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Abstract

A novel framework, based on the statistical interpretatibhoosting, is proposed
for the design of cost sensitive boosting algorithms. Itrggiad that, although predic-
tors produced with boosting converge to the ratio of posteriass probabilities that
also appears in Bayes decision rule, this convergence aelyrs in a small neighbor-
hood of the optimal cost-insensitive classification boumd& his is due to a combi-
nation of the cost-insensitive nature of current boostossés, and boosting’s sample
reweighing mechanism. It is then shown that convergenche@meighborhood of a
target cost-sensitive boundary can be achieved througétingestyle minimization of
extended, cost-sensitive, losses. The framework is apfi¢he design of specific al-
gorithms, by introduction of cost-sensitive extensionthef exponential and binomial
losses. Minimization of these losses leads to cost seastitensions of the popular
AdaBoost, RealBoost, and LogitBoost algorithms. Expenitakvalidation, on various
UCI datasets and the computer vision problem of face detecsihows that the new
algorithms substantially improve performance over what aehievable with previous
cost-sensitive boosting approaches.
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1 Introduction

Classification problems such as fraud detection [21, 41fica¢ diagnosis [15, 20, 23,
44, 46], or object detection in computer vision [42], areunally cost sensitive [6].
In these problems the cost of missing a target is much hidhaer that of a false-
positive, and classifiers that are optimal under symmet&tsc(such as the popular
zero-one loss) tend to under perform. The design of optitagkdiers with respect to
losses that weigh certain types of errors more heavily thhars is denoted as cost-
sensitive learning [6]. Current research in this area fatls two main categories. The
first aims for generic procedures that can make arbitrargsdiars cost sensitive, by
resorting to Bayes risk theory or some other cost minimirasitrategy [4, 24,48, 49].
The second attempts to extend particular algorithms, so gsaduce cost-sensitive
generalizations.

Of interest to this work are classifiers obtained by thredingl a continuous func-
tion, here denoted as predictor, and therefore similar to the Bayes decision rule
(BDR) [5, 45], which is well known to be optimal for both casssensitive and cost-
sensitive classification. In particular, we consider l@agralgorithms in the boosting
family [2, 8,12, 36], such as the popular AdaBoost [8, 10]jalulis not cost-sensitive
but has achieved tremendous practical success in impaiteaas of application, such
as computer vision [43]. Like all other boosting algorithrAdaBoost learns a predic-
tor by composing an ensemble of weak classification ruleskiearners), and relies
on a sample re-weighting mechanism to place greater engpbasa neighborhood
of the classification boundary. This guarantees a largsifieetion margin and good
(cost-insensitive) generalization with small amountsrairiing data. There are mul-
tiple interpretations for Adaboost, including those of ggéamargin method [33, 35],
a gradient descent procedure in the functional space ofexocmmbinations of weak
learners [13,25,50], and a method for step-wise logisticagsion [3, 12], among oth-
ers[2,9,11].

This work builds on a combination of these interpretati@nddrive a cost-sensitive
boosting extension. We start with the observation, by Fniad et al. [12], that the
predictor which minimizes the exponential loss used by Aatz® (and many other
boosting algorithms) is the ratio of posterior distributichat also appears in the BDR.
Given the optimality of the latter, this offers an explaoatior the excellent perfor-
mance of boosted detectors in cost-insensitive classditcaroblems. It is, however,
at odds with various empirical observations of boosting’pdor cost-sensitive perfor-
mance [7,27,37,38,42], and 2) inability to produce welllralted estimates of class
posterior probabilities [12,19,26,27,30]. We argue that is an intrinsic limitation of
the large-margin nature of boosting: due to the emphasisplgareweighing) on the
classification border, the predictor produced by boostinlg converges to the BDR in
a small neighborhood of that border. Outside this neightbmahit has identical sign to
the BDR (a sufficient condition for cost-insensitive cléissition) but does not neces-
sarily approximate it well (a necessary condition for goostesensitive performance).

Two conditions are identified as necessary for optimal sessitive boosting: 1)
that the predictor does converge to the BDR in the neightmathaf a classification
boundary, but 2) that the latter is the target cost-semshivundary, rather than the
one optimal in the cost-insensitive sense. We propose higis best accomplished
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by modifying the loss function minimized by boosting, sotthaosting-style gradient
descent can satisfy the two conditions. This leads to a géframework for the cost-
sensitive extension of boosting algorithms. We introdurst-sensitive versions of the
exponential and binomial losses, which underly some of tlestrpopular boosting
algorithms, including AdaBoost [8], RealBoost [12, 36]ddmgitBoost [12]. Cost-
sensitive extensions of these algorithms are then derarsdishown to satisfy the two
necessary conditions for cost-sensitive optimality.

Various cost-sensitive extensions of boosting have beeviqusly proposed in the
literature, including AdaCost [7], CSBO, CSB1, CSB2 [38]msnetric-AdaBoost [42]
and AdaCl1, AdaC2, AdaC3 [37]. All of these algorithms arertsti¢ in nature, at-
tempting to achieve cost-sensitivity by direct manipualatof the weights and confi-
dence parameters of Adaboost. In most cases, it is not dlear how, these ma-
nipulations modify the loss minimized by boosting, or evewtthey relate to any of
the different interpretations of boosting. This is unlike framework now proposed,
which relies on the statistical interpretation of boostiaglerive cost-sensitive exten-
sions of the boosting loss. Due to this, the algorithms nomppsed inherit all the
properties of classical, cost-insensitive, boosting.yT$imply shift boosting’s empha-
sis from the neighborhood of the cost-insensitive bounttatize neighborhood of the
target cost-sensitive boundary.

The performance of the proposed cost-sensitive boostogyitims is evaluated
empirically, through experiments on both synthetic clsation problems (which pro-
vide insight) and standard datasets from the UCI reposéad/computer vision (face
detection). These experiments show that the algorithmsdeed possess cost sen-
sitive optimality, and can meet target detection rates aiti{sub-optimal) weight or
threshold manipulation. They are also shown to outperfdrenpreviously available
cost-sensitive boosting methods, consistently achiethiegoest results in all experi-
ments.

The paper is organized as follows. In Section 2 we review tldnmrinciples
of cost-sensitive classification. Section 3 then presertisief review of the stan-
dard boosting algorithms and previous attempts at costitdanextensions, discussing
their limitations for optimal cost-sensitive classificati The new framework for cost-
sensitive boosting is introduced in Section 4, where theresions of AdaBoost, Real-
Boost, and LogitBoost, are also derived. Finally, the erogirevaluation is discussed
in Section 5, and some conclusions are drawn in Section 6.

2 Cost-sensitive classification

We start by reviewing the fundamental concepts of costiemslassification. Al-
though most of these apply to multi-way classification peotd, in this work we only
consider the binary case, usually referred to asifitectionproblem.

2.1 Detection

A detector, or binary classifier, is a functiégn: X — {—1,1} that maps a feature
vectorx = (zq,...,zy5)T € X ¢ RY into a class labej € {-=1,1}. This mapping
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is implemented as
h(x) = sgn[f(x)] 1

wheref : X — Risa predictor, andgn[z] = 1if z > 0, andsgn[z] = —1 otherwise.
Feature vectors are samples from a random pra¥e$mt induces a probability distri-
bution Px (x) on X', and labels are samples from a random vari&blénat induces a
probability distributionPy (y) in {—1,1}.

