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Abstract

Saliency mechanisms can play an important role in the ability of recognition sys-
tems to deal with cluttered scenes. Saliency detection has also been an active area
of computer vision, where existing solutions can be dividedinto two major classes:
domain-independent and domain-dependent. In this work, itis proposed that the two
classes are complementary and can be addressed within a unified formulation of the
saliency problem, inspired on regularization theory. A Bayesian saliency framework
is then proposed, in which domain-independent saliency maps are interpreted as priors
for salient location, which can be used to regularize estimates of salient point location
derived with domain-dependent procedures. Saliency maps are modeled as mixture dis-
tributions, and an analytical solution derived for the posterior distribution of true salient
locations given the observed saliency measurements. This framework is shown to en-
able explicit control over the relative importance of the two types of saliency, reveals
an interpretation of domain-dependent saliency as a focus-of-attention mechanism, and
has a simple non-parametric extension. Experimental evaluation demonstrates the ben-
efits of Bayesian saliency for weakly supervised recognition problems.



Author email:dgao@ucsd.edu

c©University of California San Diego, 2005

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Statistical Visual Computing Laboratory of the University of
California, San Diego; an acknowledgment of the authors andindividual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any
other purpose shall require a license with payment of fee to the University of California, San Diego.
All rights reserved.

SVCL Technical reports are available on the SVCL’s web page at
http://www.svcl.ucsd.edu

University of California, San Diego
Statistical Visual Computing Laboratory

9500 Gilman Drive, Mail code 0407
EBU 1, Room 5512

La Jolla, CA 92093-0407



1

1 Introduction

The formulation of recognition as a problem of statistical classification has enabled
significant progress in the area, over the last decades. Recently, there has been growing
interest in the problem of recognition from cluttered examples [1–3,13,19,20]. While
increasing the complexity of visual recognition, the ability to recognize objects in the
presence of clutter opens the possibility for training recognizers with weak supervi-
sion. For example, instead of requiring a set of training faces cropped into20 × 20
pixel arrays, with all hair precisely cropped out, lightinggradients removed, and so on,
a weakly supervised face detector would simply be trained from a set of images con-
taining faces. Since preparation of examples is the bulk of the effort currently required
to train any recognizer, the potential practical impact of weakly supervised recognition
is substantial.

The ability to learn in the presence of substantial amounts of clutter is also a hall-
mark of biological vision. One property that plays an important role in this ability
is the existence of saliency mechanisms: biological visionsystems rarely have to ex-
haustively scan a scene in order to detect an object of interest. Instead, salient loca-
tions simply pop-out in result of the operation of pre-recognition saliency mechanisms.
Replicating this ability to find salient points has been a goal of computer vision for
some decades.

Broadly speaking, existing saliency detectors can be divided into two major classes:
domain-independentanddomain-dependent. The most popular formulations in the first
class are probably those that treat saliency as thedetection of specific visual attributes,
such as edges or corners (also called “interest points”). Popular examples of detectors
in this class are those by Harris [4] and Föstner [5]. Other possible saliency definitions
are based on 1) more generic anddata-drivensaliency measures, such as image com-
plexity [6–8], or 2)models of biological vision[9,10]. The unifying theme for all these
formulations is a definition of saliency in terms of properties which, while universally
desirable for a saliency detector, do not take into account the target application-domain,
e.g. recognition. Instead, they pose saliency as an end in itself.

Domain-dependent methods ground the definition of saliencyin specific application-
domains. This class includes, for example, recent proposals to ground saliency on the
recognition problem, by equatingsaliency to discriminant power[3, 11–13]. Under
this formulation, 1) salient locations are those that best differentiate the visual class
of interest from all others, and 2) saliency relies on a preliminary stage of feature se-
lection, based on how discriminant each feature is with respect to the visual class to
recognize.

Both principles have their advantages and limitations. Domain-independent detec-
tors can be made optimal with respect to universally desirable properties for saliency
detection. For example, Harris and Föstner produce salient points that are optimally
stable with respect to geometric image transformations. They also do not require train-
ing and have low-complexity. On the other hand, the absence of an application-domain
restricts the detectors in this class to being optimal in very generic senses, and the re-
sulting interest points are rarely the best for specific applications. In the Harris/F̈ostner
example they are simply corners.

