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Abstract

Saliency mechanisms can play an important role in the ghmfirecognition sys-
tems to deal with cluttered scenes. Saliency detection Isasbeen an active area
of computer vision, where existing solutions can be dividfgd two major classes:
domain-independent and domain-dependent. In this woig,dtoposed that the two
classes are complementary and can be addressed within edufoifmulation of the
saliency problem, inspired on regularization theory. A &sgn saliency framework
is then proposed, in which domain-independent saliencysraapinterpreted as priors
for salient location, which can be used to regularize egmaf salient point location
derived with domain-dependent procedures. Saliency nrapaadeled as mixture dis-
tributions, and an analytical solution derived for the pastr distribution of true salient
locations given the observed saliency measurements. frsefvork is shown to en-
able explicit control over the relative importance of thetiypes of saliency, reveals
an interpretation of domain-dependent saliency as a foéadgtention mechanism, and
has a simple non-parametric extension. Experimental atialudemonstrates the ben-
efits of Bayesian saliency for weakly supervised recognitimblems.



Author email:dgao@icsd. edu

(©University of California San Diego, 2005

This work may not be copied or reproduced in whole or in pariafty commercial purpose. Per-
mission to copy in whole or in part without payment of fee iarged for nonprofit educational and
research purposes provided that all such whole or part@ésanclude the following: a notice that
such copying is by permission of the Statistical Visual Cating Laboratory of the University of

California, San Diego; an acknowledgment of the authorsiadigidual contributors to the work;

and all applicable portions of the copyright notice. Copyireproducing, or republishing for any
other purpose shall require a license with payment of febedJniversity of California, San Diego.
All rights reserved.

SVCL Technical reports are available on the SVCL's web pdge a
http://www.svcl.ucsd.edu

University of California, San Diego
Statistical Visual Computing Laboratory
9500 Gilman Drive, Mail code 0407
EBU 1, Room 5512
La Jolla, CA 92093-0407



1 Introduction

The formulation of recognition as a problem of statisticiaissification has enabled
significant progress in the area, over the last decadesnRgdbere has been growing
interest in the problem of recognition from cluttered exéspl-3, 13,19, 20]. While
increasing the complexity of visual recognition, the apitdb recognize objects in the
presence of clutter opens the possibility for training mgggpers with weak supervi-
sion. For example, instead of requiring a set of trainingg$acropped int@0 x 20
pixel arrays, with all hair precisely cropped out, lightiggadients removed, and so on,
a weakly supervised face detector would simply be trainedhfa set of images con-
taining faces. Since preparation of examples is the bulk@gffort currently required
to train any recognizer, the potential practical impact ebkly supervised recognition
is substantial.

The ability to learn in the presence of substantial amouht$utter is also a hall-
mark of biological vision. One property that plays an impattrole in this ability
is the existence of saliency mechanisms: biological visigstems rarely have to ex-
haustively scan a scene in order to detect an object of sitelastead, salient loca-
tions simply pop-out in result of the operation of pre-retitign saliency mechanisms.
Replicating this ability to find salient points has been algdaomputer vision for
some decades.

Broadly speaking, existing saliency detectors can be d/idto two major classes:
domain-independerinddomain-dependenihe most popular formulations in the first
class are probably those that treat saliency asi¢ection of specific visual attributes
such as edges or corners (also called “interest points’hulao examples of detectors
in this class are those by Harris [4] anddtner [5]. Other possible saliency definitions
are based on 1) more generic atata-drivensaliency measures, such as image com-
plexity [6—8], or 2)models of biological visiof®, 10]. The unifying theme for all these
formulations is a definition of saliency in terms of propestivhich, while universally
desirable for a saliency detector, do not take into accdantarget application-domain,
e.g. recognition. Instead, they pose saliency as an enskilf. it

Domain-dependent methods ground the definition of saliensgecific application-
domains This class includes, for example, recent proposals torgt@aliency on the
recognition problem, by equatingpliency to discriminant powd, 11-13]. Under
this formulation, 1) salient locations are those that bé&tréntiate the visual class
of interest from all others, and 2) saliency relies on a priglary stage of feature se-
lection, based on how discriminant each feature is witheesto the visual class to
recognize.