The detector is optimal if it minimizes the risk

R = Exy[L(x,y)],
whereL(x, y) is a loss function. We consider losses of the form

0, ifh(x)=y
L(x,y) =1 Cy ify=—-landh(x)=1 , (2

¢, ify=1landh(x)=-1
with C; > 0. When(C; = (O, the detector is said to be cost-insensitive, otherwise
it is cost-sensitive. The three scenarios accounted (3 y) are denoted as correct
decisions f(x) = y), false positivesy = —1 andh(x) = 1), and false-negatives or
missesg = 1 andh(x) = —1).

For many cost-sensitive problems, the ca@stsandC’, are naturally specified from
domain knowledge. For example, in a fraud detection apipdicaprior experience
dictates that there is an average cosiCgfdollars per false positive, while a false
negative (miss) will cost’; > C- dollars, on average. In this case, the costs are simply
the valuesCs; and C;. There are, nevertheless, other problems in which it is more
natural to specify target detection or false-positivesdlan to specify costs. The two
types of problems can be addressed within a common optinetiiten framework.

2.2 Optimal detection

We start by considering the case where the costandCs are specified. In this case,
it is well known that the optimal predictor is given by the B[#345], i.e.

f*=arg mfin Ex y[L(x,y)]

if and onIy if
Py x (1|x)C

- Pyix(—1[x)Cy’ ®)

When the specification is in terms of error rates, this redilltt®lds, but the cost
structure (1, C2) that meets the specified rates must be determined. Thisecdarie
with resort to the Neyman-Pearson Lemma [29]. For examplenghe specification
of detection rate, the optimal cost structure is the one such that

/ Plxly=1)dx = ¢ ()
H
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with P 1) o
Yy=1x 2
H=<x|=—"—F"—<>—" 1.
{ Ply=-1x) = 1 }
Note that the optimal decision rule is still the BDR, i.e. texitle for clasd if x € H
(and—1 otherwise). The only difference is that, rather than spauif the costs, one
has to search for the costs that achieve the detection rgth.oThis can be done by
cross-validation. Note that, because all that mattersesatioC, /C5, C> can be set
to one and the search is one-dimensional.
In any case, the optimal detector can be written as

hi(x) = sgn [log (f5(x)) — T (5)
where Py (115)
% y|x(1[X
= = 6
13 (x) Pyx(—1[x) ©
is the optimal cost-insensitive predictor and
T =log Gy (7

Hence, for any cost structurg’, Cs), cost-sensitive optimality differs from cost-
insensitive optimality only through the threshdld given f;(x) all optimal cost-
sensitive rules can be obtained by simple threshold maatiipul. Furthermore, from (4),
different thresholds correspond to different detectidl@gaand threshold manipula-
tion can produce the optimal decision functions at any ddsidetection (or false-
positive) rate. This is the motivation for the widespreagl ofsreceiver operating curves
(ROCs) [1,14,16,18, 39], and the tuning of error rates bgghold manipulation.

2.3 Practical detection

In practice, the posterior probabilities of (6) are unknpand a learning algorithm is
used to estimate the predictor

fx) = fo(x), (8)
enabling the implementation of approximately optimal essitive rules
hr(x) = sgn[f(x) - T]. ©)

While this is a commonly used strategy to obtain cost-semsitiles, it does not nec-
essarily guarantee good cost-sensitive performancectntfere are no guarantees of
the lattereven when the cost-insensitive detector is optiireal when

ho(x) = sgn[f5 (x)]- (10)
While the necessary and sufficient conditions for (10) are tha

f(x) = fi(x)=0, ¥xeC (11)

sgn[f(x)] = sgn[f(x)], Vx &C, (12)



where Pyrie(1%)
o= Ly | DrxUx) 1}
{ ’PY|X(1|X)
is the optimal cost-insensitive classification boundang optimality of (9) requires
that

fx) = fox)=T, vxelr (13)
sgn[f(x) =T] = sgn[f5(x)=T], Vx¢Cr (14)
with Py (110)
o = 5| D) T} .
g { ‘PY|X(_1|X)
Hence, for anyk € Cr, the necessary condition for cost-sensitive optimality
Fx) = f5(x) (15)
is much tighter than the sufficient condition for cost-insiéme optimality
sgnlf(x)] = sgnlf5 (x)]. (16)

It follows that threshold manipulation can only produceimat cost-sensitive de-
tectors for all values of" if f(x) = fi(x),¥x € X. Since this is a much more
restrictive constraint than the necessary and sufficientlitions, (11) and (12), for
cost-insensitive optimality there is, in general, no resfeo a cost-insensitive learning
algorithm to enforce it. This is, in fact, Vapnik’s argumegfainst generative solutions
to the classification problem: that there is no point in afieng to learn the optimal
predictor everywhere, when it is sufficient to do so on thesifecation boundary [40].
In summary, manipulating the threshold of an optimal cosensitive detector pro-
vides no guarantees of optimal cost-sensitive performance

3 Boosting

We consider cost-sensitive extensions of boosting alyost Such algorithms learn a
predictor f(x) by linear combination of simple decision rulés, (x), known as weak
learners [34],

M
F60) =" Gu(x). (17)

Predictor optimality is defined with respect to some lossfiam {[y, f(x)], such as
the exponential loss

lely, f(x)] = Ex y[exp(—yf(x))], (18)
or the expected negative binomial log-likelihood

by f(x)] = —Exyly'log(p(x)) + (1 —y)log(1 — p(x))] (19)
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wherey’ = (y +1)/2 € {0, 1} is a re-parametrization gfand

ef (%)
p(x) = o/ (

¥t e T (20)

Learning is based on a training sample of feature vedter$?_; and labels{y;}™ ,,
empirical estimates of these losses, and the iterativetsmbeof weak learners. At

iterationm, a Weightwgm) is assigned to exampl&;, y;) and the sample is reweighed
so as to amplify the importance of points that are poorlysifeesi with the current
ensemble predictor of (17). We next review some popular @ksrof algorithms in
this family, whose cost-sensitive extensions will be idtroed in later sections. In all
these cases, boosting can be interpreted as gradient tescarfunctional space of
linear combinations of weak learners, with respect to ont@flosses above [13, 25,

50].
3.1 AdaBoost
AdaBoost [8,10] produces combinations of scaled binargsifieers
Gﬁda(x) = OmGm (X)a (21)

where{a,, }}_, is a weight sequence ar{d,,(x)}*_, a sequence of binary rules,
gm(x) : X — {—1, 1}, usually implemented with a decision stump

Im(X) = sgn[dm (%) — ti]

where¢,, (x) is a feature response (usually the projectiox@flong the direction of

a basis function,,,) andt,, a threshold. The ensemble predictor of (17) is learned by
gradient descent with respect to the exponential loss, ficthe gradient at thex”
iteration is [17, 25]

g (%) = argmin Y w{™[1 = I(y; = g(x.))]. (22)
T oa=1
wherel(-) is the indicator function
N 1 y==x
am, 1S the optimal step size in the direction of the gradientpfibby a line search with
closed-form solution
1 1—errom
A = =log| ———= |, (24)
2 eTT (m)
where .
errim = D w"™ (L= Iy = gu(x:))] (25)
i=1

is the total error ofy,,, (x). The weights are updated according to

w§m+1)

) (26)
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3.2 RealBoost

RealBoost [12, 36] is an extension of AdaBoost that prodiietter estimates of the
optimal predictorf;(x) by using real-valued weak learners in (17). In this case, the
gradient of the exponential loss is a (re-weighted) logsoddio

(w)
Greot ) = L 1og LYX11OmX)) o

e ;
27 P (—1m ()

where, as beforep,, (x) is a feature response tq and the superscript indicates
that the probability distribution is that of the re-weigthtsample. Weights are updated
according to

er(rrL+1) _ w?n)e_yic,’;fal(xi) (28)

3.3 LogitBoost

Logitboost is motivated by the following observation, ialty made by Friedman et
al. [12].

