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Abstract

The role of semantics in zero-shot learning is consid-
ered. The effectiveness of previous approaches is analyzed
according to the form of supervision provided. While some
learn semantics independently, others only supervise the se-
mantic subspace explained by training classes. Thus, the
former is able to constrain the whole space but lacks the
ability to model semantic correlations. The latter addresses
this issue but leaves part of the semantic space unsuper-
vised. This complementarity is exploited in a new convo-
lutional neural network (CNN) framework, which proposes
the use of semantics as constraints for recognition.Although
a CNN trained for classification has no transfer ability, this
can be encouraged by learning an hidden semantic layer
together with a semantic code for classification. Two forms
of semantic constraints are then introduced. The first is a
loss-based regularizer that introduces a generalization con-
straint on each semantic predictor. The second is a code-
word regularizer that favors semantic-to-class mappings
consistent with prior semantic knowledge while allowing
these to be learned from data. Significant improvements
over the state-of-the-art are achieved on several datasets.

1. Introduction
Significant advances in object recognition have been re-

cently achieved with the introduction of deep convolutional
neural networks (CNNs). The main limitation of this ap-
proach is the effort required to 1) collect and annotate mil-
lions of images necessary to train these models, and 2) the
complexity of training a CNN from scratch. In fact, most re-
cent computer vision papers use or adapt a small set of pop-
ular models, such as AlexNet [28], GoogLeNet [54], and
VGG [51], learned from the Imagenet dataset [13]. Hence,
there is an interest in techniques for transfer learning, where
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a model learned on a dataset is used to recognize object
classes that are not represented in it. Ideally, transfer learn-
ing methods would replicate the human ability to recognize
objects from a few example images or even from a descrip-
tion in terms of concepts in some semantic vocabulary.

This has motivated the introduction of semantic repre-
sentations for object recognition [34, 44, 45, 55, 56], which
rely on a predefined vocabulary of visual concepts to define
a semantic space S and a set of classifiers to map each im-
age into that space. The scores of these classifiers can then
be used as semantic features for object classification. Fur-
thermore, because simple rules of thumb can be designed,
a priori, to describe new object classes in terms of these
semantics, the image mapping into S can be exploited to
recognize previously unseen objects. This is known as zero-
shot learning (ZSL) [2, 4, 14, 31, 48, 49].

The fundamental difficulty of ZSL is that training can-
not be guided by the end goal of the classifier. While the
recognizer is learned from a set of training classes, it must
provide accurate predictions for image classification into
a non-overlapping set of unseen or zero-shot (ZS) classes.
Historically, early efforts were devoted to the identification
of good semantics for ZSL. This motivated the collection
of datasets containing images annotated with respect to se-
mantics such as visual attributes [14,31]. Subsequent works
addressed the design of the semantic space S, using one of
two strategies previously proposed in the semantic repre-
sentation literature. The first, recognition using indepen-
dent semantics (RIS), consists of learning an independent
classifier per semantic [34, 55, 56]. Due to its simplicity,
RIS became widely popular in the attribute recognition lit-
erature [14,31,42,48,53,58]. Notwithstanding efforts in dis-
criminant attribute discovery [9, 14, 30, 42, 46] or modeling
of uncertainty [25,31,58], learning semantics independently
proved too weak to guarantee reliable ZS predictions.

This motivated a shift to the second strategy, which ties
the design of S to the goal of recognition, by learning a
single multi-class classifier that optimally discriminates be-
tween all training classes [44, 45]. The difficulty of extend-
ing this approach to ZSL is that the semantics of interest



are not the classes themselves. [2] proposed an effective so-
lution to this problem by noting that there is a fixed linear
transformation, or embedding, between the semantics of in-
terest and the class labels, which can be specified by hand,
even for ZS classes. This was accomplished using a label
embedding function φ, to map each class y into a vector
φ(y) in the space of attributes. Recently, various works have
proposed variations on this approach [1,4,35,43,47,49]. We
refer to this class of methods as recognition using semantic
embeddings (RULE). By learning all semantics simultane-
ously, RULE is able to leverage dependencies between con-
cepts, thus addressing the main limitation of RIS.

In this work, we investigate the advantages and disad-
vantages of the two approaches for implementations based
on deep learning and CNNs. We show that, in this con-
text, the two methods reduce to a set of constraints on the
CNN architecture: RIS learns a bank of independent CNNs,
and RULE uses a single CNN with fixed weights in the fi-
nal layer. It follows that the performance of the two ap-
proaches is constrained by the form in which supervision
is provided on the space A of image attributes. While RIS
provides supervision along each dimension independently,
RULE does so along the subspace spanned by the label em-
bedding directions φ(y). Because the number of attributes
is usually larger than classes, this exposes the strengths and
weaknesses of the two approaches. On one hand, RIS su-
pervises all attributes but cannot model their dependencies.
On the other, RULE models dependencies but leaves a large
number of dimensions of A unconstrained.

