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Abstract. A new class of predictors, denoted realistic predictors, is de-
fined. These are predictors that, like humans, assess the difficulty of
examples, reject to work on those that are deemed too hard, but guaran-
tee good performance on the ones they operate on. In this paper, we talk
about a particular case of it, realistic classifiers. The central problem in
realistic classification, the design of an inductive predictor of hardness
scores, is considered. It is argued that this should be a predictor indepen-
dent of the classifier itself, but tuned to it, and learned without explicit
supervision, so as to learn from its mistakes. A new architecture is pro-
posed to accomplish these goals by complementing the classifier with an
auxiliary hardness prediction network (HP-Net). Sharing the same in-
puts as classifiers, the HP-Net outputs the hardness scores to be fed to
the classifier as loss weights. Alternatively, the output of classifiers is also
fed to HP-Net in a new defined loss, variant of cross entropy loss. The
two networks are trained jointly in an adversarial way where, as the clas-
sifier learns to improve its predictions, the HP-Net refines its hardness
scores. Given the learned hardness predictor, a simple implementation
of realistic classifiers is proposed by rejecting examples with large scores.
Experimental results not only provide evidence in support of the effec-
tiveness of the proposed architecture and the learned hardness predictor,
but also show that the realistic classifier always improves performance
on the examples that it accepts to classify, performing better on these
examples than an equivalent nonrealistic classifier. All of these make it
possible for realistic classifiers to guarantee a good performance.
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1 Introduction

Recent years have produced significant advances in computer vision, due to the
introduction of deep convolutional neural networks. Like most other machine
learning and computer vision models, they are trained to perform as well as pos-
sible on every example. In result, these models have no awareness of what they
can and cannot do. This is unlike people, who have a sense of their limitations.
Most humans can do certain things and do them well but, beyond these, will say
‘sorry, I don’t know how to do that’. Then they work on what they can do and
gradually overcome their limitations. One could say that humans are realistic
predictors, who would rather refuse tasks that are too hard than almost surely
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fail. This is unlike most classifiers, who are optimistic and attempt to classify
all examples, no matter how hard. This can be a problem for applications where
incorrect decisions can have very negative consequences. For example, a signif-
icant problem for smart cars is that their vision systems offer no performance
guarantees. For these applications, the vision system should guarantee that the
error rate will not exceed some specifications, based on the scene, weather con-
ditions, etc. Even more importantly, it should have a reject option, refusing to
operate on instances that are too hard, preferring to bring the vehicle to a stop
than risk accidents. Another beneficial example is that this new type of pre-
dictors could make use of computer use and human skilled labor effectively. In
supervised learning, although many automatic annotation methods [30, 23] have
been proposed, no performance guarantee of their results leads to the fact that
humans still need to annotate all collected billions of data in practice, like by
Amazon Turk. Instead of annotating all data manually, it is undoubtedly effi-
cient to let realistic models handle on easy examples so as to guarantee accuracy
comparable to humans, and just leave the hard ones aside for human experts.

A pre-requisite of realistic classifiers is the ability to self-assess, i.e. predict
the likelihood of success or failure. This is, however, not easy in the current clas-
sification settings. One possibility is to design classifiers with a reject option. For
example, classifier cascades are composed of stages that implement a series of
reject decisions, efficiently zooming in on image region containing the object to
detect [28]. Neural network routing [20], where samples are processed by different
network paths, according to their difficulty, is a neural variant of this idea. While
increasing computational efficiency, these methods frequently degrade classifica-
tion performance. They produce a classifier that is faster but usually less accurate
than one without rejection options. Many procedures have also been proposed
to account for example hardness during training. For instance, curriculum learn-
ing [4] suggests using easy samples first and hard samples latter. On the other
hand, hard example mining [24] techniques seek examples on which a classifier
does poorly, to improve its performance. The goal of these methods is not to
produce a hardness predictor , which can be applied to examples unseen dur-
ing training, but to improve classifier performance or enable faster optimization
convergence. Instead, realistic predictions require inductive hardness predictors,
capable of operating beyond the training set.