With respect to biological vision, human experiments have shown that, even for
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relatively straightforward saliency tasks, where subjects are 1) shown images that they
have already seen and 2) simply asked to point out salient regions, different people do
not seem to agree on more than about50% of the salient locations [10]. This seems
to rule out the exclusive adoption, by biological vision systems, of universal (domain-
independent) saliency principles, even when no domain-specific goals are explicitly
set for the saliency task. Recent results in discriminant saliency detection [13] have
shown that domain-dependent saliency can be beneficial for computer vision as well.
For example, it appears clear that, in the recognition domain, discriminant saliency
produces salient points that are substantially more informative than those produced by
domain-independent methods.

While these observations indicate that some form of domain-specificity is always
likely to be beneficial, there is inconvenience in the adoption of domain-dependent
principles. In particular, because such principles are by definition based on learning,
their performance depends on the size of the available training set. For small training
sets, domain-specificity can lead to over-fitting and poor saliency detection. In this
case, the properties that domain-independent principles enforce, e.g. stability, become
desirable, as a way toregularize the domain-dependent solution. Regularization is
widely used in statistical learning, as a means to improve generalization guarantees:
a regularized learner requires a much smaller number of training examples to achieve
the performance of an equivalent learner without regularization [21]. Under the reg-
ularization point of view, domain-dependent and -independent saliency principles are
complementary, rather than competitors.

In this work, we propose aBayesian regularization frameworkfor the fusion of
saliency maps of the two types. We regard the output of a domain-independent saliency
detector as a prior for salient locations, and the output of adomain-dependent saliency
detector as a set of saliency observations. The location uncertainty associated with
each salient point is encoded as a Gaussian distribution over image coordinates, lead-
ing to an approximation of each saliency map by a mixture distribution. This enables
the derivation of an analytical solution for the posterior distribution of the true, but un-
known, salient locations. This posterior is shown to be another Gaussian mixture, and
is completely characterized by the derivation of its parameters from those associated
with the two saliency maps.

The posterior distribution for the true salient locations is also shown to have various
interesting properties. First, it consists of an intuitivecombination of all terms in the
two saliency distributions. Second, it enables the introduction of a regularization con-
stant that allows explicit control of the relative importance of each distribution in the
posterior saliency estimates. Third, it suggests the interpretation of domain-dependent
saliency as a focus-of-attention mechanism which suppresses domain-independent salient
points that are not informative for the domain of interest. Finally, it has a non-Bayesian
interpretation as the simple multiplication of the two saliency maps, which enables a
non-parametric extension of trivial computational complexity.

The advantages of Bayesian saliency, over the application of either domain-independent
or domain-dependent saliency in isolation, are illustrated for two challenging aspects
of weakly supervised recognition: 1) its implementation inthe presence of substantial
amounts of clutter, and 2) the robustness of salient points for segmenting examples.
the ability to automatically segment examples for trainingtraditional object detectors.
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Figure 1: Edge location uncertainty vs. scale. From left to right: as scale increases (and resolution
decreases) edge location is less certain.

In both cases, Bayesian saliency achieves the best performance, also outperforming
state-of-the-art methods recently proposed in the literature.

2 Bayesian saliency

In this section we derive a Bayesian solution for the fusion of domain-dependent
(“DD”) and domain-independent (“DI”) saliency maps. We start by the case where
both maps have a single salient point, then consider the caseof multiple DI salient
points and a single DD salient point, and finally address the general case where both
maps have multiple salient points.

2.1 Single salient point

A salient points is characterized by three parameters: its saliency strength α, image
locationx, and scaleσ. In this work, it is assumed that both the strength and scale are
known1. If the application, to the image, of a DD saliency detector results in a salient
point of scaleσdd, the observed salient location is modeled as a Gaussian random
variableX = (x, y) of covarianceΣ = (σdd)2I and centered on the true, but unknown,
salient locationµ,

PX|µ(x|µ) = G(x, µ, (σdd)2I).

whereG(x, µ, σ2
I) = 1

2πσ2 exp
(

− (x−µ)T (x−µ)
2σ2

)

, andI is the2 × 2 identity matrix.