Both principles have their advantages and limitations. Biorindependent detec-
tors can be made optimal with respect to universally del@rptoperties for saliency
detection. For example, Harris anédtner produce salient points that are optimally
stable with respect to geometric image transformationgy Btso do not require train-
ing and have low-complexity. On the other hand, the absehae application-domain
restricts the detectors in this class to being optimal ity gemeric senses, and the re-
sulting interest points are rarely the best for specificiapfibns. In the Harris/@stner
example they are simply corners.

With respect to biological vision, human experiments hawews that, even for
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relatively straightforward saliency tasks, where sulgiece 1) shown images that they
have already seen and 2) simply asked to point out saliemtrregdifferent people do
not seem to agree on more than abdff; of the salient locations [10]. This seems
to rule out the exclusive adoption, by biological visionteyss, of universal (domain-
independent) saliency principles, even when no domainispeoals are explicitly
set for the saliency task. Recent results in discriminali¢rsay detection [13] have
shown that domain-dependent saliency can be beneficiabfopater vision as well.
For example, it appears clear that, in the recognition domgiscriminant saliency
produces salient points that are substantially more inditra than those produced by
domain-independent methods.

While these observations indicate that some form of dompétificity is always
likely to be beneficial, there is inconvenience in the adopdf domain-dependent
principles. In particular, because such principles are dfindtion based on learning,
their performance depends on the size of the availableitigaget. For small training
sets, domain-specificity can lead to over-fitting and podiesey detection. In this
case, the properties that domain-independent principiesee, e.g. stability, become
desirable, as a way teegularizethe domain-dependent solution. Regularization is
widely used in statistical learning, as a means to improveeg@ization guarantees:
a regularized learner requires a much smaller number afitigeiexamples to achieve
the performance of an equivalent learner without reguddicon [21]. Under the reg-
ularization point of view, domain-dependent and -indegedaliency principles are
complementary, rather than competitors.

In this work, we propose Bayesian regularization frameworkor the fusion of
saliency maps of the two typasle regard the output of a domain-independent saliency
detector as a prior for salient locations, and the outputdifraain-dependent saliency
detector as a set of saliency observations. The locatioertainty associated with
each salient point is encoded as a Gaussian distributionimege coordinates, lead-
ing to an approximation of each saliency map by a mixtureitistion. This enables
the derivation of an analytical solution for the posterimtidbution of the true, but un-
known, salient locations. This posterior is shown to be la@oGaussian mixture, and
is completely characterized by the derivation of its paramsefrom those associated
with the two saliency maps.

The posterior distribution for the true salient locatiomaliso shown to have various
interesting properties. First, it consists of an intuitt@mbination of all terms in the
two saliency distributions. Second, it enables the intobida of a regularization con-
stant that allows explicit control of the relative importanof each distribution in the
posterior saliency estimates. Third, it suggests thepnétation of domain-dependent
saliency as a focus-of-attention mechanism which supesafsmain-independent salient
points that are not informative for the domain of interestaly, it has a non-Bayesian
interpretation as the simple multiplication of the two satly maps, which enables a
non-parametric extension of trivial computational cormjtie

The advantages of Bayesian saliency, over the applicatieither domain-independent
or domain-dependent saliency in isolation, are illustidte two challenging aspects
of weakly supervised recognition: 1) its implementatiorthia presence of substantial
amounts of clutter, and 2) the robustness of salient poortségmenting examples.
the ability to automatically segment examples for traintiraglitional object detectors.



Figure 1: Edge location uncertainty vs. scale. From left to right: eale increases (and resolution
decreases) edge location is less certain.