To exploit this complementarity, we propose a new
framework denoted Semantically COnsistent REgulariza-
tion (SCoRe) that leverages the advantages of both RIS
and RULE. This is achieved by recognizing that the two
methods exploit semantics as constraints for recognition.
While RIS enforces first-order constraints (single seman-
tics), RULE focuses second-order (linear combinations).
However, both are suboptimal for ZSL. RIS ignores the
recognition of training classes, sacrificing the modeling of
semantic dependencies, and RULE ignores a large subspace
of A and fixes network weights. SCoRe addresses these
problems by exploiting the view of a CNN as an optimal
classifier with respect to a multidimensional classification
code, implemented at the top CNN layer. It interprets this
code as a mapping between semantics (layer before last) and
classes (last layer). It then enforces both first and second-
order regularization constraints through a combination of 1)
an RIS like loss-based regularizer that constraints semantic
predictions, and 2) a codeword regularizer that favors clas-
sification codes consistent with RULE embeddings.

2. Previous Work
Semantics Semantics are visual descriptions that convey
meaning about an image x ∈ X , and may include any

measurable visual property: discrete or continuous, nu-
merical or categorical. Given a semantic vocabulary V =
{v1, . . . , vQ}, a semantic feature space S is defined as the
Cartesian product of the vector spaces Sk associated with
each semantic vk, S = S1 × · · · × SQ. A classifier is de-
noted semantic if it operates on S. As an example, for an-
imal recognition, a semantic vocabulary containing visual
attributes, e.g. V ∈ {furry, has legs, is brown, etc.}, is usu-
ally defined along with their corresponding vector spaces.
In this case, since all semantics are binary, Sk = R where
large positive values indicate the attribute presence, and
large negative values, its absence.

Early approaches to semantic recognition [45] used the
set of image classes to be recognized as the semantic vo-
cabulary. The rationale is to create a feature space with
a high-level abstraction, where operations such as image
search [44] or classification [34, 45] can be performed
more robustly. More recently, there has been substantial
interest in semantic feature spaces for transfer learning,
which use an auxiliary semantic vocabulary, defined by
mid-level visual concepts. Three main categories of con-
cepts have been explored, including visual attributes, hier-
archies and word vector representations. Attributes were
introduced in [14, 31] and quickly adopted in many other
works [2,8,21,23–25,27,48,53,58,60]. Semantic concepts
extracted from hierarchies/taxonomies were later explored
in [2,4,48,60], and vector representations for words/entities
in [4, 8, 16, 18, 20, 41, 43, 47, 60].

Zero-shot learning Most current solutions to ZSL fall
under two main categories: RIS and RULE. Early ap-
proaches adopted the RIS strategy. One of the most pop-
ular among these is the direct attribute prediction (DAP)
method [31], which learns attributes independently using
SVMs and infers ZS predictions by a maximum a poste-
riori rule that assumes attribute independence. Several en-
hancements have been proposed to account for attribute cor-
relations a posteriori, e.g. by using CRFs to model at-
tribute/class correlations [10], directed Bayesian networks
to merge attribute predictions into class scores [58], or ran-
dom forests learned so as to mitigate the effect of unreliable
attributes [25]. More recently, [37] proposed a multiplica-
tive framework that enables class-specific attribute classi-
fiers, and [5] learns independent attributes which were pre-
viously discovered from Word2Vec representations.

RULE is an alternative strategy that exploits the one-to-
one relationship between semantics and object classes. The
central idea is to define an embedding φ(·) that maps each
class y into a Q-dimensional vector of attribute states φ(y)
that identifies it. A bilinear compatibility function

h(x, y;T) = φ(y)TTT θ(x) (1)

of parameters T ∈ Rd×Q is then defined between the fea-
ture vector θ(x) ∈ Rd of image x and the encoding of its



class y. In the first implementation of RULE for ZSL [2], T
is learned by a variant of the structured SVM. Several vari-
ants have been proposed, such as the addition of different
regularization terms [43,49], the use of least-squares losses
for faster training [49], or improved semantic representa-
tions of objects learned from multiple text sources [1, 47].

3. Semantics and deep learning
We now discuss the CNN implementation of RIS and

RULE. For simplicity, we assume attribute semantics. Sec-
tions 5 and 6 extend the treatment to other concepts. For
quick consultation, Table 1 summarizes important notation
used in the rest of the paper.