This reflects the fact that the location uncertainty is larger for salient points at larger
image scales (low resolution) than for points at small scales (high resolution) , as illus-
trated in Figure 12.

As is usual in Bayesian inference, the uncertainty about thetrue locationµ is
formalized by considering this parameter a random variableand introducing a prior
distributionPµ(µ). As discussed above, it is sensible to derive this prior froma DI
saliency principle. Assuming that a DI saliency detector produced a salient point

1While, in practice, this is not strictly true, there is usually a fair amount of tolerance to errors in these
parameters. For example, it is common to simply classify points assalient or non-salient, in which case a
measure of saliency strength is not even required. With respect to the scale parameter, it is common practice
to consider only a finite set of possible scales. Since the selection of the best among these with small error is
usually feasible, the assumption of known scale is a reasonable one. In future work we will consider a fully
Bayesian solution that takes these parameters as random variables as well.

2More complex models are obviously possible, e.g. a covariancestructure that assigns more uncertainty
along, than across, edges. The extension of the framework nowproposed so as to support them is straight-
forward.
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s
di = (αdi, µdi, σdi), the prior density for location is, once again, assumed Gaussian

Pµ(µ) = G(µ, µdi, (σdi)2I).

The locationxdd of the DD salient point is then viewed as an observation ofX, leading
to a posterior distribution for the true salient location ofthe form [17]

Pµ|X(µ|xdd) = G(µ, µs, (σs)2I), (1)

with

µs =
(σdi)2

(σdi)2 + (σdd)2
x

dd +
(σdd)2

(σdi)2 + (σdd)2
µdi, (2)

(σs)2 =
(σdi)2(σdd)2

(σdi)2 + (σdd)2
. (3)

The relative importance of the DD and DI saliency maps, can becontrolled by
multiplying the prior variance by a regularization constant σ, i.e. by replacingσdi with
σ ·σdi in the equations above. Note that, asσ → ∞, µs = x

dd andσs → σdd, making
the posterior distribution equal to the Gaussian associated with the DD salient point
s
dd. On the other hand, whenσ → 0, µs = µdi andσs → 0, making the posterior

distribution equal to the delta function centered in the location of the DI salient point
µdi. This is illustrated by Figure 2 where we combine the most salient point produced
by a (DI) Harris detector with the most salient point produced by the (DD) discriminant
saliency detector of [13].

2.2 Multiple domain-independent salient points

If there are various DI salient points{sdi
1 , . . . , sdi

n }, any of them could be responsible
for the observed salient locationxdd produced by the DD saliency detector. To account
for this we introduce a hidden variableY , such thatY = k whens

di
k is the responsible

DI salient point, and the following generative model:

Figure 2:The posterior distribution (circle) of the most salient location as a function of the regularization
constantσ. Brighter circles indicate larger values ofσ: in all images the black (white) circle represents the
most salient point detected by the domain-independent (dependent) detector.
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1. thekth DI salient point is chosen with probabilityPY (k) =
αdi

k�
j

αdi
j

.

2. the prior density for location becomesPµ|Y (µ|k) = G(µ, µdi
k , (σdi

k )2I).

3. the observed salient locationxdd is sampled from the distributionPX|µ(x|µ).

The posterior distribution for the unknown salient location becomes

Pµ|X(µ|xdd) =

∑

k PX,µ,Y (xdd, µ, k)

PX(xdd)

=

∑

k PX|µ,Y (xdd|µ, k)Pµ|Y (µ|k)PY (k)

PX(xdd)

=

∑

k PX|µ(xdd|µ)Pµ|Y (µ|k)PY (k)
∑

j PX|Y (xdd|j)PY (j)

where,

PX|µ(xdd|µ)Pµ|Y (µ|k) = G(xdd, µ, (σdd)2I)G(µ, µdi
k , (σdi

k )2I)

= G(µ, µs
k, (σs

k)2I)G(µdi
k ,xdd, [(σdd)2 + (σdi

k )2]I)

with

µs
k =

(σdi
k )2

(σdi
k )2 + (σdd)2

x
dd +

(σdd)2

(σdi
k )2 + (σdd)2

µdi
k (4)

(σs)2 =
(σdi

k )2(σdd)2

(σdi
k )2 + (σdd)2

. (5)

and

PX|Y (xdd|j) =

∫

µ

PX|µ,Y (xdd|µ, j)Pµ|Y (µ|j)dµ

=

∫

µ

PX|µ(xdd|µ)Pµ|Y (µ, j)dµ

=

∫

µ

G(xdd, µ, (σdd)2I)G(µ, µdi
j , (σdi

j )2I)dµ

= G(µdi
j ,xdd, [(σdd)2 + (σdi

j )2]I).

