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Abstract

Thisisthe supplemental material for the paper “Variational Layered Dynamic Tex-
tures’ in CVPR 2009 [1]. The supplementa contains derivations for the variational
approximation of the layered dynamic texture (LDT), and the EM algorithm and varia-
tional approximations of the temporally-switching layered dynamic texture (TS-LDT).
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1 Derivation of the variational approximation for LDT

In this section, we derive a variational approximation for the layered dynamic texture
(LDT). Substituting the approximate factorial distribution

K m
9(X,Z) =[] a=Y) [ a(z) (S1)
j=1 i=1

into the £ function of (10) yields

s e K a@D) T, alz
ﬁ(Q(X7Z)):/HQ(x(j))Hq(zi)log Hjlq;(X ;HZZ) al )dXdZ. (S22

This is minimized by sequentially optimizing each of the factors ¢(z )) and ¢(z;),
while holding the remaining constant [2]. For convenience, we define the variable
W = {X, Z}. Rewriting (S.2) in terms of a single factor ¢(w;), while holding all
others constant,

L(g(W))
x [ atw)logatwdun ~ [ gw) [ T]atw)logp(w.y)aw (83
kAl
— [ atwn) ogg(un)dun - / a(wn) log f(uwr, Y)duwy (54)
= D(q(w) [|p(wi,Y)), (S5)

where in (S.3) we have dropped terms that do not depend on ¢(w ;) (and hence do not
affect the optimization), and defined p(w;, Y') as

log p(wr, Y') oc Ew,_, [log p(W, Y], (S.6)

where B, , logp(W,Y)] = [} a(wk)log p(W,Y)dWj.4. Since (S.5) is mini-
mized when ¢* (w;) = p(wy, Y'), the optimal factor ¢(w;) isequal to the expectation of
the joint log-likelihood with respect to the other factors W, .

We next discuss the joint distribution of the LDT, followed by deriving the forms
of the optimal factors ¢(x(?)) and ¢(z;). For convenience, we ignore normalization
constants during the derivation, and reinstate them after the forms of the factors are
known.

1.1 Joint distribution of theLDT

The LDT mode! assumes that the state processes X = {z()}/<, and the layer as-
signments Z are independent, i.e. the layer dynamics are independent of its location.
Under this assumption, the joint distribution factors as

p(X,Y, Z) p(Y[X, Z)p(X)p(Z) (S7)
m K

K
[T pwile? 2= =" [[pDp(2). (S8

i=1j=1 j=1



2 1 DERIVATION OF THE VARIATIONAL APPROXIMATION FOR LDT

whereY = {y,}7*,. Each state-sequenceis a Gauss-Markov process, with distribution

pla9)) = (J) Hp (J)|x(1) (S9)

wherethe individual state densities are
pE?) = G@D, 1,09, paE?2?) = G, AD2Y), QU)Y, (S10)

and G(z, p1, ) isaGaussian of mean y and covariance ¥. When conditioned on state
sequences and layer assignments, pixel values are independent, and pixel trgjectories
distributed as

p(yile?, 2z = j) = [[ plwislo”, 2 = ), (S11)
t=1
where
pyisle? 2 = §) = Gys s, CP 2D+ D), (S12)

Finally, the layer assignments are jointly distributed as

p ZZ HV Zq (1_)[ V;z Z?,)Z’L (813)

where £ is the set of edges of the MRF, Z; a normalization constant (partition func-
tion), and V; and V; ;» potential functions of the form
e al(-l), zi =1
Vitz) = [[) : : (S14)
j=1 K
J E ), Z; = K
(J) L@

gal = M5 Zi = Zir
Vi (ziyzir) =
i (ziy 2ir) 72H< > {72,2%75%1
V; is the prior probability of each layer, while V; ;, attributes higher probability to
configurations with neighboring pixelsin the same layer.
1.2 Optimization of g(z\"))
Rewriting (S.6) with w; = 20,
logg*(z7) o< logp(a,Y) =Ezx, ., logp(X,Y, Z)] (S.15)
x Ezx., szj) log p(yiz'?, 2 = j) + log p(z') | (S.16)
=1

m
Z 2 log p(yil2D), 2 = j) +logp(z),  (S17)



1.3 Optimization of ¢(z;) 3

where in (S.16) we have dropped the terms of the joi nt Iog likelihood (S.8) that are

not a function of (). Finally, defining h(]) = Ez,[ = [q(zi)z (] dz;, and the
normalization constant
20 = [ o) T wla . 2 = " ), (519
=1

the optimal ¢ (%)) is given by (12).