This is, in general, a non-trivial pursuit. The main challenge is that there
is no ground truth to train such a predictor. Even when human supervision
is available, the ranking of samples is onerous and the identification of easy
and hard samples is difficult. This is partly because what is intuitively hard for
humans is not guaranteed to be hard for algorithms, and vice versa. Fig. 1 shows
an example of easy and hard assessments produced by a classifier trained with
different approaches. On a dataset of simple images, like MNIST, the hardness
predictions are understandable to a human. One can say that easy samples are
clearly written, close to prototypical digits, while hard samples are “in between”
digits, e.g. “a 6 that looks like a 0,” poorly executed digits, e.g. “a 6 that looks
like an i” or “an open 0,” etc. On the other hand, when the images are complex, as
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Fig. 1. Top 3 easiest and hardest examples on MNIST and MIT67 dataset according to
different criteria. Ground truth labels are shown below each image. “Confidence score
based” equates harder to smaller confidence scores. “HP-Net” refers to the ranking by
the scores of the proposed hardness predictor.

in the MIT67 scene dataset, it is too difficult to understand why the classifiers
finds the displayed examples easy or hard. In fact, the problem is not even
well defined in general, since different classifiers can have different ground-truth
for easy and difficult. This is certainly the case for humans, whose difficulty
assessments tend to be personal and vary over time, e.g. with experience. Hence,
it appears that hardness predictors should be learned in an unsupervised manner,
and personalized, i.e., classifier specific. On the other hand, it does not appear
that they can be self-referential, i.e. the hardness predictions cannot be produced
by the classifier itself. If this were possible, the classifiers could simply implement
a reject option. However, experience with hard example mining suggests that this
is not very reliable. While useful for gathering difficult examples, it can produce
a significant percentage of examples that are not difficult. Given all this, it
appears that, for realistic prediction, the classifier should rely on an independent
hardness predictor. However, this predictor should be trained without explicit
supervision, tuned to the classifier, and learn from its mistakes.

Motivated by this, we propose to implement the hardness predictor as an
auxiliary network, which we call the auxiliary hardness prediction network (HP-
Net). Its input is the example to be processed by the classifier and its output
a hardness score. To learn from the classifiers mistakes, the HP-Net is trained
jointly with it. The two networks are trained in an adversarial setting, that
resembles that of generative adversarial networks (GANs). While the proposed
architecture is not a GAN, the two networks are trained alternately. During
classifier training, the hardness scores produced by the HP-Net are used as loss
weights, assigning more weight to harder examples. This encourages the classifier
to classify all examples as best as possible. During HP-Net training, the classifier
softmax probabilities are used to tune the HP-Net, using a variant of the cross
entropy loss function that elicits adversarial behavior. In this way, as the classifier
learns to improve its predictions, the HP-Net refines its hardness scores. At test
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time, the HP-Net assigns a hardness score to each example. If this is above a
threshold, the example is rejected. In this way, the classifier is never asked to
produce class scores for examples that are deemed too hard. This is what we
call realism. Overall, the proposed architecture has three interesting properties.
First, while highly tuned to the classifier, the HP-Net is an inductive model
that can be applied to unseen samples. Second, training requires no HP-Net
supervision, priors, or hand-crafted rules regarding the nature of hard examples.
Experiments show that the harness scores are accurate enough to enable realistic
prediction, without compromise of classification accuracy. These properties are
demonstrated by extensive evaluation on three datasets, which also provides
interesting insights on the make-up of a hardness predictor. For example, they
show that the HP-Net should be tuned to the classifier, with best results when
the two networks have the same architecture. On the other hand, performance
degrades substantially when the two networks have shared layers, showing that
they are solving fundamentally different tasks. This is strong evidence against
self-referential solutions. Finally, it is shown that classifier performance always
increases upon restriction to easier examples. This enables the classifier to meet
a specified error rate by simple control of the rejection threshold.