In both cases, Bayesian saliency achieves the best perioanalso outperforming
state-of-the-art methods recently proposed in the litkeeat

2 Bayesian saliency

In this section we derive a Bayesian solution for the fusibrdemain-dependent
("DD”) and domain-independent (“DI”) saliency maps. Werstay the case where
both maps have a single salient point, then consider the afaswruiltiple DI salient
points and a single DD salient point, and finally address #heegal case where both
maps have multiple salient points.

2.1 Single salient point

A salient points is characterized by three parameters: its saliency stiemgimage
locationx, and scaler. In this work, it is assumed that both the strength and saale a
known'. If the application, to the image, of a DD saliency detecamuits in a salient
point of scalec??, the observed salient location is modeled as a Gaussiammand
variableX = (z,y) of covariances = (09%)2I and centered on the true, but unknown,
salient locatior,

PXW(XLu) = g(xhu" (O'dd)QI)'

2mo? 202
This reflects the fact that the location uncertainty is lafge salient points at larger
image scales (low resolution) than for points at small sc@iegh resolution) , as illus-
trated in Figure 4.

As is usual in Bayesian inference, the uncertainty aboutttie locationy is
formalized by considering this parameter a random variable introducing a prior
distribution P, (1). As discussed above, it is sensible to derive this prior feoll
saliency principle. Assuming that a DI saliency detectavdpiced a salient point

whereG (x, i, 0%I) = 515 exp (—w) andI is the2 x 2 identity matrix.

Iwhile, in practice, this is not strictly true, there is usyadlfair amount of tolerance to errors in these
parameters. For example, it is common to simply classify pointahlsnt or non-salient, in which case a
measure of saliency strength is not even required. With ot$p¢he scale parameter, it is common practice
to consider only a finite set of possible scales. Since treeeh of the best among these with small error is
usually feasible, the assumption of known scale is a reaseoake. In future work we will consider a fully
Bayesian solution that takes these parameters as randamblesras well.

2More complex models are obviously possible, e.g. a covariatiaeture that assigns more uncertainty
along, than across, edges. The extension of the frameworkpnaposed so as to support them is straight-
forward.
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s = (a®, 4 o¥), the prior density for location is, once again, assumed &ans
Pu(p) = G(p, n™, (0¥)°1).

The locationx?® of the DD salient point is then viewed as an observatioK pleading
to a posterior distribution for the true salient locatiorthed form [17]

Pux (ulx™) = G(u, p*, (0°)°1), 1)
with
odi2 oddy2 ‘
¢ T I G @
O.di 2 O.dd 2
R ©

The relative importance of the DD and DI saliency maps, camdrolled by
multiplying the prior variance by a regularization constani.e. by replacingr% with
o -o% in the equations above. Note that,m@as- oo, ° = x% ando® — ¢, making
the posterior distribution equal to the Gaussian assatiatth the DD salient point
s?. On the other hand, when — 0, ;* = u% ando® — 0, making the posterior
distribution equal to the delta function centered in theataan of the DI salient point
u®. This is illustrated by Figure 2 where we combine the moséesapoint produced
by a (DI) Harris detector with the most salient point prodiibg the (DD) discriminant
saliency detector of [13].

2.2 Multiple domain-independent salient points

If there are various DI salient poin{s{’, ..., sd}, any of them could be responsible
for the observed salient locatier{? produced by the DD saliency detector. To account
for this we introduce a hidden variab¥g such that” = k whens{ is the responsible
DI salient point, and the following generative model:

Figure 2:The posterior distribution (circle) of the most salient Itiea as a function of the regularization
constantr. Brighter circles indicate larger values @f in all images the black (white) circle represents the
most salient point detected by the domain-independent (diep¢ndetector.
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1. thek!” DI salient point is chosen with probability- (k) = ﬁ

2. the prior density for location becoméy (u|k) = G(p, ui*, (o")?1).

3. the observed salient locatiari? is sampled from the distributioR |, (x].).