In this derivation, we have used known properties of the Gaussian distribution [17] and
the fact that, given the true location, the observed location x

dd does not depend on the
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(a) (b) (c) (d)

Figure 3: Modulation of the focus of attention mechanism, associated with domain-dependent saliency,
by σ. Images show salient locations detected by (a) Harris, (b) discriminant, (c) Bayesian (σ

2
= 6), and (d)

Bayesian (σ2
= 200) saliency detector. Brighter circles indicate stronger saliency.

prior, PX|µ,Y (xdd|µ, k) = PX|µ(xdd|µ). It follows that

Pµ|X(µ|xdd) =
∑

k

G(µ, µs
k, (σs

k)2I)π(xdd, sdi
k ) (6)

with

π(xdd, sdi
k ) =

G(µdi
k ,xdd, [(σdd)2 + (σdi

k )2]I)αdi
k

∑

j G(µdi
j ,xdd, [(σdd)2 + (σdi

j )2]I)αdi
j

,

andµs
k andσs

k as given in (2) and (3) withµdi andσdi replaced byµdi
k andσdi

k respec-
tively.

It is interesting to compare this distribution to that of thecase of a single DI salient
point: the posterior is now a mixture of Gaussians of the formof (1), each weighted
according to the link functionπ(xdd, ·). Up to a constant, this is a Gaussian centered
on the observed salient locationxdd produced by the DD detector, and penalizes the
contributions of DI salient points which are located far from this observation. It en-
ables the interpretation of the DD saliency detector as afocus of attentionoperator that
suppresses DI salient points which are not discriminant forthe object of interest.

As before, the relative importance of the DI and DD saliency maps can be con-
trolled by multiplying all prior variances by a regularization constantσ, i.e. by re-
placingσdi

k with σ · σdi
k ,∀k, in the equations above. This can be used to modulate

the focus of attention mechanism, as illustrated in Figure 3, in which we present the
top DD (obtained with the discriminant saliency detector of[13]) and the 40 top DI
salient points (obtained with Harris) for one image, and theposterior distribution for
the salient location obtained with two values ofσ. Note that, asσ increases, attention
is more narrowly focused on the salient points located inside the object of interest, in
this case a face.

2.3 Multiple domain-dependent and domain-independent salient
points

We have, so far, shown that a DD salient point can be interpreted as a focus-of-
attention operator that, given 1) a collection of DI salientpoints{sdi

1 , . . . , sdi
n } and

2) an observed DD salient locationxdd, produces a Bayesian estimate of the true,
but unknown, salient locationPµ|X(µ|xdd) of the form of (6). The DD salient point
s
dd = (αdd,xdd, σdd) associated withxdd can, therefore, be viewed as anattentional
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Figure 4:Graphical model for Bayesian saliency.

hypothesisabout which image area is most likely to contain discriminant information
for the object of interest.

Under this interpretation, a collection of DD salient points {sdd
1 , . . . , sdd

m } is noth-
ing more than a set of attentional hypotheses regarding the location of the target vi-
sual concept. This suggests the introduction of a second hidden variableY ′, such that
Y ′ = l when thelth attentional hypothesis holds, and the following generative model
for salient locations:

1. thelth attentional hypothesis is chosen with probabilityPY ′(l) =
αdd

l�
j

αdd
j

.

2. a salient observationxdd
l is then sampled according to the generative model in

the previous section, conditioning all probabilities on the value ofY ′, i.e.,

PX|µ,Y ′(x|µ, l) = G(x, µ, (σdd
l )2I).