2 Related Work

Several criteria have been proposed to assess sample hardness. One possibility
is to use task-specific criteria that leverage prior human knowledge [3, 25, 17,
27]. For example, Ionescu et al. [27] define image difficulty as human response
time for solving a visual search task. Another popular approach is the use of
loss values [13, 19, 24, 18], confidence scores [29], or the magnitude of the loss
gradient [9, 12, 1, 33]. These criteria are mostly used to increase the speed of
optimization procedures such as stochastic gradient descent. They are sensible
for hardness prediction, since small losses tend to correspond to easy samples
and vice versa. On the other hand, two samples of equal loss can be classified
correctly and incorrectly. For example, adversarial examples of high confidence
score are not necessarily easy to classify [26, 11]. To address this, Chang et al. [5]
emphasize sample uncertainty when differentiating easy and hard examples. All
these methods rely on handcrafted criteria for selecting and ranking examples.
Similar networks with ours are proposed by [15, 31] to learn the significant sam-
ples for deep reinforcement learning and noisy labeled data, but the classifiers
depending on unstable hyper-parameters are not realistic ones. The proposed
approach is more closely related to the method of McGill et al. [20], who add a
2-way junction to neural network layers to dynamically route easy samples for
direct classification and hard samples to the next layer. Nevertheless, all these
methods are self-referencial, in the sense that a classifier is used to assess the
hardness of the samples that it classifies. This is not easy, since hard samples are,
by definition, those that the classifier makes mistakes on. We propose, instead,
the use of an auxiliary predictor for this task, which learns from the classifier’s
mistakes.
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Realistic prediction is closely related to the literature on failure prediction,
where the goal is to build systems that can reliably predict the failures of a
predictor. Jammalamadaka et al. [14] introduce evaluator algorithms to pre-
dict failures of human pose estimators, from features specific to this problem.
Bansal et al. [2] characterize and group misclassified images using pre-selected
attributes, with clustering algorithms that learn a semantic characterization of
failure modes. Zhang et al. [32] reject probable failure samples with a binary
SVM that predicts errors using 14 pre-defined kernels. Daftry et al. [6] define
failure degree as the fraction of trajectories correctly predicted by an UAV and
train a linear SVM to estimate it from the feature responses of a deep network
trained for autonomous navigation. These methods rely on post-hoc analysis of
the predictor performance, simply learning a regressor or classifier from its mis-
takes. Realistic prediction aims to go beyond this, by integrating the learning
of hardness predictor and classifier, so as to guarantee optimal classifier perfor-
mance on non-rejected examples. To the best of our knowledge, the proposed
architecture is the first implementation of this idea. Our experiments also show
that the features needed for classification are fundamentally different from those
needed for difficulty prediction. This suggests that simply reading feature re-
sponses from the stages of a deep predictor [6] is sub-optimal even for failure
prediction.

3 Realistic Predictor Architecture

In this section, we introduce the proposed realistic predictor architecture.

3.1 Architecture

While realistic prediction is of interest for many computer vision tasks, in this
work we focus on image classification into one of C classes. The operation of a
realistic predictor is illustrated in Figure 3. Consider a classifier F(x) faced with
examples xi from a universal example set U . The classifier is denoted realistic if
it rejects a subset of examples H ⊂ U that it deems too hard so as to guarantee
a certain performance on a subset of examples A = U − H that it agrees to
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classify. Example rejection is determined by thresholding a hardness score, which
is assigned to each example x by an auxiliary hardness predictor S(x), denoted
the HP-Net. Note that, at inference time, S(x) predicts the hardness of unseen
test examples. It must, therefore, be an inductive predictor, e.g. it does not suffice
to assign weights to examples during training.

In the failure prediction literature, the classifier F is first learned from a
training set D = {(xi, yi)}Ni=1, where D ⊂ U , yi is the ground truth label of image
xi, and N the number of training samples. Upon training, a failure predictor is
then learned from its performance on the training set, i.e. from the set {xi, yi, ŷi},
where ŷi is the class prediction for sample xi. While this failure predictor could be
used to implement the HP-Net of realistic prediction, this would fail to guarantee
that F has optimal performance on the set A of accepted examples. One simple
solution would be to use the failure predictor to reject training examples and then
fine-tune F on those remaining. This, however, would make the failure predictor
sub-optimal for the fine-tuned F . To prevent these problems, we propose to learn
F and S jointly , as illustrated in Figure 2.

