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ABSTRACT

Recently, a large research effort has been made on the develop-
ment of discriminative techniques for the computer-aided diagno-
sis (CAD) of both Alzheimer’s disease (AD) and Mild Cognitive
Impairment (MCI) using neuroimages as the main source of infor-
mation. Often, such systems use the Voxel Intensities (VI) directly
as features, and a feature selection procedure is needed in order to
tackle the curse of dimensionality. In this paper, we will propose
an efficient selection algorithm based on Mutual Information which,
unlike the procedures typically used within this research field, is able
to avoid the redundancy existing between brain voxels that are typ-
ically highly dependent. The proposed approach was able to join a
higher amount of relevant information in a feature vector of fixed
dimension and, therefore, was able to improve the classification per-
formance attained when using a typical selection procedure.

Index Terms— Computer-Aided Diagnosis, Alzheimer’s Dis-
ease, Mild Cognitive Impairment, Minimal Redundancy Maximal
Relevance, Positron Emission Tomography, Support Vector Machine

1. INTRODUCTION

Alzheimer’s disease is the most common cause of dementia for
which no cure is currently available. Consequently, and also due
to the demographic ageing and population growth, the number of
deaths related to AD is still experiencing a marked increase. Early
detection, still at the stage of MCI, is essential for an effective
treatment, slowing down the progress of symptoms and improving
patients’ life quality.

Neuroimages have been extensively explored within the AD re-
search field. They have been used for the automated diagnosis of AD
and MCI [1, 2] and even to predict the transition from the latter to
the former [3]. In this paper, we will focus on diagnosis (i.e. on the
AD vs. CN, MCI vs. CN and AD vs. MCI classification tasks) using
the voxel intensities of FDG-PET scans directly as features. How-
ever, a problem common to such CAD systems typically appears at
the learning stage. In fact, if all voxel intensities were used, the high
number of features would probably deteriorate the performance of
the diagnostic system due to the curse of dimensionality [4]. Con-
sequently, a dimensionality reduction procedure is often explored,
which tries to reduce the number of voxels while retaining as much
information as possible.

This work was supported by Fundação para a Ciência e Tecnolo-
gia (FCT/MCTES) through the ADIAR project (PTDC/SAU-ENB/114606/
2009). Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the
investigators within the ADNI contributed to the design and implementation
of ADNI and/or provided data but did not participate in analysis or writing
of this report.

Two categories of dimensionality reduction techniques are typ-
ically explored for the diagnosis of AD. The first class, medically
driven procedures, uses prior knowledge about the disease. The large
majority of these techniques segment the brain into Regions of Inter-
est (ROIs) that are typically associated with atrophy caused by the
disease and then use the voxel intensities of each ROI as features
[5, 6]. Recently, an innovative selection technique was proposed [7]
where the medical expertise was captured by recording the move-
ment of a physician’s eyes while performing the diagnosis of several
patients in order to subsequently select the voxels that captured most
of the physician’s attention. The second class restricts itself to the in-
formation that can be extracted from the whole brain pattern. Several
procedures were already tested for the CAD of AD, such as Princi-
pal Component Analysis (PCA) [8, 2], Linear Discriminant Analysis
(LDA) [8] and Partial Least Squares (PLS) [9] that reduce the input
space dimensionality through a linear combination of the input fea-
tures, or feature selection techniques [7, 10, 11] which are univariate
methods that rank each feature based on some criterion, such as its
correlation or mutual information with the class label, and then se-
lect the highest ranking ones. Other techniques that do not fall into
any of these categories can also be explored. For instance, in [9] a
Gaussian Mixture Model was used to model automatically ROIs and,
from each Gaussian function, a feature was extracted.

A problem related with the feature selection approach is that se-
lected voxels, or features, may have a lot of redundancy between
them. Although several techniques have been proposed to avoid this
redundancy, such as Mutual Information Feature Selection (MIFS)
[12], MIFS-Uniform (MIFS-U) [13] or minimal Redundancy Max-
imal Relevance (mRMR) [14], the associated computational burden
does not allow their use with neuroimaging data. To deal with this
issue, our approach (which is based on mRMR) exploits the fact that
neighboring brain voxels are the main source of dependency in order
to perform an efficient selection of non-redundant features.