3.1. Deep-RIS
Under the independence assumption that underlies RIS,

the CNN implementation reduces to learning Q indepen-
dent attribute predictors. Inspired by the success of multi-
task learning, it is advantageous to share CNN parameters
across attributes, and rely on a common feature extractor
θ(x; Θ) of parameters Θ, which can be implemented with
one of the popular CNNs in the literature. Thus, each at-
tribute predictor ak of Deep-RIS takes the form

ak(x; tk,Θ) = σ
(
tTk θ(x; Θ)

)
(2)

where σ(·) is the sigmoid function and tk a parameter vec-
tor. Given a training set D = {(x(i), s(i))Ni=1}, where
s(i) = (s

(i)
1 , . . . , s

(i)
Q ) are attribute labels, tk and Θ are

learned by minimizing the risk

R[a1, . . . , aQ,D] =
∑
i

∑
k

Lb(ak(x(i); tk,Θ), s
(i)
k ) (3)

where Lb is a binary loss function, typically the cross-
entropy loss Lb(v, y) = −y log(v)− (1− y) log(1− v).

3.2. Deep-RULE

The implementation of RULE follows immediately from
the bilinear form of (1). Note that φ(y) is a fixed mapping
from the space of attributes to the space of class labels. For
example, if there are Q binary attributes and C class la-
bels, φ(y) is a Q dimensional vector that encodes the pres-
ence/absence of the Q attributes in class y

φk(y) =

{
1 if class y contains attribute k,
−1 if class y lacks attribute k. (4)

We denote φ(y) the semantic code of class y. To imple-
ment (1) in a CNN, it suffices to use one of the popular
models to compute θ(x; Θ), add a fully-connected layer of
Q units and parameters T, so that a(x) = TT θ(x; Θ) is a
vector of attribute scores, and define the CNN class outputs

h(x;T,Θ) = ΦTa(x) = ΦTTT θ(x; Θ), (5)

Table 1. Notation.
Symbol Meaning

Φ/ΦZS Semantic codeword matrix for training/ZS classes
φ(y) Semantic codeword of class y (column of Φ)
φk(y) Semantic-state codewords (“building blocks” of φ(y))

W Classification codeword matrix (related to Φ through (11))
wy Classification codewords (columns of W)
A′ Effective attribute space

A′T / A′ZS Subspace of A′ spanned by the columns of Φ / ΦZS

where Φ = [φ(1), . . . , φ(C)] ∈ RQ×C . Given a training set
D = {(x(i), y(i))Ni=1}, where y(i) is the class label of image
x(i), T and Θ are learned by minimizing

R[h,D] =
∑

i L
(
h(x(i);T,Θ), y(i)

)
(6)

where L is some classification loss, typically the cross-
entropy L(v, y) = − log(ρy(v)) of softmax outputs ρ(v).

3.3. Relationships

Both Deep-RIS and Deep-RULE have advantages and
disadvantages, which can be observed by comparing the
risks of (3) and (6). Since the attributes ak(x) are the quan-
tities of interest for ZSL, it is useful to understand how
the two methods provide supervision to the space A of at-
tributes. From (3), Deep-RIS provides supervision to the
individual attributes ak(x). Since ak(·) = 1T

k a(·), where
1k is the kth vector in the canonical basis (1 in the kth posi-
tion and 0 elsewhere), the supervision is along the canonical
directions of A. On the other hand, (5)-(6) only depend on
the projections φ(y)Ta(x) of a(·) along the vector encod-
ings φ(·) of all training classes. Hence, RULE only provides
supervision to the the column space C(Φ) of Φ.

In practice, we are often on the regime of Figure 1, where
the number of attributes Q is larger than the number of
training classes C. It follows that C(Φ) can be fairly low
dimensional (dimension C) and the left null space N (ΦT )
fairly high dimensional (dimension Q − C). Hence, while
RIS constraints all attributes, RULE leaves Q− C attribute
dimensions unconstrained. In this case, ZS classes with se-
mantic codes φZS misaligned with C(Φ) cannot be expected
to be accurately predicted. In the limit, RULE is completely
inadequate to discriminate ZS classes when φZS is perpen-
dicular to C(Φ), such as φZS(1) in Figure 1. This suggests
the superiority of RIS over RULE. However, because RIS
supervises attributes independently, it has no ability to learn
attribute dependencies, e.g. that the attributes “has wings”
and “lives in the water” have a strong negative correlation.
These dependencies can be thought of as constraints that
reduce the effective dimensionality of the attribute space.
They imply that the attribute vectors a(x) of natural images
do not spanA, but only an effective attribute subspaceA′ of
dimension Q′ < Q. By learning only on C(Φ) ⊂ A′, Deep-
RULE provides supervision explicitly in this space. This
suggests that Deep-RULE should outperform Deep-RIS.
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Figure 1. Attribute space (Q = 3). Semantic codes for two train-
ing classes shown in blue, and two ZS classes shown in red.

