that of
WaldBoost, with 7 percent less accuracy and 50 percent
larger detection time. VJ, multiexit, and WaldBoost have
similar accuracy, but the multiexit cascade is again
substantially slower than all others (5
 slower than
RCECBoost).

7.4 Comparison to Other Methods

In this section, we compare the performance of different
methods and architectures on two object detection pro-
blems. The comparison is based on 1) classification accuracy
and 2) computational complexity. Complexity is measured
as the average time (in seconds) elapsed per detection.3

Car detection. We start with some experiments on car
detection using the UIUC single-scale and multiscale car
(side view) data sets [29]. The single-scale data set contains
170 images with 200 cars of roughly equal size (100
 40).
The multiscale data set contains 108 images with 139 cars of
multiple sizes. These data sets are interesting because
results from a large number of methods are available for
them. For example, Leibe et al. [34] proposed a combination
of an implicit shape model (ISM) and minimum description
length, Lampert et al. [35] the combination of an SVM,
hierarchical spatial pyramid kernels, and an efficient
subwindow search (ESS), while Fritz et al. [36] integrated
an SVM, ISM, and local kernels, Fergus et al. [37] proposed
part-based models learned by expectation maximization,
and Mutch and Lowe [38] the combination of an SVM and a

biologically inspired HMAX network. In the realm of
cascaded detectors, Schneiderman [39] proposed a cascade
with histogram weak learners, while Wu and Nevatia [40]
used edgelet features in a RealBoost cascade.

A car detector was trained with RCECBoost, using
 ¼
0:02; DT ¼ 98% and 179,213 Haar features. Table 3 presents
the detection rate at equal error rate (EER) and average
processing time required, per image, for all methods. The
detection and false positive rates are computed as in [29],
where a true detection is declared if its center is inside a
ground-truth ellipse.

Several important observations can be made from the
table. First, recent methods achieve very high accuracy on
the both the single and multiscale data sets. Since differ-
ences in performance of 1 percent correspond to the
detection of a few examples, there is a tendency to declare
the data sets as “solved.” We note, however, that this is not
the case when a processing time constraint holds. In fact,
among the existing methods, the only remotely close to real-
time implementations are those based on detector cascades
[39], [40]. These methods have relatively low performance.
On the other hand, the methods of highest accuracy tend to
have very large processing times, e.g., several minutes for
[35], when 10 pyramid levels are used.

Second, RCECBoost cascade is orders of magnitude
faster than most other detectors. Its processing times range
from 40 to 230 milliseconds, i.e., about 2-5 times faster than
the next best speeds, which are obtained by the cascades of
[39], [40]. These speedups are complemented by a gain in
detection accuracy of 1.5 percent on the single-scale data
set, and a loss of the same magnitude for the multiscale
data, i.e., an overall equivalent detection accuracy. Third,
no method does very well on the multiscale data when
complexity is taken into account. While the detection
performance of the cascades, 92-93 percent, is substantially
inferior to the best results, 98.6 percent for ESS ð10
 10Þ,
the complexity of the most accurate methods is unaccep-
table for most applications of practical interest. For
example, ESS ð10
 10Þ is about 5,000 times slower than
the RCECBoost cascade.

The fact that computation complexity should not be
disregarded is well illustrated by the performance of ESS
ð4
 4Þ, which has the same detection rate as the RCECBoost
cascade but is 500 times slower. Hence, while ESS ð10
 10Þ
could be considered a “better” detector than the RCECBoost
cascade, ESS ð4
 4Þ is definitely not. Overall, the RCEC-
Boost cascade achieves the best compromise between

2016 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012

Fig. 6. Miss versus false positive rates for pedestrian detection. The
legend shows the miss rate at one false positive per image (first value)
and the average detection complexity T (second value).

TABLE 3
Comparison of Car Detectors on the UIUC Data Set

3. The times reported in this section are either those reported in the
original papers, or the result of running the algorithms on a dual core
2.6 GHz CPU.

detection accuracy and complexity. We would also argue
that the car data set should not be declared “solved” as
there is plenty of room for improvement when complexity
is accounted.

Panda detection. While the car data set is one of the
most mature in object detection, we finish with a very
recent data set, which explicitly tests the main weaknesses
of currently popular detection architectures [41]. This is a
data set of a wildlife exhibit, a panda habitat, of much
larger size (2,518 training and 2,500 test images of size
240
 320), and wide variability of object scale, pose,
background, and occlusion. The panda examples were
rescaled to size 27
 31, and RCECBoost used to learn a
cascade with 128,274 Haar wavelets,
 ¼ 0:02, and
DT ¼ 98%. Detection performance was evaluated as in
[41]. Fig. 7 presents the curves of detection rate versus
number of false positives per image (FPPI) produced by a
number of methods, including a discriminant saliency
model (DS) proposed in [41], the discriminatively trained
part-based model (part Model) popular in the PASCAL
literature [42], the sparse coded spatial pyramid matching
(ScSPM) method of [43], and the spatial pyramid matching
kernel (SPMK) method of [44], which are state-of-the-art
(single descriptor) methods in the Caltech101 and 15 scenes
benchmarks. The numbers in the legend are the average
detection times (seconds) per image.