1.3 Optimization of ¢(z;)
Rewriting (S.6) with w; = z; and dropping terms that do not depend on z;,
logq™(zi) oc logp(zi,Y) =Ex z,.,[logp(X,Y, Z)] (S19)

K
S 2 ogpyile?, 2 = j) +log p(2)
j=1

X EXZk;éi

K
Z E, o logp(yila?, zi = j)] + Ez,,, [log p(2)]. (S.20)

For the last term, we have
EZ)C#,' [IOg p( )]

x [Egz,_,[log(V; H Viir (23, 2ir) (S21)
(1,27)€E
= logV;(z) Z E.. [log Vi (2, zi)) (522
(i,4') €€

I
] >

K
zzm 1oga§J)+ Z ]EZ/[Z Dz (])10g,y +logye]  (S23)

j=1 (i i)eE Jj=1
K

x sz]) loga? + Zz(]) Z E., [z 1, Mlog 2 i (S.24)
i=1 =1 (iineE 2
K

= sz” log a(j) Z hif) log n. (S.25)
j=1 (i,i") €€ 72

Hence,
log ¢*(2i)

K
.MN

1

J (i,4")€&

29 (Exu)uogp(ynxﬁxzi—j ST hY 1og +loga< >>

zl(]) 1og(g( )a(])) (S.26)

|
M =

<.
Il
—



4 1 DERIVATION OF THE VARIATIONAL APPROXIMATION FOR LDT

where g(j ) is defined in (15). Thisisamultinomial distribution of normalization con-
stant 31 (ol g7), leading to (13) with ") as givenin (14).

1.4 Normalization constant for ¢(z7))
Taking the log of (S.18),

m
log 2) = log / ) [ pyile®, 2 = )" dat? (5:27)

i=1

- 1og/p(x<j’)HHp(yi,AxE”,z = D, (S28)
i=1t=1
Note that the term p(y; |z z; = )" does not affect the integral when 7 = 0.

Defining Z; as the set of indices with non-zero hi e I; = {z|h§]) > 0}, (5.28)
becomes

log 21 = log / (z) HHp yitle?, 2 = )M da®, (S.29)
i€Z; t=1
where
i @) 1 1 . )
Plyiala? 2= )" = Glyar, CF ) 1O (530
1

, o (2w \ 2 )
—  (2rr@)= 3k ”f.) G | yi, €92, r( . (S3))

hvj hj)

K3 3

For convenience, we will define an LDS over the subset 7; parameterized by ©; =

{AD), QW) CD) | R;, u)}, where CD) = [CY)),cz,, and R; is diagonal with entries
”(j) = ((Ji for ¢ € Z;. Noting that this LDS has conditional observation likelihood
Pyidlz? 2z = §) = Glyiy, CP 2P #9)), we can rewrite

7h(j>)

; p @) . l(1 i .
ikl 2= )M = (20 D) A TEp(yalel” 2 = ) (S32)
and, from (S.29),

log 2{7) (S.33)

T ) l(lfhgj)) )

= e o) IT 11 [(27””"’)2 () piala?, 2 = )| do).
i€l t=1

Since, under the restricted LDS, the likelihood of Y = [y;]iez; IS

i (Y;) = / pa) I T pwislat”, zi = j)da@, (S:34)

i€ t=1



it follows that
) T ) l(l—hgj)) )
log 27 = 10g |5;(¥y) [T [T (22r)" (h?)~3 (S:35)
i€Z; t=1
T i ; T i -
= 3 31— 1) log(2mr) — 3 S loghl” + logp; (V). (S36)
i€Z; i€Z;

2 Derivation of the EM algorithm for the TS-LDT

In this section, we derive the EM algorithm for the temporally-switching layered dy-
namic texture (TS-LDT). We begin by deriving the complete data log-likelihood, fol-
lowed by the E and M steps.