Overall, the relative performance of the two approaches
depends on the overlap between the subspaces of A′ cov-
ered by the training and ZS classes, denoted A′T and A′ZS

respectively. If A′T contains all the directions φZS that de-
fineA′ZS , Deep-RULE will outperform Deep-RIS. If the ZS
classes are defined by directions φZS not contained in A′T ,
Deep-RIS will likely outperform Deep-RULE.

4. Semantically consistent regularization
In this section, we introduce the Semantically COnsistent

REgularizer (SCoRe) architecture.

4.1. Attributes as regularization constraints

In the previous section, we saw that the relative perfor-
mance of Deep-RIS and Deep-RULE depends on the align-
ment between the subspaces of A′ that define the train-
ing and ZS classes, A′T and A′ZS . In an ideal scenario,
A′T = A′ and so φZS(c) ∈ A′T for any ZS class c. How-
ever, this is unlikely to happen for datasets of tractable size,
and the subsets A′T and A′ZS are most likely not aligned.

Under this scenario, Deep-RIS and Deep-RULE compli-
ment each other. While Deep-RIS enforces first-order con-
straints on the statistics of single attributes, Deep-RULE en-
forces second-order constraints, by constraining the statis-
tics of linear attribute combinations. If the two strategies
are combined, Deep-RULE can explain attribute dependen-
cies that appear on both training and ZS classes, leaving to
Deep-RIS the task of constraining the attribute distribution
on the remainder of the space. It is, thus, natural to com-
bine the two strategies. We accomplish this by mapping
them into regularization constraints.

4.2. Recognition and regularization

An object recognizer maps an image x into a class

y∗ = arg max
c∈{1,...,C}

hc(x), (7)

where h(x) = (h1(x), . . . , hC(x)) is a vector of confidence
scores for the assignment of x to each class, and y∗ the
class prediction. The score function h(·) is usually learned
by minimizing an empirical riskRE [h], under a complexity
constraint Ω[h] to improve generalization, i.e.

h∗ = arg min
h
RE [h] + λΩ[h] (8)

where λ ≥ 0 is a Lagrange multiplier, and Ω[·] a regular-
izer that favors score functions of low complexity. Common
usages of Ω[·] include shrinkage [22], sparse representa-
tions [11] or weight decay [29]. Since all these approaches
simply favor solutions of low complexity, they are a form
of task-insensitive regularization. For ZSL, this type of reg-
ularization has indeed been used to control the variance of
1) semantic scores or 2) backward projections of object em-
beddings into the feature space [49], as well as to suppress
noisy semantics [43].

In this work, rather than a generic penalty on the com-
plexity of h(.), we propose a task-sensitive form of regu-
larization, which favors score functions h(·) with the added
functionality of attribute prediction. This regularization is
implemented with two complimentary mechanisms, intro-
duced in the next two sections.

4.3. Codeword regularization

The first mechanism exploits the fact that the score func-
tions of (7) are always of the form

hc(x) = 〈wc, f(x)〉 , (9)

where 〈·, ·〉 denotes an inner product, f(·) a predictor, and
{w1, . . . ,wC} a set of C class codewords. We denote
wc as the classification code of class c. For example,
in binary classification, algorithms such as boosting [15]
or SVM [12] simply choose 1/ − 1 as the codewords of
the positive/negative class.Similarly, for C-ary classifica-
tion, neural networks [33] or multi-class SVMs [59] rely
on one-hot encodings that lead to the typical decision rule
y∗ = arg maxj∈{1,...,C} fj(x). There is, however, no rea-
son to be limited by these classical sets.