The posterior distribution for the unknown salient locatiecomes

Zk PX-,/»L,Y (dev 1y k)

PM\X(M\X(M) = Px (x1)
Yk Pxppy (XY, k) Py (ulk) Py (k)
- PX(de)
>k Px (x| 1) Py (ulk) Py (k)
> Pxpy (x%5) Py ()
where,
PX|;L(de|:u)Pu\Y(:u‘|k) = g(xddv 122 (O—dd)QI)g(ua Mgiv (Jgi)ZI)
= G i (03)*DG (i, x™, [(07)? + (o)1)
with
di\2 dd\2 .
G T “
diy2( dd\2
0P = ©)
and

Pxy (x%|5) =/me,y(xddlmj)Pmy(u\j)du
o

_ / Pacip (%)) Py (1 )
m

/ G(x™, p, (0“2T)G (1, u ¥, (o) T)dp
o

_ g(u?i,xdd,[(add)er(05“)2]1).

In this derivation, we have used known properties of the Gandlistribution [17] and
the fact that, given the true location, the observed loaatity does not depend on the
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(d)

Figure 3: Modulation of the focus of attention mechanism, associate¢d domain-dependent saliency,
by o. Images show salient locations detected by (a) Harris, ggyimninant, (c) Bayesiawg = 6), and (d)
Bayesian 2 = 200) saliency detector. Brighter circles indicate strongdiesay.

prior, Px|,. y (x|, k) = Px),,(x%|p). It follows that

Pux (ux®) =" G, 1y, (07)* D (x, s (6)
k
with _ ‘ ‘
ﬂ,(de ng) _ g(:uzla dea [(Udd)z + (Ugl)ﬂl)agl

3 G x4, (012 + (o) D)ad’

andy; ando; as given in (2) and (3) with?* ando? replaced by ando{’ respec-
tively.

It is interesting to compare this distribution to that of tfzese of a single DI salient
point: the posterior is now a mixture of Gaussians of the fofn(il), each weighted
according to the link functiomr(x94, ). Up to a constant, this is a Gaussian centered
on the observed salient locatierf? produced by the DD detector, and penalizes the
contributions of DI salient points which are located famfréhis observation. It en-
ables the interpretation of the DD saliency detector faxas of attentiomperator that
suppresses DI salient points which are not discriminantferobject of interest.

As before, the relative importance of the DI and DD saliengpmcan be con-
trolled by multiplying all prior variances by a regulariat constanis, i.e. by re-
placing o® with o - o, Vk, in the equations above. This can be used to modulate
the focus of attention mechanism, as illustrated in Figyrim 3vhich we present the
top DD (obtained with the discriminant saliency detectof1#]) and the 40 top DI
salient points (obtained with Harris) for one image, andghbsterior distribution for
the salient location obtained with two valuescofNote that, ag increases, attention
is more narrowly focused on the salient points located a#lig object of interest, in
this case a face.

2.3 Multiple domain-dependent and domain-independent sadint
points

We have, so far, shown that a DD salient point can be interdres a focus-of-
attention operator that, given 1) a collection of DI salipoints {s, ... s%} and

2) an observed DD salient locatiotf"?, produces a Bayesian estimate of the true,
but unknown, salient locatioR, x (1:|x??) of the form of (6). The DD salient point
sdd = (add x ;) associated wittx?? can, therefore, be viewed as attentional
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Figure 4:Graphical model for Bayesian saliency.

hypothesisabout which image area is most likely to contain discrimtriaformation
for the object of interest.