While it is conceivable that the attentional hypothesis would affect the prior density
for location, e.g. by making some types of DI salient points more likely than others,
we currently assume that this is not the case, i.e.Pµ|Y,Y ′(µ|k, l) = Pµ|Y (µ|k) and
PY |Y ′(k|l) = PY (k). Hence, the second step of this procedure consists of the follow-
ing sub-steps:

1. thekth DI salient point is chosen with probabilityPY (k) =
αdi

k�
j

αdi
j

.

2. the prior density for location becomesPµ|Y (µ|k) = G(µ, µdi
k , (σdi

k )2I).

3. the observed salient locationxdd
l is sampled from the distributionPX|µ,Y ′(x|µ, l)

PX|µ,Y ′(x|µ, l) = G(x, µ, (σdd
l )2I).

A graphical representation of this generative model is shown in Figure 4. where the
conditional independence,PX|µ,Y ′,Y (xdd

l |µ, l, k) = PX|µ,Y ′(xdd
l |µ, l), can be read by

the causal inference properties of Bayesian network [22]. It follows, from an analysis
identical to that of the previous section, that the posterior for salient location, under the
lth attentional hypothesis, is

Pµ|Y ′,X(µ|l,xdd
l ) =

∑

k

G(µ, µs
k,l, (σ

s
k,l)

2
I)πl(x

dd
l , sdi

k )
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with

µs
k,l =

(σdi
k )2

(σdi
k )2 + (σdd

l )2
x

dd
l +

(σdd
l )2

(σdi
k )2 + (σdd

l )2
µdi

k (7)

(σs
k,l)

2 =
(σdi

k )2(σdd
l )2

(σdi
k )2 + (σdd

l )2
. (8)

πl(x, sdi
k ) =

G(µdi
k ,x, [(σdd

l )2 + (σdi
k )2]I)αdi

k
∑

j G(µdi
j ,x, [(σdd

l )2 + (σdi
j )2]I)αdi

j

.

The overall posterior distribution is then

Pµ|X(µ|{xdd
1 , . . . ,xdd

m }) =
PX|µ({xdd

1 , . . . ,xdd
m }|µ)Pµ(µ)

PX({xdd
1 , . . . ,xdd

m })

=

∑

l PX,Y ′|µ(xdd
l , l|µ)Pµ(µ)

∑

j PX,Y ′(xdd
j , j)

(9)

=
∑

k,l

G(µ, µs
k,l, (σ

s
k,l)

2
I)β(xdd

l , sdi
k ) (10)

with

β(xdd
l , sdi

k ) =
G(µdi

k ,xdd
l , [(σdd

l )2 + (σdi
k )2]I)αdi

k αdd
l

∑

i,j G(µdi
i ,xdd

j , [(σdd
j )2 + (σdi

i )2]I)αdi
i αdd

j

.

where the omitted derivation from (9) to (10) is similar to that of section 2.2.
Note that this is a mixture of posterior distributions of theform of (6), i.e. a mixture

of then×m Gaussians associated with all pairs of DI and DD salient points. As before,
the link functionβ(xdd, ·) is, up to constants, a Gaussian centered on the observed
salient locationxdd produced by the DD detector, and penalizes the contributions of DI
salient points which are located far from it. The relative importance of the DD and DI
saliency maps can still be controlled by multiplying all prior variances a regularization
constantσ, i.e. replacingσdi

k with σ · σdi
k ,∀k, in the equations above.

2.4 Non-parametric interpretation

An interesting low-level interpretation of the posterior distribution (10), that does not
require Bayesian inference, can be obtained by noting that

G(x, µdi
k , (σdi

k )2I)G(x,xdd
l , (σdd

l )2I) = G(x, µs
k,l, (σ

s
k,l)

2
I)G(µdi

k ,xdd
l , [(σdd

l )2+(σdi
k )2]I)

with µs
k,l and(σs

k,l)
2 as given above. It follows that the posterior distribution of (10) is

, up to constants, the product of the mixtures,

∑

k

αdi
k

∑

i αdi
i

G(x, µdi
k , (σdi

k )2I), and
∑

l

αdd
l

∑

i αdd
i

G(x,xdd
l , (σdd

l )2I),
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(a) (b) (c) (d)

Figure 5: Illustration of the non-parametric Bayesian saliency map (b)for the image of (a) derived from
Harris (c) and discriminant saliency (d).

associated with the two saliency detectors, when the true salient locations areµdi
k and

x
dd
l .