By comparing the score functions of (5) and (9), Deep-
RULE can be interpreted as learning the optimal predictor
a(x) for a classification code given by (4), i.e. wc = φ(c).
Hence, Deep-RULE can be seen as a form of very strict
CNN regularization, where the final fully-connected layer
is set to these semantic codes. In general, fixing network
weights is undesirable, as better results are usually obtained
by learning them from data. We avoid this by using the se-
mantic codes φ(c) as loose regularization constraints, under
the framework of (8). Similarly to Deep-RULE, we learn
the predictor f using cross-entropy as the empirical risk
RE , and score functions of the form

h(x;W,T,Θ) = WT f(x) = WTTT θ(x; Θ) (10)

where the columns of W contain the weight vectors wc of
the last CNN layer. This is complemented by a codeword
regularizer

Ω[W] = 1
2

∑C
c=1 ||wc − φ(c)||2 (11)

that favors classification codes wc similar to the seman-
tic codes φ(c). Note that, up to terms that do not depend



on wc, this can be written as Ω[W] ∼
∑C

c=1
1
2 ||wc||2 −∑C

c=1 w
T
c φ(c). In the Lagrangian of (8), the first summa-

tion becomes the “weight decay” regularizer already imple-
mented by most CNN learning packages. Thus, effectively,

Ω[W] = −
∑C

c=1 w
T
c φ(c). (12)

In sum, the use of codeword regularization forces the CNN
to model attribute dependencies by aligning the learned
classification codes wc with semantic codes φ(c).

4.4. Loss-based regularization

The second mechanism, denoted loss-based regulariza-
tion, aims to constraint attributes beyond A′T , and provides
explicit regularization to attribute predictions. It is imple-
mented by introducing an auxiliary risk RA[f ] in the opti-
mization, i.e. replacing RE [h] in (8) by RE [h] + λRA[f ]
where RA[f ] is the sum of attribute prediction risks of (3).
This drives the score function to produce accurate attribute
predictions, in addition to classification.

4.5. SCoRe

Given a training set of images x(i), attribute labels
(s

(i)
1 , . . . , s

(i)
Q ), and class labels y(i), the regularizers of the

previous sections are combined into the SCoRe objective

minimize
Θ,T,W

∑
i L
(
h(x(i);W,T,Θ), y(i)

)
+λ
∑

i

∑
k Lb

(
fk(x(i); tk,Θ), s

(i)
k

)
+βΩ[W], (13)

where h(·) is given by (10), fk(x; tk,Θ) = tTk θ(x; Θ) is
the kth semantic predictor, Ω[W] the codeword regularizer
of (11), and λ and β Lagrange multipliers that control the
tightness of the regularization constraints.

Depending on the value of these multipliers, SCoRe can
learn a standard CNN, Deep-RIS, or Deep-RULE. When
λ = β = 0, all the regularization constraints are disre-
garded and the classifier is a standard recognizer for the
training classes. Increasing λ and β improves its transfer
ability. On one hand, regardless of β, increasing λ makes
SCoRe more like Deep-RIS. In the limit of λ → ∞, the
first summation plays no role in the optimization, Ω is triv-
ially minimized by wc = φ(c), and (13) is reduced to the
Deep-RIS optimization problem of (3). On the other hand,
maintaining λ = 0 while increasing β makes SCoRe sim-
ilar Deep-RULE. For large values of β, the learning algo-
rithm emphasizes the similarity between classification and
semantic codes, trading off classification performance for
semantic alignment. Finally, when both λ and β are non-
zero, SCoRe learns the classifier that best satisfies the cor-
responding trade-off between the three goals: recognition,
attribute predictions, and alignment with the semantic code.
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Figure 2. Semantic encoding for a taxonomy of six animal classes.

5. Semantics
In this section, we discuss the encoding of different se-

mantics under the SCoRe framework.

5.1. Attributes

So far, we assumed that semantics are binary attributes.
Each attribute is mapped into an entry of the semantic code
according to (4), which is used to represent each class, i.e.

φ(y) = concat(φ1(y), . . . , φQ(y)). (14)

To support different degrees of certainty on class/attribute
associations, continuous attributes are also easily imple-
mented by making φk(y) ∈ [−1, 1].

5.2. Beyond binary semantics

SCoRe can be easily extended to semantics with more
than two states. Consider a semantic k with Sk states. In
this case, each state is itself represented by a codeword, i.e.

φk(y) ∈ Ψ(k) = {ψ(k)
1 , . . . , ψ

(k)
Sk
}, (15)

where ψ(k)
i are semantic state codewords. Then, the se-

mantic code φ(y) of class y is built by concatenating φk(y)
for all k, as in (14). Similarly to the binary case, a pre-
dictor f(x) learned under this codeword set will attempt to
approximate φk(y) for images x of class y. The state of
the kth semantic can thus be recovered from f with s∗k =

arg maxi=1,...,Sk
〈ψ(k)

i , fk(x)〉 where ψ(k)
i is the codeword

of state i of the kth semantic, and fk(·) the corresponding
subspace of f(·). Many semantic state codewords can be
defined. We now provide some examples.