2.1 Completedatalog-likelihood of the TS-LDT

We introduce an indicator varlablez(’) of value 1 if and only if z;; = j, and O oth-
erwise. Under the assumption that the state processes X and layer assignments Z are
independent, the joint distribution factors as

p(X,Y,Z) = p(Y|X,Z)p(X)p(Z) (S.37)

m K T

K
T T pwiclal 20 = ) T[] pa@)p(2). (S38)
j=1

i=1j=1t=1

where the conditional observation likelihood is
pide?, 20 = §) = Gyig, CPa + 4 10y, (S.39)

and the distribution for p(z(?)) is the same as the LDT, given in (S.9, S.10). Finally,
for the layer assignments Z, we assume that each frame Z; = {z; +}7, hasthe same
MREF structure, with temporal edges only connecting nodes corresponding to the same
pixel (e.9. z;: and z; ++1). The layer assignments are then jointly distributed as

HH‘/Zt th ] [H H V;z Zz ty Ri! t):| (840)

t=1i=1 t=1 (i,i’) €&

[H H V;t,t/(zi,tvzi,t’):|,

i=1 (t,t)€E;

p(2)

where &; isthe set of MRF in framet, &; is the set of MRF edges between frames for
pixel i, and Z, anormalization constant (partition function). The potential functions
Vit Vi, Vi p areof theform:

(€0)

K iy Zig =1
J) /
z t Zz t (J) ( = ) (841)
:1
J agf), zig =K



6 2 DERIVATION OF THE EM ALGORITHM FOR THE TS-LDT

T (n Z’URZ% M Zit = Zir
Viir(zig, 2irt) = ’Y2H — ot vt
j=1 \ 2 Vo Zit 7 2t

2@, G)

K ﬁ it % e 5 2= 2
1 bt y “i,t — Lt
‘/t,t/ (Z'L,t7 Ziﬂ‘//) = 62 | | <E> { 5;7 z, Z 7& 2 Z/ N (842)

where V; ; is the prior probability of each layer in each frame ¢, and V; ;» and V; v
attributes higher probability to configurations with neighboring pixels (both spatialy
and temporally) in the same layer.

Taking the logarithm of (S.38), the complete data log-likelihood is

m K
logp(X,Y,Z) = ZZZz“>logp (it 24 = 5) (S43)
i=1j=11
K T
+Z <logp( @ +Zlogp ])|x(j) )) +logp(2)
j=1 t=2

Using (S.10) and (S.39) and dropping terms that do not depend on the parameters ©
(and thus play no rolein the M-step),

logp(X,Y,Z) = (44
L YA () ROl & o)
-5 ZZZ% Hyi,t -Gl — H ot log T
j=11i=1 t=1 r
1 & , 2 T |
-5 <‘x§a>_u<n” S [ 402 H ()Hlog‘Q(J)‘).
j=1 Q =2 QU

Notethat p(Z) can be ignored since the parameters of the MRF are constants. Finally,
the complete datalog-likelihood is

logp(X,Y,Z) = (S.45)



22 E-step 7

K m
1
SN HITTHCE S
. . T . . N T
where we define Pt(’{f) =229 and Pféll =D "

22 E-step

From (S.45), it follows that the E-step of (4) requires conditional expectations of two
forms:

Exzy[f(@?)] = EX|y[f( z )], (S.46)
EX,Z\Y[Zgﬂ)f(J?(j))] = EZ|Y[ ]]EX|YZLt ][f(x(j))] (S47)

for some function f of z(9), and where E X|Y,z.,—; 1Sthe conditional expectation of X
giventhe observation Y’ and that thei-th pixel at ti met belongsto layer j. Defining the
conditional expectationsin (18) and aggregated statistics in (19), substituting (S.45)
into (4), leadsto the Q function

Q(0:0) = (S48)
e 1 (.0 N2 o 10) o ) ) )T
—EZWZ Zzﬂ (yie — )" =201 + CV @7 C;
j=1 i=1 —
1 & NPT
_QZW(Q(]) (Pf,’f—:ﬁ?)w) — fD@ENT 4 1Dy DT 4 )

Jj=1

K
@D A0 — ADYOT 4 404D AOTY) - 5 2 Njlogr)

K
_%;bg’Qm’.