The classifier F can be any convolutional neural network (CNN), usually
containing a number of convolutional layers followed by fully connected lay-
ers. Its final layer implements a softmax function with C outputs, outputting
a probability distribution pi = F(xi) in response to sample xi. The HP-Net
has a similar structure. For notational convenience, we divide it into a set of
convolution layers, the network trunk, and a set of fully connected layers, the
network head. The network trunk is used for feature extraction while the head
implements a multi-layer fully connected network with a single output node.
This is implemented with a sigmoid unit and produces the predicted hardness
score si = S(xi), si ∈ [0, 1], for image xi. The overall operation of the realistic
predictor is summarized as follows. At training time,
1. train classifier F and HP-Net S jointly on training set D.
2. run S on D and eliminate hard examples, to create realistic training set D′.
3. learn realistic classifier F ′ on D′, with S fixed.
4. output pair S, F ′.

At test time, run test example x by S, reject hard examples, classify remaining
with F ′. In all cases, x rejected if S(x) > T , for some threshold T .

3.2 Adversarial cross entropy loss function

The joint training of the classifier and HP-Net requires a loss function that
induces the desired complimentary functions in the two networks. As is common
in the literature, the classifier is trained by cross-entropy minimization. Denoting
the one-hot code of ground truth label yi by yi, the loss of sample {xi, yi} is

l(pi,yi) = −yT
i logpi = −

∑C
c=1 y

c
i log pci = − log pci , where pci is entry of pi

corresponding to the ground truth label location. The cross-entropy loss

L(D) = −
N∑
i=1

log pci (1)
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treats each sample equally. As is common in the cost-sensitive learning literature,
we replace this with

Lm(D) = −
N∑
i=1

si log pci . (2)

where si ∈ [0, 1] is the hardness score of example xi, produced by the HP-Net.
This makes harder examples (larger si) more important, while easier examples
(lower si) are given less importance. In this way, the classifier is encouraged to
learn from as many hard examples as possible and only reject examples that
require an unreasonable amount of effort or expertise. This aims to reflect the
behavior of a motivated human, who will attempt to learn as much as realistically
possible about a problem and reject tasks that exceeds his or her expertise.

To encourage the HP-Net to produce scores si proportional to the difficulty
of the corresponding samples, the HP-Net is trained with the loss function

La(D) = −
N∑
i=1

{pci log(1− si) + (1− pci ) log si}, (3)

where si, p
c
i ∈ [0, 1]. This is the binary cross entropy loss but with reversed

semantics. It measures the cross-entropy between the distributions (pci , 1 − pci )
and (1−si, si). Its minimization is equivalent to minimizing the Kullback-Leibler
divergence between the two distributions and has a minimum when si = 1− pci .
This encourages large scores for poorly classified samples (low pci ) and small
scores for well classified samples. It can, thus, be seen as an adversarial loss
that measures sample hardness, while sharing the appealing properties of the
cross-entropy. These can be seen in Fig. 4, which shows a surface plot of the
argument of the summation in (3). Note that this is always positive and has
global minimum at the configurations si = 1, pci = 0 and si = 0, pci = 1. Hence,
it encourages binary hardness scores. It is also smooth, penalizing heavily the
configurations inconsistent with a hardness score (si = pci = 0 and si = pci = 1).

3.3 Training strategy

Our attempts to optimize the complete architecture of Figure 2, using the com-
bined loss function L(D) = Lm(D) + La(D), produced mixed results. We have
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experienced difficulties to guarantee convergence of the learning procedure. It
is not totally clear why at this point, we leave this for future research. Instead,
we found it much easier to optimize the classifier and the HP-Net alternately.
Specifically, the HP-Net is first frozen and the classifier updated. The classifier is
then frozen and the HP-Net updated. The process is iterated until convergence.
Note that the consistency of convergence of this process is quite intuitive. Given
the classifier, the optimization of the HP-Net encourages predictions si = 1−pci .
Given these scores, the classifier then emphasizes the samples on which it did
poorly, i.e. produced a low pci . This increases pci . In the next iteration, si de-
creases, becoming closer to pci . As pci increases, the example acquires a smaller
weight si and is ignored by the learning algorithm. Hence, the algorithm “puts
away” the well classified examples and focuses on the poorly classified ones.