Lemma 1. (Statistical interpretation of boosting.)
The lossE[exp(—yf(x))] is minimized by the symmetric logistic transform of
Py x(1]x),
1 Py x(1]x)

0(2) =7 log Prx(—1p)” (29)

Proof. See [12]. [

This implies that both Ada and RealBoost can be interpretestep-wise proce-
dures for fitting an additive logistic regression model.eBrhan et al. argued that this
is more naturally accomplished by step-wise minimizatibthe classical logistic re-
gression losses, namely the expected negative binomidikelghood of (19). At the
mt" boosting iteration, the optimal step with respect to thebiral loss can be found
by solving a weighted least squares regression for the vezakérG'29% (x) that best
fits a set of working responses

(m) _ v — '™ (xi)
' P (%) (1 = ptm) (%))

wherep(™) (x) is the probability of (20) based on the ensemble predictg 8f after
m — 1 iterations. The weights are

wi™ = p™ (x;) (1 — p™ (x;)). (30)
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3.4 Limitations for cost-sensitive learning

While both the minimization of the exponential and binomialdes are sufficient to ob-
tain the optimal cost-insensitive predictor of (29), wednalready seen that everywhere
convergence to this predictor is not necessary to produeeptimal cost-insensitive
detector. For this, it suffices that the ensemble predidt@t© converges to any func-
tion f(x) that satisfies (11) and (12). From a purely cost-insenstanspective it is,
thus, sensible to require a greater accuracy of the appetidminside a neighbor-
hood of the optimal cost-insensitive bound&rthan outside of it. This is exactly what
boosting does, through the example re-weighting step of (28), or (30). For both
Ada and RealBoost, a simple recursion shows that, aftéterations,

ZW) —yi iy Gm(xi) —yi f(x:)

W = e ¢ m=1 m K =e K K 3

where we have also used (17). Assuming that) satisfies the necessary condition for
cost-insensitive optimality of (11), this ratio is one aja®, exponentially increasing
(with the distance to this boundary) for incorrectly cléissi points, and exponentially
decreasing for correctly classified points. Hence, withakeeption of a (hopefully)
small number of misclassified points, the weight is coneatt on a neighborhood

N(C) of the cost-insensitive bounda€y For LogitBoost, the WeighdvEM) is a sym-
metric function ofp(*)(x;), with maximum atp(*)(x;) = 1/2 or, from (20), at
f(x;) = 0. Infact,

W™ (x;) = (ef(xn n e—f(xf,)) T2 e 2somlf ()l f(xi) _ 20 f (x|
and the weight decays exponentially with the distance froendoundary, indepen-
dently of whether the points are correctly classified or not.

In summary, boosting assigns exponentially decaying weiglpoints that have
been well classified during previous iterations, in tst-insensitivesense. These
points, which are far from the cost-insensitive boundamy,exponentially discounted
as the optimization progresses. The resulting emphasié(@}) is a definite advantage
for the design of the cost-insensitive detector, by guaiagta large margin and an
ensemble predictof (x) whose zero-level set very closely approximafesThis is
illustrated in Figure 1, where we depict the level sets of pdtlgetic optimal cost-
insensitive predictof; (x) and a hypothetic ensemble prediciix). Becausef; (x)
is monotonically increasing to the left 6f(and monotonically decreasing to its right),
any ensemble predictor which 1) hdsas a zero-level set, and 2) exhibits the same
monotonicity, will both 1) satisfy (11)-(12), and 2) havesgt generalization ability for
cost-insensitive classification.

However, this effort to maximize the margin does not guaratthat, outsidd/(C),
the level sets off(x) areidentical to those of f*(x). In particular, the level set
f(x) = T is significantly different from the level seftj(x) = T', the optimal cost-
sensitive boundargr under the cost-structure correspondent to a threshatiof5).

It follows that threshold manipulation on the ensemble jmted f (x) does not lead to
the optimal cost-sensitive decision rule of (5). The inapibf boosting to produce
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MC.)

Figure 1: Example of a detection problem where boosting yiced the optimal cost-
insensitive detector but threshold manipulation does@ed ko optimal cost-sensitive
detectors. The figure presents level-sets of both the opiredictor /; (x) (solid line)

and the boosted predictgi{x) (dashed line). As iterations progress boosting empha-
sizes the minimization insid&/(C). In result, while the zero level-set is optimal, the
same does not hold for other level-sets. This implies tratrision boundaries pro-
duced by threshold manipulation will be sub-optimal. Ogtilcost-sensitive rules can,
however, be obtained by emphasizing the optimization iemotégions, e.g\ (Cr).
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accurate estimates of the posterior probabilifigsx (y|x), sometimes referred to as
calibrated probabilities, has been noted by various astf##, 27, 30]. In [27] and
[26], this is attributed to the fact that the empirical egttmof either the exponential or
binomial losses is minimized by letting f (x;) grow to infinity for all training points.
When the span of the space of weak learners is rich enough éoadefthe training set
into the two classes, this is always possible and, if runfiough iterations, all boosting
algorithms produce a distribution of posterior probaieiit’y-|x (y|x) which is highly
concentrated in the neighborhoodsOcfnd 1, independently of the true distribution.
Note that this does not compromise cost-insensitive opitynhut rather reinforces it,
since f(x;) grows tooo for positive, and to-oo for negative examples. In summary,
boosting does not produce calibrated probabilities and] imilfact, converge to a bi-
nary posterior distribution (of valugsand1) if run sufficiently long. Independent of
the number of iterations, the probability estimates arealgmot accurate enough to
guarantee acceptable cost-sensitive performance byhtiicesianipulation.

3.5 Prior work on cost-sensitive boosting

This limitation is well known in the boosting literature, ete a number of cost-
sensitive boosting extensions have been proposed [7,32B&ince, for cost-sensitive
learning, the main problem is that boosting’s reweighing hagism emphasizég(C),
instead of the optimal cost-sensitive boundaf{Cr), it has long been noted that good
cost-sensitive performance requires a modification ofrttéshanism. This is also sup-
ported by the intuition that, in cost-sensitive detectiexamples from different classes
should be weighted differently.

A naive implementation of this intuition would be to modifiyet initial boosting
weights, so as to represent the asymmetry of the costs. Hwoweecause boosting
re-updates all weights at each iteration, it quickly degre initial asymmetry, and
the predictor obtained after convergence is usually ndéemdint from that produced
with symmetric initial conditions. A second natural stgptés to somehow change the
weight update equation. For example, one could make thetegdeeight equal to
a mixture of the result of (26), (28), or (30), and the initéast-sensitive weights.
We refer to heuristics of this type as “weight manipulationPreviously proposed
cost-sensitive boosting algorithms, such as AdaCost [FB@ CSB1, CSB2 [38],
Asymmetric-AdaBoost [42], AdaC1, AdaC2, or AdaC3 [37],l fal this class. For
example, CSB2 [38] modifies the weight update rule of AdaBtws

w™ = ¢ -wgm)e’y"'gﬁ'da(x"), (31)

relying on (24) for the computation of,,,.