23 M-step

The maximization of the @ function with respect to the TS-LDT parameters leads to
two optimization problems. The first is amaximization with respect to a square matrix
X of theform

1 b 1
X* = argmax—=tr (X 'A) — Zlog|X| = X*=-A (S.49)
X 2 2 b

The second is a maximization with respect to amatrix X with the form
1
X* = argmax — o tr [D(-BX" - XB"+ XCX")] = X*=BC™', (S50)
X

where D and C' are symmetric and invertible matrices.
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The optimal parameters are found by collecting the relevant terms in (S.49) and
maximizing. This leads to a number of problems of the form of (S.50), namely

A argmax_%tr(Q(jrl(_w(j)A(j)T_Amw(j)T (S51)
AW

" A(j>¢§j>A<j>T)) 7

; 1 N — i j
p* = argmax ——tr (Q(j) 1 ( x(J)u( 2 M(])(‘%(lj))T (S52)
w2
i umu(j)T)) :
s 11
oW = argmax———,z( C(])F(]) + C Q(])C(]) . (S53)
i (49 ™
cw 2T

Using (S.50) leads to the solutions

ADT — DD — ) oY) = F§j>T¢§j>_1. (S.54)
The remaining problems are of the form of (S.49)
QU — arg{gax_?m?(j) ! (Pm 2O @) GgonT (S55)
@D pOT 4 gD @D ADT gDy A<j>¢gj>A<j>T)
_ %bg‘Q(j)‘ :
P — argmax — r(]) i <; Dlyie =72 =209 (S56)

NP 1 . )
OO ) SN logr)

In thefirst case, it follows from (S.49) that

N 1 N7 T NN, . T :
QU — - (p1<71> — DO O EINT L@, OT 4 60 (s5T)
—p@DADT _ g7 4 A<j>¢<1j>A<j>T)
* * DES T
- ;( pU) — ) p*T L g0 4G ) (S.58)

In the second case,
O }Z
N;
1

m T
— lz 21‘(73 (yii — 75]))2 . Ci(J)*FEJ)] . (S.60)




Finaly, noting th - 300 - gz(j )| the estimate of the mean

7t t|z
parametersare
09 1 il () (]) @)
PO ) (Z =227 (i = ) +20¢! 0, (S.61)
=) = = Am (szyq §j)£§j)>. (S62)
t=1 zt

3 Variational approximation for the TS-LDT

In this section, we derive the variational approximation for the TS-LDT, which follows
closely to that of the LDT. Substituting (20) into (10), leadsto

G |
(X, 7)) / Hq () Hq 2i0) log 1L Q(x(X) gzzf)q(zl’t)dXdZ. (S63)

The £ function (S.63) is minimized by sequentially optimizing each of the factors
q(z9)) and ¢(z;;), while holding the others constant [2].

3.1 Optimization of ¢(z))
Rewriting (S.6) with w; = 20,

log¢* (z'7) x logp(2),Y) = Ez x,_, [log p(X,Y, Z)] (S.64)

X EZXk¢J ZZZ(j)logp yzf|37t 7sz—.7)+10gp( (])) (S.65)

t=1 i=1
T m

SOS E. D ogp(yida, 2 = ) +logp(zD),  (S66)

t=1 i=1

wherein (S.65) we have dropped the terms of the compl ete data log-likelihood (S.43)

that are not afunction of (%), Finally, defining h(” = (J) = [q(ziz ?dzi,t,
and the normalization constant

T m

. . ; €]
zy) = / ) [T T pwirla?” 20 = )t da?, (S67)

t=14i=1

the optimal ¢(z(%)) is given by (21).