Under this interpretation, a collection of DD salient psifgd?, . .., s} is noth-
ing more than a set of attentional hypotheses regardingoitegibn of the target vi-
sual concept. This suggests the introduction of a secordehigariabley”’, such that
Y’ = [ when thel*" attentional hypothesis holds, and the following geneeatiodel
for salient locations:

dd
o

dd *
2505

1. thel*” attentional hypothesis is chosen with probabilty: (1) =

2. a salient observation!? is then sampled according to the generative model in
the previous section, conditioning all probabilities oa thalue ofY”, i.e.,

PX\H,Y’ (X|,u'7 ) - g(X Ky (Ul )21)

While it is conceivable that the attentional hypothesis wi@ffect the prior density
for location, e.g. by making some types of DI salient pointaenlikely than others,
we currently assume that this is not the case, Py y- (u|k,1) = P,y (ulk) and
Py‘yl(k“) Py (k). Hence, the second step of this procedure consists of thosvfol
ing sub-steps:

di

1. thek*" DI salient point is chosen with probability (k) = E"k —
J g

2. the prior density for location becomés,y (u|k) = G(u, i, (o)1),

3. the observed salient locatiafi? is sampled from the distributioRx |,, vy (x|, 1)
Py (%], 1) = G(x, 1, (o)1),

A graphical representation of this generative model is shiovFigure 4. where the
conditional independenc®x,,, v+ v (x{|u, 1, k) = Pxj,. v+ (x{¢|u,1), can be read by
the causal inference properties of Bayesian network [2Zpllbws, from an analysis
identical to that of the previous section, that the postddosalient location, under the
Ith attentional hypothesis, is

Py x(ull, Xz ZQ 1y 05 (OR ) I)m(xf‘ﬂsgl)
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with
E (of)? dd (i) di
e L I e e )
“L" = g (o ?

(i) = U X (o) & (o Do

TS, G0 x (o + (o2 D

The overall posterior distribution is then

PX\M<{X61M7 s ’X%i}l/’t)PN(M)
Px ({x{d,... xdd})

P;L|X(:U’|{X(lidv'-~7x1[iid ) =

_ Zl PX,Y’\;L (deda l|ﬂ’)PH (:u) (9)
> Pxoy (x4, )

S Gy ()P DBE s (10)

k.l

with , A .
5(Xfld Szl) _ g(ugla X;id7 [(aldd)z + (ng)ﬂI)agZa?d

2 G X (02 + (o)D) ot

where the omitted derivation from (9) to (10) is similar tatlof section 2.2.

Note that this is a mixture of posterior distributions of fbem of (6), i.e. a mixture
of then x m Gaussians associated with all pairs of DI and DD salienttpoifs before,
the link function3(x94,-) is, up to constants, a Gaussian centered on the observed
salient locationx® produced by the DD detector, and penalizes the contribsiid!
salient points which are located far from it. The relativgoortance of the DD and DI
saliency maps can still be controlled by multiplying allgrrvariances a regularization
constant, i.e. replacingrd with o - o, Vk, in the equations above.

2.4 Non-parametric interpretation

An interesting low-level interpretation of the posteriastdbution (10), that does not
require Bayesian inference, can be obtained by noting that

g(X, :u(liiv (Ugi)QI)g(X, Xiid7 (U;id)QI) = g(X7 Mi,za (O—ZJ)QI)Q(:“?@%? X?ldﬂ [(Uldd)z"*'(ogi)Q]I)

with 45, and (o7} ;)* as given above. It follows that the posterior distributiérfi®) is
, up to constants, the product of the mixtures,

di dd
A di ( _di\2 o] dd [ _dd\2

ig(xa/‘k a(Uk ) I)v and a g(X,Xl 7(Jl ) I)a
; >iaf ; >af



(b) (d)

Figure 5: lllustration of the non-parametric Bayesian saliency magdb}he image of (a) derived from
Harris (c) and discriminant saliency (d).

associated with the two saliency detectors, when the triEnséocations are:¢* and
xJd.

Noting that the mixture representation is a probabilisppraximation to the ob-
served saliency maps, this enables a completely non-p&iamepresentation of the
posterior for the true salient location as the simple elemése multiplication of the
two saliency maps (plus normalization). This is illustchby Figure 5. Note how, once
again, the DD (discriminant) saliency map serves as a fotagention mechanism to
the more localized, but also more error-prone, DI (Harrédlesicy map. What is lost,
under this non-parametric interpretation, is the abilityirttroduce the regularization
constant that modulates the strength of this focus-of-attentionhmasm.