While various justifications are available for the differgnbposals for direct ma-
nipulation of boosting equations, these manipulationgasentially heuristic, and pro-
vide no guarantees of convergence to a good cost-sensédision rule. Furthermore,
none of the cost-sensitive extensions can be easily appligldorithms other than Ad-
aboost. We next introduce a framework for cost-sensitivasting that addresses these
two limitations.
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4 Cost-sensitive boosting

The new framework is inspired by two observations. Firs, thifying principle be-
hind the different boosting algorithms is that they perfgradient descent [13, 25, 50]
with respect to losses whose minimum is the optimal costrisgive predictor of (29).
Second, their main limitation for cost-sensitive learnisighe emphasis on the neigh-
borhood of the cost-insensitive bounda(C), as shown in Figure 1. We have already
noted that these two properties are interconnected. Wteldirttitation is due to the
weight-update mechanism, simply modifying this mechaniasdiscussed in the pre-
vious section) is usually not sufficient to achieve accdptatst-sensitive performance.
Instead, boosting involves a balance between weight updaie gradient steps which
must be components of the minimization of t@mmonoss. For cost-sensitive opti-
mality, this balance requires that the loss function sasisfivo conditions, which we
denote as the necessary conditions for cost-sensitivenality.

1. Itis minimized by the optimal cost-sensitive predictor.

2. Itleads to a weight-updating mechanism that emphasineggaborhood of the
cost-sensitive boundary (Cr).

This suggests an alternative strategy to design costtsenbbosting algorithmsto
modify the loss functions so that these two conditions are fmewhat follows, we
show how this can be accomplished for Ada, Real and LogitBodke framework
could be used to derive cost-sensitive extensions of argrithon that performs gra-
dient descent on the space of combination of weak learngysGentleBoost [12] or
AnyBoost [25]. We limit our attention to the algorithms aledior reasons of brevity,
and their popularity.

4.1 Cost-sensitive losses

We start by noting that the optimal cost-sensitive detecfdb) can be re-written as
h% = sgnllog f7(x)] with

Fax) = Py x(1]x)Cy

~ Pyx(—1]x)Cy’ 32)

Noting that the zero level-set of this predictor is the czatsitive boundargr, sug-
gests that boosting-style of gradient descent on any lasgifin minimized, up to a
scaling factor, byf.(x) should satisfy the two necessary conditions for cost-teesi
optimality. The following extensions of the expected exgtial and binomial losses
guarantee that the first is indeed met.

Lemma 2. The losses

Ex.y [I(y — 1)e—y-01f(x) +I(y = _1)e—y-02f(x) , (33)

wherel(-) is the indicator function of (23), and

—Ex y[y'log(pe(x)) + (1 = y') log(1 — pe(x))] (34)
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Algorithm 1 Cost-sensitive AdaBoost
Input: Training setD = {(x1,¥1),--.,(Xn,yn)}, Wherey € {1, -1} is the class
label of examplex, costsCy, Cs, set of weak learner§gy,(x)}5_,, and numben/
of weak learners in the final decision rule.
Initialization: Select uniformly distributed weights

1

- VieT .
2|74

W; Vi S :Z+, w;

1
21T )
form={1,...,M} do

for k={1,...,K}do

train a weak learner/step-size p&if. (x); o), by considering various thresh-

olds for gi(x). For each threshold computewith (41) and the the resulting

loss with (40).

end for
select(g,,(x), ., ) @s the weak learner/step-size pair of smallest loss.
update weightsy; according to (39).

end for

Output: decision ruleh(z) = sgn[Z%:1 A gm ()]

where
eV f(x)+n
Pe(*) = ST 5 erfeo (35)
with
. Ch+ Oy o 110 @
- 92 n= 2 g Cla
are minimized by the asymmetric logistic transfornPofx (1|x),
1 Py =1|x)C4
= 36
f(x) Cl + 02 0g P(y — y//|X)C2’ ( )
wherey” = —1 for (33) andy” = 0 for (34).
Proof. See appendix A ™

We next derive cost-sensitive extensions of the boostiggrithms, by performing
gradient descent on these losses, and will later show tleaetlbxtensions shift the
emphasis of the boosting weights froxA(C) to A'(Cr).

4.2 Cost-sensitive AdaBoost
We start by extending Adaboost.

Theorem 3. (Cost-sensitive AdaBoostfonsider the minimization of the empirical
estimate of the asymmetric loss of (33), based on a trairemgpde { (x;, ;) }1,, by
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gradient descent on the spac®, of functions of the form of (17) and (21), and define
two sets

Ty = {ilyi = 1} I ={iy; = —1}. (37)

The gradient direction and optimal step, at iteration are the solution of

(Qm, gm) = argmin g wfm) exp(—Crag(x;)) (38)
a,g
i€1—+

+ Z wgm) exp(Caayg(x;))

i€l
with
(Tn) *C10ém9m(xi) ),
(m+1) _ ) w; e , 1€14
Wi B { wgm)ecﬂxmgm(xaﬂ), el . (39)
Given the step size, the gradient direction is
gm = argmin [(ecw‘ —e C1) p e o7, (40)
)
+(nga _ 670204) cd4+ engaT_:|
and the optimal step size is the solution of
2C4 - b+ cosh(Cya) + 2C5 - d - cosh(Caar) = (41)
- T+ . 6701& +Cy-7T_ - 6702&
with
T, o= > w™ (42)
i€Ty
T = > w™ (43)
i€l
b= 3w = Iy = g(x:))] (44)
i€y
d = > o™ Iy =gx)) (45)
€T _

Proof. See appendix B n



14 4 COST-SENSITIVE BOOSTING

The gradient descent iteration cycles through the wealnéeay for each, solv-
ing (41). This can be done efficiently with standard scalarae procedures. In the
experiments reported in this paper, the optimakas found in an average 6fitera-
tions of bisection search. Given the loss associated with the weak learner can be
computed, and the optimal learner selected with (40). A sargraf the cost-sensitive
boosting algorithm is presented in Algorithm 1. It is wortlemtioning that the algo-
rithm is fully compatible with Adaboost, in the sense thatiluces to the latter when
Cy=Cy=1.

4.3 Cost-sensitive RealBoost

We next consider the cost-sensitive extension of RealBoost

Theorem 4. (Cost-sensitive RealBoosHonsider the minimization of the asymmetric
loss of (33), based on a training samglex;, ;) }7_,, by gradient descent on the space,
8", of predictors of the form of (17) where the weak learn@rs(x) are real functions.
Given a dictionary of feature§p, (x), . . . , i (x) }, the gradient at iteratiomn has the
form

Gredl(x) = Gy, . (x) (46)

where the optimal feature is determined by

= argmln Z w, " exp —C1Gy, (xi)) Z w," ) exp (CaGy, (x3))]  (47)
1€EL 4 1€ET_

with weights given by

WMD) _ wET'L)efcI?:sal(Xi)’ te 1y (48)
i w{™eC2GM ) e T
and where
1 ll¢
Go(x) = log (Y;X( e “
Cy +Cy P“’ % (—1]9(x))C2

Pfj‘”x ylo(x)),y € {1,—1} are estimates of the posterior probabilities for the two

classes, after the application of the feature transforomati(x) to a sample re-weighted

according to the Weighta;gm).