Noting that the mixture representation is a probabilistic approximation to the ob-
served saliency maps, this enables a completely non-parametric representation of the
posterior for the true salient location as the simple element-wise multiplication of the
two saliency maps (plus normalization). This is illustrated by Figure 5. Note how, once
again, the DD (discriminant) saliency map serves as a focus of attention mechanism to
the more localized, but also more error-prone, DI (Harris) saliency map. What is lost,
under this non-parametric interpretation, is the ability to introduce the regularization
constantσ that modulates the strength of this focus-of-attention mechanism.

3 Segmentation of examples

The saliency maps of the previous section can be used to segment the regions associated
with an object of interest from a collection of images. This,could be used to greatly
expedite the process of training a traditional object detector (e.g., [15]). Rather than
a collection of precisely segmented object views, the designer of the detector would
simply provide a set of images where the objects appear, possibly surrounded by large
amounts of clutter. Bayesian saliency could then be used to extract from this image set
(and a set of images not containing the object) the examples required for training the
traditional detector.

We next introduce a preliminary solution to this problem, based on simple template
matching. We emphasize that the goal is not to fully solve theproblem of segmenting
training examples (a topic that we will address in future research) but to objectively
evaluate whether the saliency maps resulting from Bayesiansaliency provide robust
and relevant information about the objects to be recognized. The example segmentation
algorithm is as follows.

1. all images are preprocessed by homomorphic filtering for illumination normal-
ization [16] and Gaussian low-pass filtering for noise reduction.

2. images from which an object is to be segmented are calledreference images. For
each reference imageR,

(a) an imageM is randomly selected, and itsk salient locations sampled from
the associated posterior Gauss mixture, as defined by (10). Each location
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(a) (b)

(c) (d) (e)

Figure 6: Illustration of the segmentation algorithm. (a) reference image; (b) matching image; (c) inliers
mapped to the reference image plane; (d) average segmentation mask superimposed on image (a); (e) seg-
mented patch. White and black circles in (a) and (b) represent,respectively, inliers and outliers returned by
RANSAC.

inherits the scale of the Gaussian from which it was sampled.An image
patch of that scale is cropped around the location.

(b) the peak correlation between each patch andR is computed. If it is greater
than a threshold,Tcorr, the patch is kept, otherwise discarded.

(c) an affine transformation is estimated from all matched patches using RANSAC [18].
If the number of the inliers returned by RANSAC is greater than a thresh-
old, Tin, the transformation is kept. Otherwise,M is rejected, a rejection
counter incremented, and step (2d) skipped.

(d) the inliers (patches) are mapped to the coordinate frameof R, and a binary
segmentation mask set to the union of the transformed regions of support.

(e) steps (2a) to (2d) are repeated until either a pre-set number of masks or
rejections are produced.

(f) segmentation masks are averaged and the object is segmented from the
locations of the reference image where the average mask is greater than a
threshold,Tmask.

Figure 6 illustrates the segmentation process, marking rejected patches (outliers)
with black circles and inliers with white circles. Inliers are, as shown in 6(c), mapped
to the coordinate frame of the reference image (6(a)). Note that the segmentation mask
produced by a single image (6(b)) can be poor due to the variations in appearance
between the objects, or object views, depicted in the two images. Step (2e) guarantees
a much more robust segmentation mask (shown in 6(d)). The segmented object patch
is shown in 6(e).

4 Experiments

To evaluate the performance of Bayesian saliency we relied on the Caltech database,
which has been proposed as a testbed for object detection in the presence of clutter [2].



4.1 Implementation of Bayesian saliency 11

Four image classes, faces (435 images of size 112x170), motorbikes (800 images of
size 180x300), airplanes (800 images of size 200x300 ), and rear-cars (800 images of
size 150x180), were used as the classes of interest, and a setof background images was
also used as the negative class, with the experimental set upproposed in [2], .