3 Segmentation of examples

The saliency maps of the previous section can be used to setireeegions associated
with an object of interest from a collection of images. Thisuld be used to greatly
expedite the process of training a traditional object dete®.g., [15]). Rather than

a collection of precisely segmented object views, the aesigf the detector would

simply provide a set of images where the objects appearippssirrounded by large

amounts of clutter. Bayesian saliency could then be usexttact from this image set

(and a set of images not containing the object) the exampbasined for training the

traditional detector.

We next introduce a preliminary solution to this problensdxhon simple template
matching. We emphasize that the goal is not to fully solvepttodlem of segmenting
training examples (a topic that we will address in futuresegsh) but to objectively
evaluate whether the saliency maps resulting from Bayesasiency provide robust
and relevant information about the objects to be recognizbd example segmentation
algorithm is as follows.

1. all images are preprocessed by homomorphic filteringlliamination normal-
ization [16] and Gaussian low-pass filtering for noise reiguc

2. images from which an object is to be segmented are cadfetence imaged-or
each reference image,

(&) animageM is randomly selected, and itssalient locations sampled from
the associated posterior Gauss mixture, as defined by (Hzh Bcation
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(© (d)

Figure 6: lllustration of the segmentation algorithm. (a) referencegemdb) matching image; (c) inliers
mapped to the reference image plane; (d) average segmentatsdrsozerimposed on image (a); (e) seg-
mented patch. White and black circles in (a) and (b) represespectively, inliers and outliers returned by
RANSAC.

inherits the scale of the Gaussian from which it was samphadimage
patch of that scale is cropped around the location.

(b) the peak correlation between each patch@&nd computed. If it is greater
than a thresholdl.,,.., the patch is kept, otherwise discarded.

(c) an affine transformation is estimated from all matchedtpes using RANSAC [18].
If the number of the inliers returned by RANSAC is greatemtahresh-
old, T;,, the transformation is kept. Otherwis#&{ is rejected, a rejection
counter incremented, and step (2d) skipped.

(d) the inliers (patches) are mapped to the coordinate ficfris and a binary
segmentation mask set to the union of the transformed regibsupport.

(e) steps (2a) to (2d) are repeated until either a pre-sebauwf masks or
rejections are produced.

(f) segmentation masks are averaged and the object is ségpnfrom the
locations of the reference image where the average maskadegrthan a
thresholdT;,,qq%-

Figure 6 illustrates the segmentation process, markirectejl patches (outliers)
with black circles and inliers with white circles. Inliersegaas shown in 6(c), mapped
to the coordinate frame of the reference image (6(a)). N@tthe segmentation mask
produced by a single image (6(b)) can be poor due to the i@i&@in appearance
between the objects, or object views, depicted in the twayagsaStep (2e) guarantees
a much more robust segmentation mask (shown in 6(d)). Theestgd object patch
is shown in 6(e).

4 Experiments

To evaluate the performance of Bayesian saliency we relethe Caltech database,
which has been proposed as a testbed for object detectiba présence of clutter [2].
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Four image classes, faces (435 images of size 112x170) riiicte (800 images of
size 180x300), airplanes (800 images of size 200x300 ), eadaars (800 images of
size 150x180), were used as the classes of interest, andfbsatkground images was
also used as the negative class, with the experimental ggoppsed in [2], .

4.1 Implementation of Bayesian saliency

Two representative saliency detectors, a (DI) Harris-aepl(HarrLap) detector [14],
and a (DD) discriminant saliency (DiscSal) detector [13revselected to implement
the Bayesian saliency detectbr The HarrLap detector searches points that are in-
variant to rotation and scale changes [14], and can be testceas a sequence of two
steps:

1. a scale-space representation with pre-selected scalasli using the Harris
function,
w(x,01,0p) = ong(or) * VI(x)VTI(x) (12)

where
VI(x) = (I(x), I,(x))" 12)

is the spatial gradient of the image; an integration scale, ang, a differen-
tiation scale. Initial salient points are then selectedhatlbcal maxima of each
level of the representation.