Proof. See appendix C ™

The posterior probabllltlegyl‘”))((y|¢m(x)), y € {1, -1} of (49) can be estimated
with standard techniques [5]. For example, if thgx) are scalar features, they can be
obtained with weighted histograms of feature responseandard histogram regular-
ization procedures should be used to avoid empty histogiam B summary of the
cost-sensitive RealBoost algorithm is presented in Atgari2. The algorithm is fully
compatible with RealBoost, in the sense that it reducesttatier wherC; = Cy = 1.
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Algorithm 2 Cost-sensitive RealBoost
Input: Training setD = {(x1,¥1),-.., (Xn,yn)}, Wherey € {1, -1} is the class
label of examplex, costsC,, Csy, and numberV/ of weak learners in the final deci-
sion rule.
Initialization: Select uniformly distributed weights

1
V?ZEZJ,_, wzzm,VzeI_

w 1
C2Ty)
form={1,..., M} do

for k={1,...,K}do

compute the gradient st&py, (x) with (49).

end for

select the optimal direction according to (47) and set thakwearnerG”¢* (x)

according to (46).

update weightsv; according to (48).
end for
Output: decision ruleh(x) = sgn[>2M_, Greel(x)].

4.4 Cost-sensitive LogitBoost
Finally, we consider LogitBoost.

Theorem 5. (Cost-sensitive LogitBoostLonsider the minimization of the expected
binomial loss of (34), based on a training samplex;, v;)}1_ ;. on the spaces” of
predictors of the form of (17) where the weak learn@fs(x) are real functions. Given

a dictionary of featureq ¢, (x), ..., éx(x)}, and a predictorf(™ (x), the Newton
step at iterationm has the form

og1 1
Gn?**(x) = 5= Gy (x) (52)
whereG,(x) = agd(x) + by is the result of the weighted regression
(ag,by) = arg min Z wgm)(zi — agd(x;) — bg)? (53)
ag:by

with

;o (m)
5 = yi —pe (i) (54)

P () (1 = pi™ (%))

w™ = p™ (x) (1 - p™ (x,)), (55)

wherep™ (x) is the link function of (35), ang(™ (x) that of (20), withf(x) =
(™) (x). The optimal feature is determined by

k= argm}jnz:wgm)(zi — Qg Ok (Xi) — by, )2 (56)
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Algorithm 3 Cost-sensitive LogitBoost

Input: Training setD = {(x1,4}),...,(Xn,y,)}, wherey’ € {0,1} is the class
label of examplex, costsCy, Cy, v = 42, = Jlog &2, 7, the set of examples
with label 1, Z_ the set of examples with lab8] and numbefV/ of weak learners
in the final decision rule.
Initialization: Set uniformly distributed probabilitigs”) (x;) = p) (x;) = 1 ¥x;
andf™M(x) = 0.
form={1,...,M}do

compute the working responseﬁ") asin (54) and Weighta;gm) as in (55).

for k={1,...,K}do

compute the solution to the least squares problem of (53),

A (1), - <<Z5k(Xi)2Zi)w — (Br (%)) '2<Zi>w (50)
(1), - (D5(xa)),, — (Dr(xi)),

by, = (Dr(x0)%),, - (Zidyy = (Br(x0))y, - (Pr(Xi)2i) (51)

(1), - (D} (x0)),, — {dr(xi))y,

where we have defined
(a(x0)),, = > wi™q(xi).

end for
select the optimal direction according to (56) and set thakWearnerG'29% (x)
according to (52).
setf(m V) (x) = f0™)(x) + G79* (x).
end for
Output: decision ruleh(x) = sgn[>>N_, Glovit (x)].

Proof. See appendix D n

A summary of the cost-sensitive LogitBoost algorithm isgamated in Algorithm 3.
It is instructive to compare this to a procedure commonlydusecalibrate the proba-
bilities produced by large-margin classifiers, known astRklibration [22,30,32,47].
This procedure attempts to map the predictigr) € [—oo, +o0] to a posterior prob-
ability p(x) € [0, 1], using the link function of (35). The andn parameters are
determined by gradient descent with respect to the bindimssl of (34), also used in
cost-sensitive LogitBoost. The difference is that, in ®anethod, cost-insensitive
boosting is first used to learn the predicjfx) and maximum likelihood is then used
to determine the parameteysandr that best fit a cross-validation data set. On the
other hand, cost-sensitive LogitBoost uses the calibriiédfunction throughout all
boosting iterations. Note that, besides requiring an @it validation set, Platt's
method does not solve the problem of Figure 1, since the esiplohthe boosting
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component remains aiV'(C), not on N (Cr). We next show that the cost-sensitive
boosting algorithms introduced above do provide a solutiahis problem.

4.5 Cost-sensitive margins

We have seen, in Section 4.1, that cost-sensitive boodtjogitams should satisfy two
conditions:

e convergence to the optimal predictor of (32),
e emphasis on a neighborhood of the cost-sensitive boun'da€y-).

The first condition is guaranteed by the use of the losses3&({3d (34). To investigate
the second we consider the weighting mechanisms of the #hgeeithms.
For both cost-sensitive Ada and RealBoost, a simple remugiows that, aftet/
iterations,
(M)
Wi o~uiQif(xi)
©) ’

whereQ; = C; if : € Z, and@; = C, otherwise. Assuming thaf(x) converges

to the optimum of (36), this ratio is one alodg, exponentially increasing (with the
distance to this boundary) fot; such thatf(x;)y; < 0, and exponentially decreasing
for x; such thatf(x;)y; > 0. Hence, with respect to the cost-insensitive AdaBoost
algorithm, the only difference is whether the points aretendorrect side of the cost
sensitive boundarg;. With the exception of the points which lie on the incorredes

all weight is concentrated on the neighborhdd@Cr) of the cost-sensitive boundary.
For LogitBoost, the weigh " is a symmetric function gf™) (x;), with maximum
atp™) (x;) = 1/2 or, from (20), atf (x;) = 0. As in the cost-insensitive case,

w (x) = (eﬂxn n e#(xi)) T2 o2l

and the weight decays exponentially with the distance floarzero-level set of (x),
independently of whether the points are correctly clagsiienot. The only difference
is that, asf(x) converges to (36), this zero-level set is the cost-seeditoundanCy.
This shows that all cost-sensitive boosting algorithm# shé margin emphasis from
N(C)toN(Cr).

5 Experimental evaluation

Two sets of experiments were designed to evaluate the eositive boosting algo-
rithms. The first was based on a simple synthetic problemwiuch the BDR is
known, allowing explicit comparison to the optimal costisitive detector. These ex-
periments aimed for insight on various properties of theppsed algorithms. The
second set was based on standard datasets, and targetepaaisombetween the new
algorithms and previously proposed methods.
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5.1 Synthetic datasets

We start with a synthetic binary scalar classification peablinvolving Gaussian classes
of equal variance? = 1 and meang._ = —1 (y = —1)andu, = 1 (y = 1). 10K
examples were sampled per class, simulating the scenadrewie class probabilities
are uniform.