Taxonomies In this work, we consider taxonomic encod-
ings that emphasize node specific decisions, by interpreting
each node as a semantic concept. As illustrated in Figure 2,
a semantic state codeword set Ψ(k) is defined per node k.
Its state codewords identify all possible children nodes plus
a reject option. For example, the codeword set Ψ(2) of node
2 contains codewords ψ(2)

dolphin and ψ(2)
whale, plus the reject

codeword ψ(2)
other. Under this taxonomic encoding, the se-

mantic code φ(y) identifies the relevance of each node to
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Figure 3. Deep-SCoRe. Feature extraction based on common CNN architectures. Classification is performed by first computing semantic
scores through codewords Wk, and then combining them into class scores using known class/semantics relations sck.

the class y. An internal node that is an ancestor of y con-
tributes with the codeword corresponding to the branch se-
lection (needed to reach the class) at that node. A node
that is not an ancestor contributes with the reject codeword.
For example, in Figure 2, the class “bear” receives the code
φ(bear) = concat

(
ψ

(1)
Ter, ψ

(2)
Other, ψ

(3)
Bear, ψ

(4)
Other

)
.

It remains to define the codeword sets V(k). These could
be used to reflect further semantic information. In the tree
of Figure 2, V(1) could encode a set of attributes that dis-
tinguish aquatic, terrestrial, and aerial animals, such as “has
fins,” “has legs” or “has wings”. In this work, since no se-
mantic information is available beyond the taxonomy itself,
we rely on the maximally separated codeword sets of [50].
Under this procedure, aQ-ways decision is mapped into the
set of codewords defined as the vertices of aQ-sided regular
polygon in Q− 1 dimensions centered at the origin.

Word2Vec Word2Vec is a procedure to generate word
embeddings. A word w is mapped into a high-dimensional
vector ξ(w) ∈ χ by a neural network trained from large
text corpora to reconstruct linguistic contexts of words. For
semantic annotation, this mapping is used as the semantic
code, i.e. each class y is encoded by the vector φ(y) = ξ(y).

In this work, we use the skip-gram architecture proposed
by Mikolov et al. [39]. Its embeddings are determined by
two parameters: size of the encoding layer and the window
size that defines a context for each word. Rather than rely-
ing on a single model, we learn Q Word2Vec embeddings
ξk(y), k ∈ {1, . . . , Q}, using Q different combinations of
the two parameters. This createsQ codeword sets V(k). The
semantic code then represents class c by a string of the re-
sulting vectors φk(y) = ξk(y), using (14).

6. Deep-SCoRe
Deep-SCoRe implements (10) using a CNN to compute

θ(x; Θ). Parameters Θ, W and T are learned from (13),
using a semantic code that combines various semantic state

codeword sets V(k). These can be relative to attributes, tax-
onomy nodes, Word2Vec mappings, or any other semantic
encoding. From (9), class scores decompose into

hc(x) =
∑

k h
(k)
c (x) =

∑
k〈w

(k)
sck
, fk(x)〉 (16)

where sck is the state of the kth semantic under class c, w(k)
sck

the corresponding codeword, and fk(·) the corresponding
subspace of f(·). Semantic predictions are obtained by
computing the dot-products

u
(k)
i (x) = 〈w(k)

i , fk(x)〉 (17)

for all states i of semantic k and choosing the state

s∗k = arg max
i
u

(k)
i (x). (18)

While (16) and (17) could be computed separately, the
structure of (16) allows shared computation. This can be
accomplished by adding two layers to the semantic predic-
tor f(x), which we denote semantic encoding (SE) layers.

As shown in Figure 3, a CNN is used to compute the pre-
dictor f(x) = (f1, . . . , fQ) (x). Similarly to Deep-RIS and
Deep-RULE, this is implemented through a linear transfor-
mation T of a feature vector θ(x) computed with one of the
popular CNN models. The first SE layer then consists of
Q parallel fully-connected layers that compute the semantic
scores u(k)

i (x) for each of the Q semantics. The weights
of each branch k contain the classification codewords w(k)

i

and are learned under the codeword regularizer of (11). The
second SE layer then selects, for each class c, a single output
from each branch k corresponding to the state sck of the kth

semantic of class c. These outputs are added to obtain the
class recognition score hc(x). This is easily implemented
by a fully connected layer of predetermined sparse weights
of 0s and 1s that remain fixed throughout training.

Learning: Consider a training set of three-tuples: (a) the
image x(i); (b) the vector of semantic states s(i); and (c)



the class label y(i). As shown in Figure 3, the state vectors
s(i) are used as supervisory signals for the first SE layer and
the labels y(i) as supervisory signals for the second. These
supervisory signals and the semantic codes φ(y) are used to
compute the Lagrangian risk of (13), and all parameters are
optimized by back-propagation using Caffe toolbox [26].