2. an iterative algorithm is applied to simultaneously detke location and scale
of salient points. The extrema over scales of the Laplaofa@aussian,

[LoG(x,0n)| = UrQLUw:v(Xa on) + ]yy(xvan” (13)
is used to select the scale of salient points.

Since the algorithm does not produce a measure of saliererygsh, equal weights
were assigned to all resulting salient points.

The DiscSal saliency detector selects the salient feathegsare discriminant for
the class of object against objects in the other classesth@mdapplies a biologically
inspired model to detect salient points [13]. It was impleitaé as follows.

1. images are projected ontd&dimensional feature space, and the marginal dis-
tribution of each feature response under each dagsy (z|i),i € {0,1},k €
{0,..., K — 1}, is estimated. The features are then sorted by descendirg ma
ginal diversity,

md(Xy) =< KL[Px,y (z|i)||Px, (z) >y (14)

where< f(i) >y= Y11, Py(i)f(i), and K L[p|lq] = [ p(s)log &3 dx the
Kullback-Leibler divergence between p and g.

3The executable codes for implementing the two detectors arespectively
available on-line at http://www.robots.ox.ac.uk/"vggearch/affine/detectors.html and
http://www.svcl.ucsd.edu/projects/saliency/.
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2. features which are discriminant because they are infivenabout the back-
ground classY = 0) but not the class of interestY (= 1), i.e. H(X;|Y =
1) < H(Xy|Y = 0) or that have too small energy to allow reliable inference,
Var(Xy) < Ty, are eliminated.

3. the features of largest marginal diversity are selected.

4. a saliency map is generated by a biologically inspiredhitecture and salient
points are determined by a non-maximum suppression staigh w#its the scale
of each salient location to the spatial support of the featditargest response at
that location.

The method is made scale adaptive by including in the catelfdature set the discrete
cosine transform (DCT) features obtained by projectingo @¢he 8x8 DCT basis, the
result of a 4-level Gaussian pyramid image expansion.

The two sets of salient points were then fused into a Bayessihency (BayesSal)
map according to (10), and finally, the centers of the rasmlGauss mixture were
selected as salient points.

4.2 Salient locations

We start the evaluation of the Bayesian saliency detectoexamining the salient
locations detected for different object classes. Figureesents some examples of
the salient locations produced by the three detectorst{tatawith saliency strength
lower than50% of the largest are omitted). Note how Bayesian saliency ¢oesb
the strengths of the two saliency mechanisms: while Disti8aés HarrLap to focus
in the area of the object of interest, the addition of Harrlbafps “clean up” some
of the unstable locations detected by DiscSal. To obtainlgective characteriza-
tion of the improvement, we measured the precision of thiersialocations detected
with the three methods. For this, the set of points on theesaji map of saliency
strength greater than a threshold (equalfa,,;+(maximum saliency strength), with
Thsa € {0,0.1,...,1} on this experiment) was first selected, the number of points
inside the ground truth (a manually produced bounding bdk@bbject) was counted,
and precision was measured as the ratio between the numpaints inside the ground
truth and the total number of selected points, i.e.

# of points inside the ground truth

precision = total # of points selected
Finally, precision was over all images in the test set.