This is similar to boosting algorithms [8, 21], but has one fundamental dif-
ference. While, in boosting, the classifier reweights the examples by how well it
performs on them, the proposed architecture uses an alternate predictor. Sim-
ilarly, the procedure has some similarities to generative adversarial networks
(GANs) [10] in the sense that there is an adversarial relationship between the
classifier and hardness predictor. When the classifier produces bad predictions,
the HP-Net generates an adversarial signal that encourages it to produce better
predictions. Hence, the HP-Net can be seen as a signal generator that attempts
to “confuse” the classifier into thinking that all samples are easy. This is similar
to the GAN generator, which attempts to confuse the discriminator, rendering it
unable to distinguish real from fake examples. Under this interpretation, the pro-
posed architecture can be seen as an unsupervised generator of hardness scores.
However, it is not a GAN. It is also not clear that formulating it as a GAN
would add more clarity to its convergence, given the well known convergence
issues surrounding GANs [10].

4 Experiments

4.1 Datasets and pre-processing

MNIST is a heavily benchmarked dataset. Although it is a relatively simple
dataset, it is usefully to derive insights on network operation. We used 100
epochs, with batch size of 256, to train the network on this dataset.
MIT67 dataset [22] was proposed for indoor scene recognition. It contains 67
indoor categories and a total of 15,620 images. We follow the experimental setting
of [22], where 5,360 images are used for training and 1,340 for testing. On this
dataset, we fine-tune a pre-trained network, trained on ImageNet. The number
of epochs is set to 50. Batch sizes 32 and 64 are used for VGG and ResNet.
ImageNet LSVRC 2012 [7] contains 1,000 classes with 1.2 million training
images, 50,000 validation images, and 100,000 test images. Our evaluation is
conducted on the validation set. On these two datasets, we adopt the same data
augmentation and pre-processing of the previous studies [16]. Each RGB image
pixel is scaled to [0, 1] with mean value subtracted and standard variance divided.
Then scale and aspect ratio augmentation are applied to the processed images.
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The 224 × 224 crop is sampled from augmented images or random horizontal
flips. Since, on this dataset, we used a pre-trained network, only 5 epochs are
used. Again, batch sizes of 32, 64 batch are used for VGG, ResNet.

4.2 Setup

To study the impact of various network configurations, we consider several s-
trategies for combining networks: simple classifier with complex HP-Net, com-
plex classifier with simple HP-Net, simple classifier with simple HP-Net and
complex classifier with complex HP-Net. On MNIST, LeNet5 is used as simple
network and kerasNet, a network proposed by keras1 as the complex one. On
MIT67 and ImageNet, VGG16 and ResNet50 are used as simple and complex
networks respectively. Additionally, we study the the setting where classifier and
HP-Net have the same structure and shared convolutional layer weights.

For notational convenience, we use ‘A-B(-s)’ to represent that A is used as
classifier and B as HP-Net. If the ‘-s’ added, A and B have shared weights.
For the HP-Net, we also varied the structure of the network head. Three basic
structures, shown in Fig. 5, are used: ‘flatten layer’, ‘fc7’ and ‘fc1000’ represent
the flatten layer, fc7 layer and fc1000 layer of kerasNet, VGG16 and ResNet50
respectively. ‘FC, [M1,M2]’ represents a fully connected layer of M1 inputs and
M2 outputs, ‘BN’ a batch normalization layer, and ‘ReLU’ a layer of rectified
linear units.

The networks are trained using SGD with a momentum of 0.9. On MNIST,
the initial learning rate is set to 0.1, 1e-3 for the classifier and HP-Net, respec-
tively. On the other datasets, it is set to 1e-3, 1e-4 for two networks, for all of the
models discussed herein, respectively. The learning rate is reduced by 5% after
each epoch on MNIST, and is divided by 10 after every 10 epochs on MIT67,
and 1 epoch on ImageNet.