The remainder of this paper is organized as follows: First, the
proposed selection procedure (minimal Neighborhood Redundancy
Maximal Relevance (mNRMR)) is described in section 2, preceded
by a brief review of the mRMR algorithm, for completeness. The
system’s performance is then presented and discussed in section 3.
Section 4 concludes the paper.

2. APPROACH

2.1. Minimal Redundancy Maximal Relevance

mRMR is an established algorithm for feature selection originally
proposed by Peng et al. [14]. It is an incremental algorithm, which
means that it selects one feature at a time, and avoids choosing re-
dundant features even if they have high discriminative power. For-
mally, mRMR can be described as follows. Consider two sets of
features: the set Dt containing all the features Xi selected at time t



and the set Ft with the remaining ones. Initially, the set D0 is empty
and the set F0 contains all features. Then, at each time step t, mRMR
selects from Ft the feature that maximizes the utility function

J(Xi) = I(Xi;Y )− 1

|Dt|
∑

Xj∈Dt

I(Xi;Xj), (1)

where Xi ∈ Ft, Y denotes the class label and I(· ; ·) the mutual
information between two random variables. The selected feature is
then removed from the set Ft and added to Dt and the same proce-
dure is repeated until the desired number of features, N , is reached.

Both mutual information terms in equation (1) can be calculated
using the following definition:

I(W ;Z) =
∑
w∈W

∑
z∈Z

P (w, z) log
P (w, z)

P (w)P (z)
, (2)

where W and Z are the dictionaries containing all possible events
of the random variables W and Z, respectively. Density estimation
was performed using an histogram approach.

As can be seen, the utility function (1) that mRMR maximizes,
not only considers the mutual information between Xi and the class
label Y (relevance term), but also the dependency between Xi and
all the features Xj already selected (redundancy terms). This prop-
erty was considered to be very relevant to the problem at hand due
to the high correlation nature of neighboring voxels in the brain im-
age. In fact, if a given VI is relevant to a diagnostic problem, some
neighboring VI is also likely to be. However, since they hold simi-
lar information, the inclusion of both will probably not increase the
discriminative power of the set of selected features.

2.2. Minimal Neighborhood Redundancy Maximal Relevance

The main setback of mRMR is its time-requirements. In fact, in
order to select N features, out of a total number of K features,
the information term I(Xi;Xj) must be evaluated K(N − 1) −
N(N − 1)/2 times (each one for a different pair of features). When
K is small, such time-requirements are not problematic, but since
the number of intracranial voxels in the PET image is very high, the
selection of a considerable amount of features is unfeasible.

Our approach aims to reduce such timing constrains by reduc-
ing substantially the number of information terms I(Xi;Xj) to es-
timate. It accounts essentially for the terms between features that
are known to be mostly dependent, i.e. neighboring features and fea-
tures in symmetric regions of both brain hemispheres. For simplicity
of exposition, we will refer to all such features as neighbors. More
precisely, the neighborhood condition was defined as follows:

{||xi − xj ||∞ ≤ d ∨ ||sym(xi)− xj ||∞ ≤ d} , (3)

where xi and xj are the features’ coordinates, sym(xi) is the re-
flection of xi on the opposite hemisphere, and d is a parameter that
controls the range of the neighborhood. Three examples are given
in Fig. 1. Now, if we assume that the mutual information between
each feature and all its non-neighboring features is constant, we can
rewrite the utility function (1) as

J ′(Xi) = I(Xi;Y )− 1

|Dt|

P Înn +
∑

Xj∈{Ni∩Dt}

I(Xi;Xj)

 ,

(4)
where Ni is the set of all neighbors of the feature Xi, Înn is an
estimation of the mutual information between two non-neighboring

voxels and P is the number of features currently selected which are
not neighbors ofXi, i.e. P = |{¬Ni∩Dt}|. The estimation of Înn
was conducted beforehand as the mean mutual information obtained
from 100000 pairs of non-neighboring feature locations randomly
selected throughout the 3D brain image.

Fig. 1. Neighbor regions of three features. The three regions are
differentiated by color and contain their respective feature. Despite
the 2D representation, the neighborhood is three-dimensional.

2.3. Learning Machine

After selection, each one of the three diagnostic problems was
learned using the SVM algorithm [15] with a linear kernel. The
good generalization that this algorithm achieves in high dimensional
spaces made SVM very popular within the neuroimaging based
CAD research field, which was an important factor in our choice.