Other than RCECBoost, these curves were reported in
[41]. In this data set, the RCECBoost cascade achieves the
best performance even when complexity is not taken into
account. This is particularly true at low FPPI, e.g., while the
previous best reported detection rate for a FPPI of 0.1 was
50 percent [41], the RCECBoost cascade achieves a detection
rate of about 70 percent. With regard to detection speed,
RCECBoost requires about 47 milliseconds to scan each
image, which is suitable for real-time detection. This is
between 200 and 4,000 times faster than the other methods!

8 CONCLUSION

The challenges of embedded cascade design are rooted in the
limited ability of current boosting algorithms to 1) maintain a
detection rate throughout learning and 2) search for the
optimal cascade configuration. In this work, we have
addressed these problems with two new boosting algorithms:
RCBoost, which provides detection rate guarantees through-
out the learning process, and ECBoost, which searches for the
cascade configuration with optimal tradeoff between classi-
fication accuracy and speed. The two algorithms were then
combined into a single procedure, RCECBoost, that optimizes
the cascade configuration under a detection rate constraint,
in a fully automated manner. Experimental evaluation on

face, car, pedestrian, and panda detection has shown that

the resulting cascades achieve a substantially better speed/

accuracy tradeoff than previous approaches.

REFERENCES

[1] P. Viola and M.J. Jones, “Rapid Object Detection Using a Boosted
Cascade of Simple Features,” Proc. IEEE CS Conf. Computer Vision
and Pattern Recognition, 2001.

[2] P. Viola and M. Jones, “Fast and Robust Classification Using
Asymmetric Adaboost and a Detector Cascade,” Proc. Advances in
Neural Information and Processing System, 2001.

[3] X. Hou, C.-L. Liu, and T. Tan, “Learning Boosted Asymmetric
Classifiers for Object Detection,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition, 2006.

[4] S. Li and Z. Zhang, “Floatboost Learning and Statistical Face
Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 9, pp. 1112-1123, Sept. 2004.

[5] H. Luo, “Optimization Design of Cascaded Classifiers,” Proc. IEEE
CS Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 480-
485, 2005.

[6] C. Liu and H.-Y. Shum, “Kullback-Leibler Boosting,” Proc. IEEE
CS Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 587-
594, 2003.

[7] S.C. Brubaker, J. Wu, J. Sun, M.D. Mullin, and J.M. Rehg, “On the
Design of Cascades of Boosted Ensembles for Face Detection,”
Int’l J. Computer Vision, vol. 77, pp. 65-86, 2008.

[8] R. Xiao, L. Zhu, and H.-J. Zhang, “Boosting Chain Learning for
Object Detection,” Proc. IEEE Int’l Conf. Computer Vision, pp. 709-
715, 2003.

[9] R. Xiao, H. Zhu, H. Sun, and X. Tang, “Dynamic Cascades for Face
Detection,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1-8, 2007.

[10] J. Sochman and J. Matas, “Waldboost-Learning for Time Con-
strained Sequential Detection,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition, pp. 150-156, 2005.

[11] H. Masnadi-Shirazi and N. Vasconcelos, “High Detection-Rate
Cascades for Real-Time Object Detection,” Proc. IEEE Int’l Conf.
Computer Vision, 2007.

[12] M.-T. Pham, V.-D. Hoang, and T.-J. Cham, “Detection with Multi-
Exit Asymmetric Boosting,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 1-8, 2008.

[13] L. Bourdev and J. Brandt, “Robust Object Detection via Soft
Cascade,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, pp. 236-243, 2005,

[14] W. Fan, S.J. Stolfo, J. Zhang, and P.K. Chan, “Adacost:
Misclassification Cost-Sensitive Boosting,” Proc. Int’l Conf. Machine
Learning, 1999.

[15] K.M. Ting, “A Comparative Study of Cost-Sensitive Boosting
Algorithms,” Proc. Int’l Conf. Machine Learning, pp. 983-990, 2000.

[16] A. Wong, Y. Sun, and Y. Wang, “Parameter Inference of Cost-
Sensitive Boosting Algorithms,” Proc. Int’l Conf. Machine Learning
and Data Mining in Pattern Recognition, 2005.

[17] J. Wu, S.C. Brubaker, M.D. Mullin, and J.M. Rehg, “Fast
Asymmetric Learning for Cascade Face Detection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 369-382,
Mar. 2008.

[18] K.-K. Sung and T. Poggio, “Example-Based Learning for View-
Based Human Face Detection,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998.

[19] Y. Freund and R.E. Schapire, “A Decision-Theoretic General-
ization of On-Line Learning and an Application to Boosting,” Proc.
European Conf. Computational Learning Theory, 1995.

[20] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic
Regression: A Statistical View of Boosting,” Annals of Statistics,
vol. 28, pp. 337-407, 2000.

[21] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting
Algorithms as Gradient Descent,” Proc. Advances in Neural
Information Processing Systems, 2000.

[22] J. Nocedal and S. Wright, Numerical Optimization. Springer Verlag,
1999.