Deep-SCoRe models were trained by fine tuning pre-
trained CNNs using stochastic gradient descent (SGD) with
momentum of 0.9 and weight decay of 0.0005. The learning
rate was chosen empirically for each experiment.

7. Experiments
In this section, we discuss several experiments car-

ried out to evaluate the ZSL performance of Deep-
SCoRe. Source code is available at https://github.com/
pedro-morgado/score-zeroshot.

7.1. Experimental setup

Datasets: Three datasets were considered: Animals with
Attributes [31] (AwA), Caltech-UCSD Birds 200-2011 [57]
(CUB), and a subset of the Imaging FlowCytobot [52]
(IFCB) dataset. Table 2 summarizes their statistics. On
AwA and CUB, the partition into source and target classes
for ZSL is as specified by [31] and [2], respectively. On
IFCB, which is now first used for ZSL, classes were par-
titioned randomly. A separate set of validation classes
(10/50/6 for the AwA/CUB/IFCB datasets, respectively)
was also drawn randomly to tune SCoRe parameters.

Image representation: Images were resized to 256×256
pixels, with the exception of IFCB, where aspect ratios dif-
fer widely and resizing introduces considerable distortion.
Instead, each image was first resized along the longest axis
and the shortest axis then padded with the average pixel
value, to preserve the aspect ratio. Typical data augmen-
tation techniques were used for training (random cropping
and mirroring), and the center crop was used for testing.
Three CNN architectures were used to implement θ(x):
AlexNet [28] (layer fc7), GoogLeNet [54] (layer pool5) and
VGG19 [51] (layer fc7).

Semantics: Three sources of semantics were evaluated.
Visual attributes: Continuous attributes have been shown

to be superior to their binary counterparts and were used
on AwA and CUB. On IFCB, where no attributes were de-
fined previously, a list of 35 visual attributes was assembled
and annotated by an expert with binary labels, using several
sources from the oceanographic community [7, 38].

Taxonomies were created by pruning the WordNet
tree [40] for the training and ZS classes, and eliminating
dummy nodes containing a single child. In the rare situa-
tions where WordNet was not fine-grained enough to distin-
guish between a set of classes, the taxonomy was expanded
by simply assigning each object into its own leaf.

Table 2. Summary of dataset statistics.

Dataset Images
Train/ZS
Classes Attributes

Hierarchy
Source

AwA 30,475 40/10 85 WordNet [40]

CUB 11,788 150/50 312 WordNet [40]

IFCB 28,853 22/8 35 —
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Figure 4. Influence of loss-based and codeword regularization on
ZSL. Absolute improvement over RULE in ZS-MCA.

Word2Vec models were trained on a Wikipedia archive,
dated June 1st, 2016. Three different window sizes (3, 5
and 10) and vector dimensions (50, 100 and 500) were used,
leading to a total of 9 Word2Vec codeword sets.

7.2. Results

Gains of regularization: We started by evaluating code-
word and loss-based regularization. The importance of the
two regularizers was assessed separately on all datasets us-
ing visual attributes and GoogLeNet. In both cases, we
measured the gains over Deep-RULE, in which classifica-
tion codewords are set to wc = φ(c) and λ = 0. The gains
of loss-based regularization were evaluated by increasing λ
while keeping β = 0. Under this setting, the classifier con-
verges to Deep-RIS in the limit of λ → ∞. Conversely,
the gains of codeword regularization were measured by in-
creasing β while keeping λ = 0. In this case, the classifier
converges to an unrestricted object recognizer when β = 0
and to Deep-RULE when β →∞. Figure 4 presents the ab-
solute improvement in ZS mean class accuracy (ZS-MCA)
over Deep-RULE, as a function of the Lagrange multipliers.

Both regularizers produced gains over Deep-RULE with
absolute gains as high as 3 ZS-MCA points. This demon-
strates the importance of learning the classification code-
words, rather than fixing them. Note that, for codeword
regularization, best results were obtained for intermediate
values of β, which encourage consistency between the se-

https://github.com/pedro-morgado/score-zeroshot
https://github.com/pedro-morgado/score-zeroshot


Table 3. ZS-MCA[%] of various methods. A - AlexNet [28];
G - GoogLeNet [54]; V - VGG19 [51].