4.1 Implementation of Bayesian saliency

Two representative saliency detectors, a (DI) Harris-Laplace (HarrLap) detector [14],
and a (DD) discriminant saliency (DiscSal) detector [13], were selected to implement
the Bayesian saliency detector3. The HarrLap detector searches points that are in-
variant to rotation and scale changes [14], and can be described as a sequence of two
steps:

1. a scale-space representation with pre-selected scales is built using the Harris
function,

µ(x, σI , σD) = σ2
Dg(σI) ∗ ∇I(x)∇T I(x) (11)

where
∇I(x) = (Ix(x), Iy(x))T (12)

is the spatial gradient of the image,σI an integration scale, andσD a differen-
tiation scale. Initial salient points are then selected at the local maxima of each
level of the representation.

2. an iterative algorithm is applied to simultaneously detect the location and scale
of salient points. The extrema over scales of the Laplacian-of-Gaussian,

|LoG(x, σn)| = σ2
n|Ixx(x, σn) + Iyy(x, σn)| (13)

is used to select the scale of salient points.

Since the algorithm does not produce a measure of saliency strength, equal weights
were assigned to all resulting salient points.

The DiscSal saliency detector selects the salient featuresthat are discriminant for
the class of object against objects in the other classes, andthen applies a biologically
inspired model to detect salient points [13]. It was implemented as follows.

1. images are projected onto aK-dimensional feature space, and the marginal dis-
tribution of each feature response under each classPXk|Y (x|i), i ∈ {0, 1}, k ∈
{0, . . . ,K − 1}, is estimated. The features are then sorted by descending mar-
ginal diversity,

md(Xk) =< KL[PXk|Y (x|i)||PXk
(x) >Y (14)

where< f(i) >Y =
∑M

i=1 PY (i)f(i), andKL[p||q] =
∫

p(s) log p(x)
q(x)dx the

Kullback-Leibler divergence between p and q.

3The executable codes for implementing the two detectors are respectively
available on-line at http://www.robots.ox.ac.uk/˜vgg/research/affine/detectors.html and
http://www.svcl.ucsd.edu/projects/saliency/.



12 4 EXPERIMENTS

2. features which are discriminant because they are informative about the back-
ground class (Y = 0) but not the class of interest (Y = 1), i.e. H(Xk|Y =
1) < H(Xk|Y = 0) or that have too small energy to allow reliable inference,
V ar(Xk) < Tv, are eliminated.

3. the features of largest marginal diversity are selected.

4. a saliency map is generated by a biologically inspired architecture and salient
points are determined by a non-maximum suppression stage which sets the scale
of each salient location to the spatial support of the feature of largest response at
that location.

The method is made scale adaptive by including in the candidate feature set the discrete
cosine transform (DCT) features obtained by projecting, onto the 8x8 DCT basis, the
result of a 4-level Gaussian pyramid image expansion.

The two sets of salient points were then fused into a Bayesiansaliency (BayesSal)
map according to (10), and finally, the centers of the resulting Gauss mixture were
selected as salient points.

4.2 Salient locations

We start the evaluation of the Bayesian saliency detector byexamining the salient
locations detected for different object classes. Figure 7 presents some examples of
the salient locations produced by the three detectors (locations with saliency strength
lower than50% of the largest are omitted). Note how Bayesian saliency combines
the strengths of the two saliency mechanisms: while DiscSalforces HarrLap to focus
in the area of the object of interest, the addition of HarrLaphelps “clean up” some
of the unstable locations detected by DiscSal. To obtain an objective characteriza-
tion of the improvement, we measured the precision of the salient locations detected
with the three methods. For this, the set of points on the saliency map of saliency
strength greater than a threshold (equal toThsal∗(maximum saliency strength), with
Thsal ∈ {0, 0.1, . . . , 1} on this experiment) was first selected, the number of points
inside the ground truth (a manually produced bounding box ofthe object) was counted,
and precision was measured as the ratio between the number ofpoints inside the ground
truth and the total number of selected points, i.e.

precision =
# of points inside the ground truth

total # of points selected
.