5.1.1 Accuracy

To test the accuracy of the classifiers produced by cositserisoosting we relied on
the following observations. First, given a cost structi¢e, Cs), the boosted detector
is optimal if and only if the asymmetric logistic transforf(86) holds along the cost-
sensitive boundary, i.e. if and onlyif = f~1(0) wheref(z) is the optimal predictor
of (36) andx* the zero-crossing of the boosted predictor. Second, frdj (Bis is

equivalent to
Cy
P l]z*) = ——, 57

vix(l) = 55 (57)
and it follows that, given cost structure and location it is possible to infer the true
class posterior probabilities at the latter. This is equadlid for multivariate problems,
in which case the locatiom* becomes a level set. Hence, if the boosting algorithm
produces truly optimal cost-sensitive detectors, the @ﬂ% as a function ofc*
should be identical to the plot of the class posterior prdltabPy | x (1|2*). For the
Gaussian problem considered, it is straightforward to stiai/

1

Pyix(e) = =

(58)
and (57) implies that* = —T'/2, with T given by (7). Itis therefore possible to evalu-
ate the accuracy of the boosted cost-sensitive detectotthe entire range qiC, Cs)

by either measuring the similarity between the plats, ~<2) and(z* or

C14+C>
the plots(z*, —Z) and(z*, z*).

These comparisons are shown on Figure 2 (a) and (b) for tleetdets produced by
cost-sensitive Ada, Real, and LogitBoost. In all caSes= 1 andC; was varied over
a wide range of values. For each value(f, boosting was run for five iterations. It
is clear that both Real and LogitBoost produce accuratesmsiitive detectors. The
difficulties of AdaBoost are due to the restriction of thedictor to a combination of
binary functions.

5.1.2 Comparison to previous algorithms

We next considered two cases in greater detail, namely thie@egns with cost struc-
turesCy = 1 andC; € {5,20}, and compared the performance of the novel cost-
sensitive boosting algorithms to those of the algorithnssused in Section 3.5. For
these cost structures, the perfect detector dtas= —.8047 (when(C; = 5) and

x* = —1.4979 (when(C; = 20). The goal was to determine if the different algo-
rithms could generate predictors with these zero-crossiog manipulating their cost
parameters (e.g. the paramefgrof cost-sensitive AdaBoost, which we denotedy
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Cost Sensitive RealBoost
,L| —Cost Sensitive AdaBoost
— Cost Sensitive LogitBoost|
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Cost Sensitive RealBoost
— Cost Sensitive AdaBoost
sl |—Cost Sensitive LogitBoost,
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Figure 2: a) Posterior probability’y|x (y = 1|=) used in the BDR, and estimates
produced by cost-sensitive Ada, Logit and RealBoost. b) gammon of the plots
(z*,—L)and(z*, z*).

to avoid confusions with the true value of the cost). Figuce®pares how™* evolved
(as a function of boosting iteration) for cost-sensitiveaBoost and the cost sensitive
boosting algorithms previously available in the literatufor brevity, we limit the pre-
sentation to cost-sensitive AdaBoost since, as discudsakathis is the weakest of
the new cost-sensitive boosting algorithms on this problenall cases, a (rather ex-
tensive) search over values of the cost parameters of egatithm was performed, so
as to guarantee the best possible performance @ftéerations.

Despite the simplicity of the problem, this search did na@tduce a good solution
for most of the algorithms. As illustrated by Figure 3, foleisses of behavior were
observed. Algorithms in the first class (AdaC1, AdaCost)engroduced any solu-
tions other than the cost-insensitive optimél = 0. The second class consisted of
algorithms (CSBO, AdaC2, AdaC3) that never converged toraegningful solution.
Algorithms in the third class (CSB1, CSB2) showed some teagléo converge to
the right solution, but were really not able to. While in sonases this was due to
a slow convergence rate, in others the algorithms seemedvi® ¢onverged only to
start oscillating, or even diverging. Only cost-sensith@aBoost was able to consis-
tently converge to a good solution in the allotted numbetesfitions. In particular, the
latter produced:* = —1.4993 whenC; = 20 in two iterations, and* = —0.7352
whenC, = 5 in four iterations. The value of thé; estimate that led to the best
solution was, however, not always the trdg. While whenC; = 5 cost-sensitive
AdaBoost was nearly optimal with; = 4.5, near optimal performance in the case
whereC; = 20 required a cost estimate 6f = 4.7. This mismatch is compliant with
Figure 2, which shows some inability of cost-sensitive Ada& to replicate the pos-
terior class probabilities required for optimal perforroanvith highly unbalanced cost
structures£* of very large magnitude). This was not observed for cossitiga Logit
or RealBoost. These results show that 1) the new algoritmefaasuperior than those
previously available, and 2) the optimal solution can bentbfor most cost-sensitive
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Figure 3: Decision boundaries produced by the differensbog algorithms for vari-
ous cost factors. Leftd; = 5, right: C; = 20.

problems, but may require (in particular for cost-sensithdaBoost) cross-validation
of cost-parameters.

The most plausible explanation for the poor performancellafther algorithms
appears to be the inappropriate choice of thparameter: while the weight update
rules seemed to produce cost-sensitive weak learnersntioeréct choice oty fre-
quently gave disproportionate weight to weak learners witbr decision boundaries.
For example, in the case of AdaCl1, the first two weak learnaagitireshold 06.0152
and—0.9186 but the corresponding values @fwere(0.9056 and0.2404. Although the
second threshold is close to optimaf (= —0.8047), the poor choice of gave it little
weight, much smaller than that of the first. This made the al/eecision boundary
close to zero. Of all algorithms tested, only CSB1 and CSBfexed performance
comparable to that of cost-sensitive AdaBoost, even tholigin slow convergence in
this simple problem appears problematic.

5.2 Real datasets

Two sets of experiments were performed with real data. Theifivolved a number
of datasets from the UCI repository, while the second adéi@she computer vision
problem of face detection. To simplify the comparison olitss the quality of cost-
sensitive classification is frequently measured by a seaédric that weighs errors of
one type more than others. A common metric [38], which we lzalapted, is

€ = Pfalse + fcost X Mmiss (59)

wherepyqse is the number of false-positives of the detectar,,;,s the number of
misses ang,,s; > 1 a cost factor that weighs misses more heavily than falséipesi
A number of cost factors were considered, antbmputed for each combination of
1) cost sensitive boosting method, 2) training cost stngotistimates, and 3) true cost
factor f.,s; used to evaluate performance. By training cost structummates we refer
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Table 1: Minimume and correspondin@l for cost-sensitive RealBoost on Cleveland
heart.

fCOSt =2 fcost =5 fcost =10 Average
€ 11.6 14 15 13.53

Ch 1.6 4.2 5.1

to the parameters used during training, e.g. the param@teasdC’, of cost-sensitive
boosting.

5.2.1 UCI datasets

Ten binary UCI [28] data sets were used: Pima-diabetes sbismcer diagnostic,
breast cancer prognostic, original Wisconsin breast catieer disorder, sonar, echo-
cardiogram, Cleveland heart disease, tic-tac-toe andnreres survival. In all cases,
five fold validation was used to find the best cost estimatedayching ovelC;
[1,10] (C’g = 1). Three cost factorg.,s: € {2,5,10} were considered, and the min-
imum e was found for each. Table 1 gives an example (cost-seng&aBoost and
the Cleveland heart disease dataset) of the relationshieba the minimuna, f.,s,
and the best value of the training cost paraméter Performance across the various
values off was further summarized by computing the average value afthenume
achieved by each algorithm.