AwA CUB

A G V A G V

DAP [32] 45.3† 59.5‡ - 16.9† 36.6‡ -
SJE [4] 61.9 66.7 - 40.3 50.1 -

ES-ZSL§ [49] 53.0 74.2 74.4 40.6 53.1 49.0
Huang et al. [23] 45.6 - - 17.5 - -
Liang et al. [37] 48.6 - - 18.2 - -

Changpinyo et al. [8] - 72.9 - - 54.7 -
Xian et al. [60] - 72.5 - - 45.6 -

Zhang et al. [61] - - 76.3 - - 30.4
Gan et al. [21] - - 73.8 - - 43.7

Deep-RIS 56.6 68.9 66.4 24.3 37.5 39.1
Deep-RULE 65.3 76.3 78.0 46.0 57.1 57.9

Deep-SCoRe 66.7 78.3 82.8 48.5 58.4 59.5
†As reported by Liang et al. [37]. ‡As reported by Al-Halah et al. [6].
§Self implementation.

mantic and classification codes, but leave enough flexibility
to learn a classification code superior to its semantic coun-
terpart. In all cases, the MCA of SCoRe was much superior
to that of RIS, confirming the importance of modeling at-
tribute dependencies through the first term of (13). Finally,
SCoRe performance was also superior to that of the unre-
stricted CNN. This demonstrates the benefits of regulariza-
tion. Interestingly, this was not the case of RIS, which al-
ways underperformed the unrestricted CNN, or RULE that
only achieved on par results in CUB and IFCB1.

In Section 3.3, we hypothesized that loss-based regular-
ization becomes more important as the alignment between
the subspaces of A′ spanned by training and ZS classes de-
creases. To test this hypothesis, we measured this alignment
by computing the average orthogonal distance between the
semantic codeword φ(c) of each ZS class and the subspace
spanned by the codewords of training classes. The aver-
age distances were 0.1244 for CUB, 0.3063 for AwA, and
0.4181 for IFCB, indicating that the transfer is easiest for
CUB and hardest for IFC. This is consistent with the plots
of Figure 4, which show largest gains of loss-based regular-
ization on IFCB followed by AwA and then CUB.

Comparisons to state-of-the-art methods: A compari-
son to the literature is not trivial since methods differ in
1) CNN implementation, 2) train/ZS class partitioning, and
3) semantic space representation. To mitigate these dif-
ferences, we focused on attribute semantics which have
most available results. Methods that use alternative seman-
tics [1, 19, 43, 47] or that use unlabeled images from ZS
classes for training [17,18,27,36] were disregarded for this
comparison. Deep-SCoRe hyper-parameters λ and β were
tuned on a subset of the training classes.

Table 3 compares our ZS-MCA to previous approaches

1The unrestricted CNN is initialized with semantic codes. If random
initialization was used, ZSL would not be possible.
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Figure 5. ZSL performance using different semantics. A – At-
tributes; H – Hierarchies; W – Word2Vec. DAP results reported
in [5]. SJE and ES-ZSL self-implemented.

using three CNN architectures: AlexNet, GoogLeNet and
VGG19. Although results vary drastically with CNN, it is
clear that Deep-SCoRe outperforms all previous approaches
on all datasets, achieving impressive gains over the state-
of-the-art for every architecture: 4.8%, 4.1% and 6.5% on
AwA and 7.9%, 3.7% and 10.5% on CUB with AlexNet,
GoogLeNet and VGG19, respectively.

Multiple semantics: We finally studied the performance
of Deep-SCoRe with attributes, taxonomies, and Word2Vec
embeddings. Figure 5 compares Deep-SCoRe and its vari-
ants to popular RIS and RULE approaches in the litera-
ture: DAP [31] (RIS), SJE [4] and ES-ZSL [49] (RULE).
All approaches were implemented with the semantic codes
of Section 5. The best results, which were all obtained
with Deep-SCoRe, are also shown. Figure 5 supports two
main conclusions. First, as shown in [3, 8, 60], attributes
enable by far the most effective transfer. This is not sur-
prising since attributes tend to be discriminant properties
of the various object classes. Taxonomies or Word2Vec
are most informative of grouping or contextual information.
Second, while all approaches rely on regularization, the na-
ture of this regularization matters. The task-sensitive reg-
ularization of Deep-SCoRe always outperformed the task-
insensitive regularization of ES-ZSL, and the combination
of loss-based and codeword regularization (Deep-SCoRe)
always outperformed a fixed semantic code (Deep-RULE
and SJE) or loss-based regularization (Deep-RIS and DAP).

8. Conclusion
In this work, we analyzed the type of supervision pro-

vided by previous approaches. The complementarity found
between class and semantic supervision lead to the intro-
duction of a new ZSL procedure, denoted SCoRe, where
a CNN is learned together with a semantic codeword set
and two forms of semantic constraints: loss-based and code-
word regularization. State-of-the-art zero-shot performance
was achieved in various datasets.
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