Finally, precision was over all images in the test set.
Figure 8 shows the measured precisions, as a function of the thresholdThsal, on

the face and motorbike classes (results on the other two classes were similar, and are
omitted for brevity), with the three saliency detectors (and various values ofσ for
BayesSal). Several interesting observations can be made. First, HarrLap performed
quite poorly, confirming the argument that DI detectors do not provide much informa-
tion about the object of interest. Second, BayesSal with largeσ tends to have the best
precision, indicating that DD saliency is a crucial requirement for achieving informa-
tive salient points. Note, however, that even for BayesSal with small σ precision is
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Figure 7:Examples of Bayesian saliency detection. (left) HarrLap, (middle) DiscSal and (right) BayesSal.

considerably higher than that of HarrLap. This is due to thefocus of attentionmech-
anism introduced by DD, which penalizes the DI points located far from the object of
interest. Third, because when regularized by the more localized HarrLap saliency maps
Bayesian saliency becomes much sparser than what is possible with DiscSal alone, the
corresponding precision curves tend to be flatter, i.e. moreinsensitive to the thresh-
old value. Finally, the best performance was always achieved with a saliency detector
somewhere in between the DI (HarrLap) and DD (DiscSal) extremes, i.e. BayesSal
with σ ∈ (0,∞). This confirms the argument that optimal performance requires a
trade-off between the ability to meet application-specificgoals (in this case “class-
discrimination”) and universal properties that assure good generalization (in this case
“salient point stability”, the criterion for which the Harris detector is optimal).

4.2.1 Segmentation of samples

To evaluate the robustness of BayesSal locations, the segmentation algorithm of Sec-
tion 3 was applied to to two classes, face and rear-car, whichcan be well represented
by a template. The following parameters were used:k = 60, Tcorr = 0.6, Tin = 12,
number of masks = 20, number of bad matches = 40, andTmask = 0.4.

The quality of the segmented examples was evaluated by comparing them with
ground truth data. The relative overlap between the segmented example (represented
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Figure 8: Precision of salient locations of the BayesSal (with various σ), DiscSal and HarrLap saliency
detector.

as a rectangle on the image) and the ground truth was measuredby

overlap(A,B) =
|A ∩ B|

|A ∪ B|
(15)

whereA,B are two bounding boxes and|A| the area of A.

Figure 9 shows the cumulative distribution function for therelative overlap of
the examples segmented by the three saliency detectors. Notsurprisingly, BayesSal
achieves the best performance, i.e. the curve closer to a delta function located at100%
overlap, confirming the advantages of relying on posterior distribution for salient loca-
tions that combines the discriminant power of DiscSal and the robustness of HarrLap.
To provide a sense for the quality of the segmented patches, examples of faces seg-
mented with various values of overlap are also shown in Figure 10. Interestingly, the
algorithm produces “zero” overlap for about10% of the images. Closer investigation
of these cases reveals that they are images with either poor illumination or scale dras-
tically different from the remainder of the examples (whichfalls outside the range of
scales covered by our features), or could even be argued not to belong to the class (e.g.
cartoons of faces). Examples of these “outliers” are shown in Figure 11.
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Figure 9: Cumulative distribution function for the relative overlap between segmented examples and
manual ground truth for (a) faces and (b) cars.
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0.5 0.6 0.7 0.8 0.9

Figure 10:Illustrative examples of segmented faces with overlap measures ranging from 0.5 to 0.9.

Figure 11:Images rejected by the segmentation algorithm.

4.3 Classification of saliency maps

Finally, we compared the performance of the different saliency detectors on an object
detection task. In particular, we used the simple classifierproposed in [13], which
consists of feeding a histogram of saliency map intensitiesto a support vector ma-
chine (SVM), and measuring the probability of classification error. This experiment
quantifies how relevant the extracted saliency informationis for recognition purposes.
The performance of each classifier is measured by the receiver-operating characteristic
(ROC) equal-error classification rate (p(False positive) = 1 − p(True positive)).
As presented in Table 1, BayesSal generated better classification results than the two
individual saliency detectors, DiscSal and HarrLap. For completeness, the table also
presents the results, on this database, of a state-of-the-art method for recognition from
cluttered scenes (the constellation-based classifier of [2]). Despite its simplicity, the
saliency-based classifier achieves better recognition rates.
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