Figure 8 shows the measured precisions, as a function ohtheholdT'h,;, on
the face and motorbike classes (results on the other tweedasere similar, and are
omitted for brevity), with the three saliency detectorsdamrious values ot for
BayesSal). Several interesting observations can be madg, HarrLap performed
quite poorly, confirming the argument that DI detectors dbprmovide much informa-
tion about the object of interest. Second, BayesSal withelartends to have the best
precision, indicating that DD saliency is a crucial reqoient for achieving informa-
tive salient points. Note, however, that even for BayesS#i amall o precision is
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Figure 7:Examples of Bayesian saliency detection. (left) HarrLapgd(he) DiscSal and (right) BayesSal.

considerably higher than that of HarrLap. This is due toftwis of attentionrmech-
anism introduced by DD, which penalizes the DI points loddge from the object of
interest. Third, because when regularized by the moreifmxhHarrLap saliency maps
Bayesian saliency becomes much sparser than what is pogstblDiscSal alone, the
corresponding precision curves tend to be flatter, i.e. rnm@ensitive to the thresh-
old value. Finally, the best performance was always achiaith a saliency detector
somewhere in between the DI (HarrLap) and DD (DiscSal) ex¢é% i.e. BayesSal
with o € (0,00). This confirms the argument that optimal performance regui
trade-off between the ability to meet application-spediftals (in this case “class-
discrimination”) and universal properties that assuredggeneralization (in this case
“salient point stability”, the criterion for which the Hasrdetector is optimal).

4.2.1 Segmentation of samples

To evaluate the robustness of BayesSal locations, the segtioa algorithm of Sec-
tion 3 was applied to to two classes, face and rear-car, wd@ahbe well represented
by a template. The following parameters were udeé: 60, 1., = 0.6, T}, = 12,
number of masks = 20, number of bad matches = 40, 7and; = 0.4.

The quality of the segmented examples was evaluated by cormgpdem with
ground truth data. The relative overlap between the segrdesxample (represented
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Figure 8: Precision of salient locations of the BayesSal (with vasiel DiscSal and HarrLap saliency
detector.

as a rectangle on the image) and the ground truth was medsyred

_ |ANnB|

overlap(A, B) = A0B

(15)

whereA, B are two bounding boxes and| the area of A.

Figure 9 shows the cumulative distribution function for ttetative overlap of
the examples segmented by the three saliency detectorssuxmisingly, BayesSal
achieves the best performance, i.e. the curve closer tdafdelction located at00%
overlap, confirming the advantages of relying on posteiigtribution for salient loca-
tions that combines the discriminant power of DiscSal amedrtibustness of HarrLap.
To provide a sense for the quality of the segmented patclkespmes of faces seg-
mented with various values of overlap are also shown in Eidx. Interestingly, the
algorithm produces “zero” overlap for aboli% of the images. Closer investigation
of these cases reveals that they are images with either faination or scale dras-
tically different from the remainder of the examples (whfalis outside the range of
scales covered by our features), or could even be argued betdng to the class (e.g.
cartoons of faces). Examples of these “outliers” are showfigure 11.
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Figure 9: Cumulative distribution function for the relative overlaptiveen segmented examples and
manual ground truth for (a) faces and (b) cars.



4.3 Classification of saliency maps 15

A AHETR

Figure 10:lllustrative examples of segmented faces with overlap measargging from 0.5 to 0.9.

Figure 11:Images rejected by the segmentation algorithm.

4.3 Classification of saliency maps

Finally, we compared the performance of the different saljedetectors on an object
detection task. In particular, we used the simple classifieposed in [13], which
consists of feeding a histogram of saliency map intensttiea support vector ma-
chine (SVM), and measuring the probability of classificaterror. This experiment
guantifies how relevant the extracted saliency informaiidior recognition purposes.
The performance of each classifier is measured by the reegdarating characteristic
(ROC) equal-error classification ratg(Ealse positive) = 1 — p(True positive)).
As presented in Table 1, BayesSal generated better classificesults than the two
individual saliency detectors, DiscSal and HarrLap. Fanpteteness, the table also
presents the results, on this database, of a state-ofrtineethod for recognition from
cluttered scenes (the constellation-based classifier]pf espite its simplicity, the
saliency-based classifier achieves better recogniti@s rat
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