[23] R.E. Schapire and Y. Singer, “Improved Boosting Algorithms
Using Confidence-Rated Predictions,” Machine Learning, vol. 37,
pp. 297-336, 1999.

[24] H. Masnadi-Shirazi, V. Mahadevan, and N. Vasconcelos, “On the
Design of Robust Classifiers for Computer Vision,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2010.

SABERIAN AND VASCONCELOS: LEARNING OPTIMAL EMBEDDED CASCADES 2017

Fig. 7. Detection rate versus FPPI for panda detection. The numbers in
the legend are the average detection times (seconds) per image.

[25] D. Mease and A. Wyner, “Evidence Contrary to the Statistical
View of Boosting,” J. Machine Learning Research, vol. 9, pp. 131-156,
2008.

[26] H. Masnadi-Shirazi and N. Vasconcelos, “Cost-Sensitive Boost-
ing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33,
no. 2, pp. 294-309, Feb. 2011.

[27] J. Sochman, “Learning for Sequential Classification,” PhD dis-
sertation, Czech Technical Univ., 2009.

[28] A. Wald, Sequential Analysis. Dover, 1947.
[29] S. Agarwal, A. Awan, and D. Roth, “Learning to Detect Objects in

Images via a Sparse, Part-Based Representation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475-
1490, Nov. 2004.

[30] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian
Detection: A Benchmark,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2009.

[31] S. Maji, A.C. Berg, and J. Malik, “Classification Using Intersection
Kernel Support Vector Machines Is Efficient,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[32] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian
Detection: An Evaluation of the State of the Art,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 743-761,
Apr. 2012.

[33] P. Dollár, S. Belongie, and P. Perona, “The Fastest Pedestrian
Detector in the West,” Proc. British Machine Vision Conf., 2010.

[34] B. Leibe, A. Leonardis, and B. Schiele, “Robust Object Detection
with Interleaved Categorization and Segmentation,” Int’l
J. Computer Vision, vol. 77, pp. 259-289, 2008.

[35] C. Lampert, M. Blaschko, and T. Hofmann, “Efficient Subwindow
Search: A Branch and Bound Framework for Object Localization,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 12,
pp. 2129-2142, Dec. 2009.

[36] M. Fritz, B. Leibe, B. Caputo, and B. Schiele, “Integrating
Representative and Discriminant Models for Object Category
Detection,” Proc. IEEE Int’l Conf. Computer Vision, vol. 2, pp. 1363-
1370, 2005.

[37] R. Fergus, P. Perona, and A. Zisserman, “Object Class Recognition
by Unsupervised Scale-Invariant Learning,” Proc. IEEE CS Conf.
Computer Vision and Pattern Recognition, vol. 2, pp. 264-271, 2003.

[38] J. Mutch and D. Lowe, “Multiclass Object Recognition with
Sparse, Localized Features,” Proc. IEEE CS Conf. Computer Vision
and Pattern Recognition, vol. 1, pp. 11-18, 2006.

[39] H. Schneiderman, “Feature-Centric Evaluation for Efficient
Cascaded Object Detection,” Proc. IEEE CS Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 29-36, 2004.

[40] B. Wu and R. Nevatia, “Simultaneous Object Detection and
Segmentation by Boosting Local Shape Feature Based Classifier,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8,
2007.

[41] S. Han and N. Vasconcelos, “Biologically Plausible Detection of
Amorphous Objects in the Wild,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition Workshop, 2011.

[42] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part-Based
Models,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 32, no. 9, pp. 1627-1645, Sept. 2010.

[43] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear Spatial Pyramid
Matching Using Sparse Coding for Image Classification,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pp. 1794-1801,
2009.

[44] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Cate-
gories,” Proc. IEEE CS Conf. Computer Vision and Pattern Recogni-
tion, vol. 2, pp. 2169-2178, 2006.

Mohammad Javad Saberian received the BS
degrees in electrical engineering and computer
science from Sharif University of Technology,
Iran, in 2008. He is currently working toward the
PhD degree at the University of California, San
Diego, in the Electrical and Computer Engineer-
ing Department in the Statistical Visual Comput-
ing Laboratory. He was the recipient of a UC San
Diego fellowship in 2008 and Yahoo Key
Scientific Challenges award in 2011. His re-

search interests are in machine learning and computer vision.

Nuno Vasconcelos received the licenciatura
in electrical engineering and computer science
from the Universidade do Porto, Portugal, in
1988, and the MS and PhD degrees from the
Massachusetts Institute of Technology in 1993
and 2000, respectively. From 2000 to 2002, he
was a member of the research staff at the
Compaq Cambridge Research Laboratory,
which in 2002 became the HP Cambridge
Research Laboratory. In 2003, he joined the

Electrical and Computer Engineering Department at the University of
California, San Diego, where he heads the Statistical Visual
Computing Laboratory. He is the recipient of a US National Science
Foundation (NSF) CAREER award, a Hellman Fellowship, and has
authored more than 100 peer-reviewed publications. His work spans
various areas, including computer vision, machine learning, signal
processing and compression, and multimedia systems. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2018 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 10, OCTOBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