4.3 Learning to predict hardness scores

We start by presenting some results that provide some intuition on the joint
learning of classifier and hardness predictor. Figure 6 shows 1) the evolution of
distribution of scores produced by the HP-Net, and 2) the test set accuracy of the
classifier as a function of training iteration, on MNIST and MIT67. These results
were produced with the kerasNet-kerasNet network on MNIST and VGG16-
VGG16 on MIT67. On MIT67, we only show the first 20 epochs because there is
little change after that. Note that, as classification accuracy increases, the bulk
of the mass of the hardness score distribution moves from right to left. This
shows that the predicted scores decrease gradually as training progresses. As the
classifier updates its predictions, the HP-Net refines its hardness scores to reflect
this improvement. This, in turn, encourages the classifier to focus on the harder
examples, as in hard example mining. Over training iterations, the hardness

1 https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.

py.
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Fig. 6. Evolution of classification accuracy and distribution of hardness scores during
training.

predictor learns that samples initially considered hard are not hard after all.
This enables it to make good predictions even for unseen examples. The process
resembles human learning, which focuses on gradually harder examples that are
eventually mastered and found easy.

4.4 Image recognition without rejection

We next consider image recognition results. LeNet5 and kerasNet are used as
baseline on MNIST, VGG16 and ResNet50 on MIT67 and ImageNet. All base-
line results are based on our experiments, and could differ slightly from results
published by their authors. Table 1 summarizes the classification results, en-
abling a number of conclusions. First, the addition of the HP-Net can produce
a slight performance decrease of the classifier on the entire dataset. In fact, this
happened for all mixed models (different architectures for HP-Net and classifier)
and when the networks are the same and share weights. Note that these numbers
are for classification on the entire dataset . They do not imply that the classifier
does not have improved performance on the examples that are accepted by the
the HP-Net. This will be analyzed below. However, and somewhat surprisingly,
when the HP-Net is based on the same model as the classifier, the performance
of the latter on the entire dataset improves by some amount. This is likely due to
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Table 1. Image recognition accuracy comparison among all model combinations

Classifier HP-Net shared MNIST MIT67 ImageNet
weights top 1 top 5

LeNet5 99.0% — — —
kerasNet 99.0% — — —
LeNet5 kerasNet 98.4% — — —

kerasNet LeNet5 98.2% — — —
LeNet5 LeNet5 99.1% — — —

kerasNet kerasNet s 97.9% — — —
kerasNet kerasNet 99.2% — — —

AlexNet [34] — 56.8% — —
CaffeNet [35] — 56.8% — —

GoogleNet [34] — 59.5% — —
VGG16 ResNet50 — 67.9% 65.6% 87.3%

ResNet50 VGG16 — 72.7% 70.4% 90.0%
VGG16 — 72.2% 71.6% 90.3%
VGG16 VGG16 s — 67.6% 70.9% 89.9%
VGG16 VGG16 — 72.3% 73.3% 91.2%

ResNet50 — 75.6% 76.1% 92.8%
ResNet50 ResNet50 s — 73.2% 75.9% 92.7%
ResNet50 ResNet50 — 75.8% 76.4% 93.0%

the hard example mining aspect of the procedure. The re-weighting of hard ex-
amples with large weights allows the classifier to improve on these. Although the
goal of realistic prediction is not to improve image classification performance on
all samples, it is interesting to see that the classifier outperforms the baselines.

Second, on all datasets, best performances occur when the classifier and
the HP-Net have the same architecture. Combinations with simpler and more
complex HP-Nets than the classifier have weaker performance. This is evidence
that the hardness predictor has to be tuned to the classifier. Third, when this
holds, different models can lead to variations of performance. On MNIST, there
is no obvious difference between LeNet5 and the more complex kerasNet. This is
probably because baseline performance is already saturated. On the other hand,
on MIT67, ResNet50-ResNet50 outperforms VGG16-VGG16 by 3.5%. For the
larger scale ImageNet, the increase in accuracy is 3.1% when the ResNet50 is
adopted. Finally, when the convolutional layers are shared, all classifiers have
slightly weaker performances on all datasets. This is interesting, given the best
performance of identical models. While the two networks must be identical,
sharing weights leads to a significant performance decrease. This shows that
the networks are solving fundamentally different tasks, and argues against self-
referential solutions based on a single network, such as boosting.