3.2 Optimization of ¢(z;)
Rewriting (S.6) with w; = z; ; and dropping terms that do not depend on z;; ,

log q*(zit) oclogp(zis,Y) = Ex 7z, . .. [logp(X,Y, Z)] (S.68)
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K

< Bxzi | Y. 22 logp(yiiley” zie = j) +log p(2) (S.69)
j=1

K
= > 2WE, wlogp(yidlat” 2 = ) + Bz, . llogp(Z)]. (ST0)
j=1

For the last term,

Kz, ... [logp(2)] (S.71)
x Kz, .. [log(Vii(zis) H Vi (Zits 2 t) H Vi (2t zipr )]
(1,2")EEL (t,t")eE&;
= logVj(zis) + Z E.,  [log Vi (zit, zir )] (S.72)
(4,i") €&
+ Y E. (logViy(zis,zie)]
(t,t")eE&;
K K
= Z (J)logam—i- Z Ez/tZz@ Z(,J)tlog —|—10g'yg] (873
Jj=1 (H)E&
E, ) 1og 2
+ Z Zi ! Zzzt zt’lOgﬂ +10g62]
Nee; 2
K
x szj)loga(])—i—z:z(]) Z Ez,tz(?)t 1ogﬁ (S.74)
i=1 =l (hnes V2
= ) @) B
+y U E. . [z7%]lo !
z_; .t Z Zit gﬂQ
J= (t,t)ee
K 4 3
- szﬁ logal) + 3wl log 4+ ST AY) g -l (S79)
(i,i")EE: 2 es 2
Hence,
i Y
. j 1
logq*(zit) o Zz(f) o) logp(yzf|$t JZig =)+ Z h§?7)tlog—
(4,i")EEs 2
+ Z hijt)/ logﬂ —l—logam (S.76)
(t,t")e&;
K
Z (J)log gz(jt) (J)) (877)
7j=1

where g(j ) is defined in (24). Thisisamulti nomial distribution of normalization con-
stant Zj: (« §J3gl /), leading to (22) with hz ) asgivenin (23).



3.3 Normalization constant for q(x ) 11

3.3 Normalization constant for ¢(z))
Taking the log of (S.67)

m T

j j j IO
10%35” = 108’/13(3?(]))HHP(yi,t|$§])7Zi,t ZJ)Wt dz\9.  (S.78)

i=1t=1

Note that the term p(y; (|« zi., = 7)"" does not affect the integral when h) =o0.
Defining Z; as the set of indices (i, t) with non-zero h\7) , i.e. Z; = {(i,#)|h{?) > 0},
(5.78) becomes

1ogZ§j’=10g/ 2D T plyidlal, 2 = )" da, (S.79)
(i,t)EL;
where
(€] 1 1 . (€2
plyidlat?”, zig = )0 = Gyiy, O w?  rliyhis (S.80)
1
N 130 27T7“(j) 2 T(j)
= (27’(’7"(])) shi (W) G <yzt;0(]) (]), h(]) ] (381)
i, it

For convenience, we define an LDS over the subset of observations indexed by 7 ;.
Note that the dimension of the observation y; changes over time, depending on how

many h(” are active in each frame, and hence the LDS is parameterized by (:)j =
{AU), Qm CY RV 1)}, where CY) = [Ci(j)](i,t)ezj is a time-varying observa-
tion matrix, and Rfﬂ ) istime-varying diagonal covariance matrix with diagonal entries
[;E—ji](i,t)ezj . This LDS has conditional observation likelihood j(y; ;|2\, z; ; = j) =

G(yie, Oz, 79)), we can rewrite

%) RNETEE
Plysdle?, 20 = M = (200D (b)) 2 (yalat” 200 = ), (S82)
and, from (S.79),

log Z{) = (S.83)
€]

. N\ 3 (1=h7)) .

oz [ ) ] [(2“"’)2 ) el 20 = 5)| da).
(i,t)EL;

Since, under the restricted LDS, the likelihood of the observationY; = [ym](i’t)ezj is

5i(Y;) = / 2) ] #wsdle?, 210 = )dat?, (S:84)

(i,t)EL;
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it follows that
i ; %(lihgjf)) : 1
log 2 =1og |7;(v;) [ (2=r@)" " (a0~ (S:85)
(i,t)EZL;
1 ; a1 ; N
= 3 (1—h§ft>)1og(2m<ﬂ>)—§ S logh¥) +logp;(Y;). (S86)
(i,t)€T; (i,t)€T;
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