This average is shown in Table 2 for each of the algorithmsidened. The table
also shows the median value of the average across all dgtaset the number of
times that each of the proposed cost-sensitive boostirggitigns outperformedll of
the previously available methods (# of wins). All new algjums have a median loss
smaller than those in the literature, and outperform allhein in60 to 90% of the
datasets. Overall, cost-sensitive RealBoost has the tawedian loss, and is the top
performer in7/10 datasets. Cost-sensitive LogitBoost achieves the befsirpeance in
the remaining three. This is strong evidence for the supgriof the new cost-sensitive
boosting algorithms over those previously available.

5.2.2 Face detection

An important area of application of cost-sensitive leagnis the problem of object
detection in computer vision, where boosting has recentigrged as the main tool
for the design of detector cascades [43]. Since a subdtantiaunt of effort has also
been devoted to the design of evaluation protocols in arfkaddce detection, this is
a good domain in which to test cost-sensitive classifiers.h@ige adopted the proto-
col of [43] to compare the new cost-sensitive boosting ts¢hpreviously available.
Given the computational complexity of these experiments emee again, restricted
the comparison to (the worst-case performer) cost-seaskdaBoost. All experi-
ments used a face databased882 positive andd832 negative examples, and weak
learners based on a combination of decision stumps and Haaslet features, as de-
scribed in [43].6000 examples were used, per class, for training, the remaitag



22 5 EXPERIMENTAL EVALUATION

Table 2: Average minimurafor the UCI datasets considered.

pima liver | wdbc | sonar| wpbc | Wisc | echo | heart
CS-Ada 60.2 30.73 6.66 9.73 21.6 4.33 7 13.53
CS-Log | 59.26 31.73 | 5.26 13.2 19.33 3.6 6.53 13.93
CS-Real | 56.66 30.4 6.53 9 18.46 5.6 8.53 13.53

CSBO 65.6 33.8 | 13.33 16 2413 | 124 10 214
CSB1 85.93 | 33.53 | 8.53 | 10.86 21 46.2 | 12.33 | 25.06
CSB2 65.93 | 31.53 | 813 | 9.46 20.2 | 20.33 | 9.93 18.4
AdaC2 | 73.33 | 33.26 7.4 10.6 18.6 9.33 10 20.73
AdaC3 | 70.33 33.4 6.8 9.86 | 20.73 | 553 | 9.73 | 19.53
ADaCost| 263.33 | 135.06 | 13.2 | 69.53 | 39.73 | 9.46 | 21.4 | 113.86

tic survival || median| # wins
CS-Ada | 94.93 31.2 17.57 7
CS-Log 107.8 32.53 16.63 6
CS-Real| 31.6 29.93 16.0 9

CSBO | 104.66 | 36.06 22.77
CSB1 | 330.73 | 38.46 29.3
CSB2 101.6 33.26 20.27
AdaC2 | 42.06 35.6 19.67
AdaC3 | 86.33 34 20.13
ADaCost| 330.8 72.86 71.2

being left for testing, and all boosting algorithms were fan100 iterations. Four
cost factors f.,s: € {10,20,50,100}) and a number of training cost structures were
considered. This is illustrated in Figure 4 a) for cost-#emsAdaBoost. The figure
presents plots afas a function off..,; for various training cost structures widh, = 1
andC; e [1.2,1000]. Note that detectors trained with largéf perform better when
feost 1S larger, while smalle€; lead to best performance wheweighs the two errors
more equally.

Figure 4 b) presents a comparison of the best performandesvad with cost-
sensitive AdaBoost and each of the previously availablésessitive boosting meth-
ods. The plots were produced by considering four valueg.Qf and searching for
the cost structure and threshold that achieved the minimfoneach of these values.
The search across cost-structures produces the costhszdsitector with classifica-
tion boundaryx* = f~1(0) closest to the optimal boundary for the particular value
of f.os¢ Under consideration, and threshold manipulation then lesadlight adjust-
ments of this boundary. The inclusion of threshold manipatealso permits a fair
comparison to the combination of a cost-insensitive detdt#arned with the standard
AdaBoost algorithm) and threshold manipulation. In faetduse standard AdaBoost
is identical to cost-sensitive AdaBoost with = 1, this is equivalent to disabling the
search over training cost structures.

It is clear that cost-sensitive AdaBoost consistently etftpms all other methods,
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Figure 4: (a) Misclassification cost for cost-sensitive $towy under different training
cost structures. (b) Minimum misclassification cost of @as cost-sensitive boosting
methods on a face detection problem.

for all values off.,s;. These results illustrate the importance of choosing thico
dencea optimally, at each iteration. Methods that do not usim the weight update
rule (CSBO0 and CSB1) have extremely poor performance. Misthivat updater but
are not provably optimal (AdaC2, AdaC3, and AdaCost) penfaorse than standard
AdaBoost (or CSB2, which relies on the sameipdates). Finally, the combination
of standard AdaBoost and threshold manipulation is notcefft to match the perfor-
mance of the optimal cost-sensitive version of AdaBoostepkwhen the costs of the
two types of errors are approximately equal (srfall.;).

6 Conclusion

We have presented a novel framework for the design of costitdee boosting algo-
rithms. The framework is based on the statistical integii@t of boosting, and derived
with recourse to an asymmetric extension of the logistiegfarm, which is well moti-
vated from a decision theoretic point of view. The statatinterpretation enables the
derivation of cost-sensitive boosting losses which, girhilto the original AdaBoost
algorithm, can then be minimized by gradient descent indhetfonal space of convex
combinations of weak learners. The general requirememtsgdtmal cost-sensitive
classification were identified, laying the groundwork foe tpst sensitive extension
of many large margin classification algorithms. Specificatie cost-sensitive exten-
sions of AdaBoost, RealBoost and LogitBoost were derivetissmown to satisfy these
requirements.

Experimental evidence, derived from a synthetic problelemdard data sets and
the (timely) problem of face detection, was presented irpstpof the cost-sensitive
optimality of the new algorithms. The performance of theéelatvas also compared
to those of various previous cost-sensitive boosting ajso(CSB0, CSB1, CSB2,
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AdaCl, AdaC2, AdaC3 and AdaCost). Cost-sensitive boostiag shown to consis-
tently outperform all other methods, achieving the smatgsclassification cost at all
cost factors considered.

A Proof of Lemma 2

To find the minimum of the cost-sensitive extension of theomemtial loss of (33) it
suffices to search for the the functigifix) of minimum expected loss conditioned on
X

L(x) = Bypx [I(y=1)e 00 1 Iy = —1)e W]

= Pyx(1[x)e” ) 4 Py x (—1]x)e ),

Setting derivatives to zero

Al (x) _c
= —C1Pyx(1 0 4 Oy Py x (—1[x)e“2/ ™) =0 (60
27 (x) 1Py ix (1x)e + CoPyix (—1[x)e (60)
it follows that
C1 P
1Py x (1]x) _ (G0 (%) 61)
Ca Py x(—1[x)
and
P, 1|x)C
F(x) 1 vix (1x)C1 (62)

Ci1+Cy s Py x(=1[x)Ca

It is straightforward to show that the second derivativeos-negative, from which the
loss is minimized byf (x).