Overall, this section shows that realistic prediction does not have to sacrifice
recognition performance even when no examples are rejected. This, however,
requires careful selection of classifier and HP-Net architectures.

4.5 Hardness score predictions on test set

We next analyze the hardness scores produced by the various models. Fig. 7
presents the test set distribution of the scores learned by various network com-
binations. The mean and variance of each distribution are shown below it. The
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Fig. 7. The distribution of predicted hardness scores on different settings. Sub-figure
(a) is the results on MNIST; (b), (c) are on the ImageNet; The last three are on the
MIT67.

distributions produced by the different networks are consistent with the classifi-
cation performances in Table 1. Plots a)-e), relative to configurations with equal
models, assign small scores (less than 0.5) to most test examples. On the other
hand, the ResNet50-VGG16 configuration produces a more uniform distribution,
of larger mean value. Its lower classification performance has been learned by
the hardness predictor, which assigns a larger score to many examples. Note also
that, for the two network combinations tested on ImageNet (plots b) and c)),
the ResNet50-ResNet50 configuration produces a distribution sharper than that
of the VGG16-VGG16 and more concentrated on the neighborhood of 0. This
shows that the ResNet50 hardness predictor is more confident on the outcome
of the classification of the test samples. The hardness predictor, meanwhile, has
learned that ResNet is a better model.

4.6 Realistic predictors

We finish with an evaluation of realistic predictions, based on three classifiers.
The first, denoted C, uses a standard (non-realistic) predictor. The second, de-
noted F , is the realistic predictor produced by the training procedure, without
fine-tuning to accepted examples. These two classifiers are trained on the entire
training set. Finally, the third, denoted F ′, is obtained by fine tuning F on the
training examples accepted by the hardness predictor S. Two strategies are also
compared for the rejection of examples. In both cases, a threshold T is found
such that p% of the training examples are rejected. The first strategy is the self-
referential strategy of rejecting examples based on the classifier confidence level.
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Table 2. Performances of different methods when removing some hard samples

MIT67 (top 1 accuracy, mean(variance); VGG16-VGG16 architecture)
classifier rejection 0% 5% 10% 15% 20% 25%

C maxcp
c
i < T 72.2(1.5) 73.1(0.0) 75.6(0.0) 77.5(0.0) 81.0(0.0) 83.0(0.0)

F maxcp
c
i < T 72.3(1.6) 72.9(0.0) 75.4(0.0) 77.1(0.0) 80.8(0.0) 83.0(0.0)

F ′ maxcp
c
i < T 72.3(1.6) 73.4(0.0) 75.8(0.0) 77.2(0.0) 81.3(0.0) 83.1(0.0)

F S(x) > T 72.3(1.6) 75.0(0.0) 76.0(0.0) 77.5(0.0) 80.7(0.0) 82.6(0.0)
F ′ S(x) > T 72.3(1.6) 75.4(0.0) 76.6(0.0) 77.9(0.0) 81.1(0.0) 82.9(0.0)

ImageNet (top 5 accuracy, mean(variance); VGG16-VGG16 architecture)
0% 5% 10% 15% 20% 25%

C maxcp
c
i < T 90.3(0.0) 91.1(0.0) 92.2(0.0) 93.1(0.0) 93.8(0.0) 95.1(0.0)

F maxcp
c
i < T 91.2(0.5) 91.0(0.0) 92.2(0.0) 93.0(0.0) 93.8(0.0) 95.0(0.0)

F ′ maxcp
c
i < T 91.2(0.5) 91.2(0.0) 92.4(0.0) 93.1(0.0) 93.7(0.0) 95.1(0.0)

F S(x) > T 91.2(0.5) 91.8(0.0) 92.5(0.0) 93.1(0.0) 93.8(0.0) 94.8(0.0)
F ′ S(x) > T 91.2(0.5) 91.9(0.0) 92.5(0.0) 93.2(0.0) 93.8(0.0) 95.0(0.0)
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Fig. 8. Comparison between realistic predictors and standard predictors on ImageNet.