3. EXPERIMENTS

3.1. Dataset

All PET images were retrieved from the ADNI database, but the
following restrictions were imposed to the Clinical Dementia Rat-
ing (CDR) score of each subject: 0 for normal controls, 0.5 for MCI
patients and 0.5 or higher for AD patients, resulting in a dataset com-
posed by 59, 104 and 70 subjects, respectively. However, since the
SVM algorithm can be affected by unbalanced datasets, we opted to
restrict each group to only 59 subjects and selected them randomly.
Table 1 summarizes important clinical and demographic information
about each group.

The retrieved data had already undergone a series of pre-
processing steps in order to minimize differences between images
and thus allowing voxel-wise comparisons. More specifically, every
PET image was co-registered, averaged, reoriented (such that the
anterior-posterior axis of the subject is parallel to the AC-PC line),
normalized in its intensity, and smoothed to a uniform standardized
resolution1. An additional pre-processing step was conducted by the
University of Utah Component of the ADNI PET Core, where an
anatomic standardization to the Talairach brain atlas was performed
using the Neurostat software [16].

Moreover, extracranial voxels were left out from all subsequent
processing using a simple threshold operation over the average brain
image. Note that extracranial voxels do not hold valuable informa-
tion and thus they would never be chosen in the feature selection
procedure, but the time required to perform the selection would in-
crease.

3.2. Experimental Design

In this section, an experimental motivation for the proposed algo-
rithm (mNRMR) will firstly be given and then its performance and

1A more detailed description of the pre-processing stage is available
at http://adni.loni.ucla.edu/methods/pet-analysis/
pre-processing/

http://adni.loni.ucla.edu/methods/pet-analysis/pre-processing/
http://adni.loni.ucla.edu/methods/pet-analysis/pre-processing/


Table 1. Characteristics of each group. Format: Mean (Standard
Deviation). MMSE stands for Mini Mental State Exam.

Attributes AD MCI CN
No of subjects 59 59 59

Age 78.3 (6.6) 77.7 (6.9) 77.4 (6.6)
Sex (% of Males) 57.6 67.8 64.4

MMSE 19.6 (5.1) 25.8 (3.0) 29.2 (0.9)

time-requirements will be compared with other related procedures
for a varying number of selected features. Specifically, it will be
compared with mRMR and with an algorithm that only considers
the relevance term of the utility function (1). This procedure, which
is often called Mutual Information Maximization (MIM), computes
I(Xi;Y ) for each feature and then selects the N best ranked ones.

The three algorithms were studied for different numbers of fea-
tures. Specifically, N was tested for all values in the set {10, 25, 50,
100, 250, 500, 1000, 2500, 5000, 10000, 25000, 50000}, except for
the mRMR procedure where the same progression was used but N
was only allowed to be as high as 500 in order to be able to evaluate
the system in an acceptable time. The parameter C of the SVM clas-
sifier (which controls the cost of misclassification) was tuned within
the range 2−18 to 218 using a 10×10-fold nested cross-validation
procedure, guaranteeing unbiased estimates of the system’s perfor-
mance. The results were averaged after 10 runs. All comparisons
were performed on the three binary diagnostic problems (AD vs. CN,
MCI vs. CN and AD vs. MCI).

The parameter d that controls the range of the neighborhood
was fixed to 4 voxels, i.e. 6mm (given the 1.5mm cubic voxels
that form the PET image). In fact, a few considerations were taken
into account when setting this parameter. On one hand, d needs
to be large enough in order to compensate for the significant inter-
hemispheric variability, and for possible errors in the localization of
the symmetry plane and in the registration step. However, on the
other hand, the size of the neighborhoods considered should also be
small enough so that the proposed approach can perform the selec-
tion with acceptable execution time.

3.3. Results

Fig. 2 shows the distribution of the mutual information between
neighboring and non-neighboring features, where each distribution
was obtained from 100000 pairs of feature locations, randomly
selected throughout the 3D brain image, and respecting each im-
posed spatial condition. In addition, the mutual information was
discretized into intervals of 0.05. One can easily notice that the
mutual information between non-neighboring voxels is usually
lower and less spread than when neighboring voxels are considered,
whether they are direct or symmetric neighbors. More precisely,
the statistics (µ ± σ) = (0.215 ± 0.052) were obtained for non-
neighbors, (µ ± σ) = (0.408 ± 0.201) for direct neighbors and
(µ±σ) = (0.323±0.129) for symmetric neighbors. These distri-
butions led us to conclude that most of the variability of I(Xi;Xj)
occurs between neighborsoccurs between neigbours, which moti-
vated the proposed simplification (i.e. assuming all terms I(Xi;Xj)
between non-neighbors to be constant and equal to its mean value:
Înn = 0.215).