To find the minimum of the cost sensitive extension of the tiiad loss of (34) it
suffices to search for the the functigiix) of minimum expected loss conditioned on
X

h(x) = —Byx[y'log(p.(x))+ (1 —y")log(l - pe(x))[x]

= —Pyx(1]x)log(pe(x)) — Py x (0[x)log(1 — pc(x))
with p.(x) given by (35). For this, we first compute the minimum with respto
pc(x), which is given by
Olp(x)
Ope(x)

= PR+ Bx O s =0 (69

or

pe(x) . Pyix(1fx)
)~ B Py (O
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Using (35), this is equivalent to

L Pyx(1]x)
or
1 Pyx(1x)Cy

= O .
/&) Ci1+C s Py x(0[x)Ca

Since g;lb(gl > 0 andp.(x) is monotonically increasing ofi(x) this is a minimum.

B Proof of Theorem 3

From (33) the cost function can be written as

JIfl = Exy[I(y=1)exp(=Cif(x)) + I(y = —1) exp(C2f(x))]
and the addition of the weak learn@(x) = ag(x) to the predictorf (x) results in

Jlf +ag) = ExylI(y=1)w(x,1)exp(~Crag(x))
+1(y = ~1w(x, 1) exp(Caag(x))]
with
w(x, 1) = exp(~C1 £(x))
and
w(x, ~1) = exp(Caf (x)).

SinceJ[f + ag| is minimized if and only if the argument of the expectatiomimi-
mized for allx, the gradient direction and optimal step size are the soiudf

(Qm,gm(x)) = arg min By |x [I(y = 1)w(x,1)e 109

a,g(x)

+I(y

“Dwl(x, 71)eCM<X>\x} :
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Noting that

By e [Ty = 1w, 1)e™9969 4 Iy = ~T)w(se, ~1)e25 x| =

= EByix [I(y=1)I(g(x) = L)w(x, 1)e 1o+

= Pyx(1[x)w(x, )I(g(x) = —1)(eX1® — =)
PY‘X(1|X)’U}(X7]_)6_CIOK +
.Py‘x(—l‘X)’lU(X7 —]_)I(g(x) - 1)(6020¢ _ e—CzOé) +

Py x (—1x)w(x, —1)e 22
it follows that

(am; gm(X)) = arg an’;l(g) {P}(}r))((”x)_[(g(x) — 71)(664101 _ 670106)4»

P (1x)eCe +

P;(/T))((—Hx)l(g(x) - 1)(602“ _ e‘cﬂl) N

Pyix(~1x)e % }

where
Py x (ylx)w(x, y)

(k) Zye{lfl} PY|x(y|X)w(X7y)

Y|X




27

are the posterior estimates associated with a sample reegti@ccording tav(x, y).
Hence, the weak learner of minimum cost is

(@ g) = argminEx { PR (1x)1(g(x) = ~1)(e7 = =) +

Px(1ie™ +

P}(/T))((_I‘X)I(g(x) — 1)(66'204 _ 67020‘) n

PY(~1x)e e}
and, replacing expectations by sample averages,

(a'rmg’m) = argrgign [(ecla — e—Cla) b+ e—C1a . T+ +

(60204 _ enga) d+ 670211 T_] ’

with the empirical estimate®,, 7_, b andd of (42) - (45). Giveng(x), and setting
the derivative with respect to to zero

0
50 = CieTT e b= Crem O T,

C’g(eCQa + 67020[) cd—Che™C* . T =0
the optimal step size is the solution of

2C1 - b - cosh(Cra) + 2C5 - d - cosh(Coar) = Cy - Ty - e G L Oy T e O,

C Proof of Theorem 4
From (33) the cost function can be written as
JIfl= Exy[(y=1)exp(=C1f(x)) +I(y = —1) exp(C2f(x))]
and the addition of the weak learn@tx) to the predictorf (x) results in
JIf+Gl = Exyl(y=1w(x,1)exp(-C1G(x)) +
I(y = —Dw(x, —1) exp(C2G(x))]

with
w(x,1) = exp(—C1f(x)) (64)
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and
w(x, —1) = exp(Cy f(x)). (65)
SinceJ|[f+ (G| is minimized if and only if the argument of the expectatiomisimized

for all x, and assuming that the weak learners depens only through some feature
¢(x), the optimal weak learner is the solution of

Gy(x) =argming By x[I(y = Dw(x, 1) exp(—C1G(x))
HI(y = ~Dw(x, 1) exp(CoC(x))x]
= argming Py x (1/6()w(x, 1) exp(~C1G(x))
Py x (1) (3, 1) exp(CoG(x))

= arg ming P&f}){(l\(b(x)) exp(—C1G(x))

+ Py % (~1]6(x)) exp(C2G(x))
where Pyl )i, )
(w) Y |X\Y[P(X))W X, Y
Py x (yl¢(x)) =
YiX Zye{l,fl} PY|X(y|¢(X))w(X> y)
are the posterior estimates associated with a sample reecti@ccording tav(x, y).
Setting the derivatives of the cost to zero it follows that

P (116(x))Cr exp(—C1G(x)) = Pyix (—1]¢(x))Ca exp(C2G (x))

and )
_ 1 og Pytf}x(1|¢(x))01
Ci+Ca 7 PR (—116(x))Cs
The optimal featur@* is the one of smallest minimum cost
QF = argm(;nJ[f + Gy)

Gy(x)

= arg m(;n Ex y[I(y = 1w(x,1)exp(—C1Gy(x)) +

I(y = —Dw(x, —1) exp(C2Gy(x))]

= argm(;n Zw(xi,l)exp(fClGMXi)) +

1€T

Z w(x;, —1) exp(CaGy(x;))

i€l
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OnceGree(x) is found, the weights are updated so as to comply with (64)(66)
i.e.
w(x, 1) — w(x, 1) exp(—C1G4+ (%))

and
w(x, —1) «— w(x, —1) exp(CoGy+ (x)).

D Proof of Theorem 5

Rewriting the negative loglikelihood as

pe(x)

Wl £09) = By [o/ 1o 1250 o1 — )|

and using (35), it follows that

bly' F(0) = —Exy [2/ (1) + 1) — log [1 4 207 +0] |

This loss is minimized by maximizing the conditional exitin

~bly', FX)X] = Byix [20/ (0 (%) + 1) — log [1+ 20/

= 2Byx[y/ [X|(7/(x) + 1) — log [1 + 207 +0)]
for all x, i.e. by searching for the weak learr@(x) that maximizes the cost
JIf(x) + G(x)] = —bly', f(x) + G)[x].

The maximization is done by Newton’s method, which requihescomputation of the
gradient
9J[f(x) + G(x)]
0G(x)

= 29(Byx[y'1x] — p.(x))
G(x)=0

and Hessian

0*J[f(x) + G(x)]

8G(X)2 = _472p0(x)(1 _pC(X))

G(x)=0

leading to a Newton update

I s XN
G(x) = ZWMLMQQ—MWJ.

2y
This is equivalent to solving the least squares problem

. i Y — pe(x) _O(x ’
By Frx l(zvpc<x><1—pc<x>> o) ] |
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and the optimal weak learner can, therefore, be computdd wit

G* = mm/Px Z Pyx(y "1x) (2719( i ]icijizx)) —G(x)) dx

y'=0

1
, Pyix (¥ [x)w(x)
= min | Px(x
i | P PSS e

(1 Y — pe(x)

27 9000 - () G(X)) o

_ w) 1 Y —pe(x) ?
= min [ PG ZPY'X vk (mc<x><l—pc<x» ‘G(X)) =

— min (w) LM_ X :
= minfyx K?wc(X)(ch(X)) “ )) 1

which is the weighted least squares regressiop; &b x; using weightsw;, as given
by (54) and (55). The optimal feature is the one of smallegta®sion error.
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