Example xi is rejected if maxc p
c
i < T , where pci is the softmax output for class

c. The second strategy leverages the HP-Net: xi is rejected if S(xi) > T . Note
that only the first strategy is possible for classifier C, which is learned without
an HP-Net.

Table 2 compares the performances of all classifiers and rejection strategies,
as a function of the rejection percentage p. A few observations can be made.
First, the performance of the realistic predictors is always superior to that of
the standard classifier C. As is the case for humans, by refusing to classify hard
examples realistic predictors have better performance on those they classify.
Second, the rejection by S(x) > T outperforms standard rejection (maxc p

c
i < T )

almost in all settings. The gains can be quite significant, especially as p decreases,
e.g. 2.3 points of top 1 performance for p = 5%. This shows that it is important
to learn the hardness predictor jointly with the classifier and that the commonly
used self-referential confidence scores are not enough to guarantee good hardness
predictions. Finally, when the hardness predictions are based on the HP-Net,
there is little difference between the top 1 accuracy of the realistic predictor F
trained on the whole training set and that (F ′) fine-tunned on accepted examples
only. This shows that F is truly a realistic predictor, capable of close to optimal
performance on the accepted examples without any finetuning.
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Figure 8 illustrates more results and additionally compares the performance
of the realistic predictor F ′ to the standard C over different network configu-
rations (VGG16-VGG16 and ResNet50-ResNet50) on ImageNet. The realistic
predictor F ′ implemented with the weaker VGG model approaches the perfor-
mance of the original classifier implemented with the stronger ResNet model.
This shows that, even though the VGG cannot learn everything that the ResNet
can (i.e. it is not as smart as the ResNet), it can guarantee the same performance
by rejecting some examples. In this case, the VGG passes the 2% rejection per-
formance of the ResNet by rejecting around 10% test examples and the perfor-
mance of the ResNet on the full test set by rejecting 5% test examples. On the
other hand, in order to guarantee a target performance, the realistic predictor
can accept and classify more examples than standard non-realistic predictor. For
instance, to a target accuracy 93.2%, the ResNet F ′ only need to reject less than
2% samples, but for C, it has to reject about 5% samples. In summary, while
better models always have better performance, a realistic predictor can provide
performance guarantees “above its pay-grade” by refusing to classify examples
where it is likely to fail. This applies even to the best models. On ImageNet
the superior ResNet is able to improve its performance from 93% to 97% by
rejecting about 10% of the examples. While part of this is due to the fact that
the examples are indeed easier, the gain is much larger than for the original
predictor, which only increases its performance to 95%. The ability to predict
which examples are hard, through the hardness predictor, and adapt to them
enables this gain.

5 Conclusion

In this work, we have proposed a new class of classifiers, denoted realistic clas-
sifiers. These are classifiers that, like humans, assess the difficulty of examples,
reject to classify those that are deemed too hard, but guarantee good perfor-
mance on the ones they classify. The central problem in realistic classification,
the design of an inductive predictor of hardness scores, has been then considered.
It was argued that this should be a predictor independent of the classifier itself,
but tuned to it, and jointly learned, so as to learn from its mistakes. A new
architecture has been proposed to accomplished these goals by complementing
the classifier with an auxiliary prediction network (HP-Net). The two networks
are trained in an adversarial setting, that resembles that of generative adversar-
ial networks (GANs). Experimental results have provided evidence in support
of this architecture. While best results were achieved when the HP-Net has the
identical architecture to the classifier, sharing weights between the two consid-
erably degraded classification performance. This shows that, while the hardness
predictor must be tuned to the classifier, the two solve fundamentally differen-
t tasks. Extensive classification experiments have also shown that the realistic
classifier always improves performance on the examples that it accepts to classify,
performing better on these examples than an equivalent nonrealistic classifier.
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