The performance of each system applied to the three classifica-
tion problems is presented in Fig. 3. First, it should be noted that
mRMR outperformed MIM for corresponding number of features in
the three classification problems, but since it could only be evalu-
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Fig. 2. Histogram of the mutual information between neighboring
and non-neighboring pairs of features.
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Fig. 3. Comparison of feature selection algorithms for varying num-
ber of features, N .

ated up to 500 features, its marks were always exceeded in higher
dimensional spaces. This is consistent with its theoretical advan-
tage, i.e. mRMR accounts for redundancy between selected features
and, thus, it certainly joins a higher amount of information in a fea-
ture set of a given size. mNRMR also shares with mRMR this ad-
vantage over MIM and, consequently, it was also able to improve
MIM’s classification accuracy, especially in low dimensional spaces.
In addition, the computational advantage of the novel approach over
mRMR allowed us to perform classifications with larger numbers
of features. This was essential in the diagnosis of MCI (Fig. 3(b))
where mNRMR achieved the best performance (79.27% acc. with
N = 25000), although very close to MIM. However, in this classi-
fication problem, the power of selection appeared to be weaker than
on the other two, since even after the selection of a large number of



features, there was still a large amount of discriminative information
that has not been included, and thus the results could still be im-
proved with the inclusion of more features. As for the classification
of AD (Fig. 3(a)), both mRMR and mNRMR outperformed MIM in
low dimensional spaces, but the difference was attenuated with the
increase of N . Most likely, this is related to the fact that, despite the
different selection criteria, the methods ended up on agreeing on the
best features, when large numbers of them are selected. For instance,
when N= 50000, more than 90% of the features selected by MIM
and mNRMR for the diagnosis of AD were actually the same. This
phenomenon was observed in all diagnostic problems. Finally, in the
AD vs. MCI classification task (Fig. 3(c)), the number of selected
features did not influence the system’s performance much, allowing
for the new approach to achieve the best performance (73.31% acc.)
using only 50 features.

The time-requirements of each procedure were also analyzed.
The computation time of both mNRMR and mRMR increase ap-
proximately linearly with the number of features to select. How-
ever, mRMR took approximately 2.9 s to choose every additional
feature, while mNRMR took only 13ms. This difference made the
new approach feasible for values of N as high as 50000. Remem-
ber that the time-requirements of the feature selection stage is even
more important because it has to be repeated several times due to
the nested cross-validation procedure used for performance assess-
ment. All simulations were performed under the same platform on
an Intel R© CoreTM i7-2600 processor running at 3.4 GHz.

4. CONCLUSION

This paper proposed an efficient algorithm for the selection of rel-
evant but non-redundant features in neuroimages by taking into ac-
count the fact that most of the redundancy and most of the mutual
information variability occur between neighbors, either local neigh-
bors or neighbors in symmetric regions of brain hemispheres. The
proposed procedure, which can be seen as a simplification of the
well known mRMR selection algorithm, was able to speed up signifi-
cantly the selection process and, therefore, to choose a larger number
of features in the same period of time.

Regarding classification performance, mNRMR reported inter-
esting results, outperforming MIM in low dimensional spaces (500
features or less) in all diagnostic problems tested and attaining sim-
ilar results to mRMR. In fact, it was even able to improve mRMR’s
classification accuracy for very small numbers of selected features
(50 or less) in the AD vs. CN and AD vs. MCI classification tasks,
while using only a small fraction of mRMR’s computing time. As
for large values ofN (500 or more), the proposed approach and MIM
achieved always similar accuracies.

Overall, mNRMR achieved the best performance in the MCI
vs. CN and AD vs. MCI classification tasks but the differences for
the second best were never expressive enough to confidently claim
its superiority. Nevertheless, the results presented in this paper (in
low dimensional spaces) indicate that a careful selection of features,
eliminating redundant voxel intensities, is capable of boosting the
performance of a system for the CAD of AD and related disorders.

It should also be stressed that, although this work has focused
on FDG-PET images, the proposed selection procedure has the po-
tential to be used with any other neuroimaging modality, since the
high correlation nature of neighboring voxels is common to all such
brain images.
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