
Parametric Regression on the Grassmannian

Supplementary Material

This supplementary material contains technical details and additional results that were left-
out in the original submission for brevity. References to sections or figures in the manuscript are
marked as [Paper, XXX]. The source code for all approaches (including our implementations of
Su et al. [1] and Rentmeesters [2]) is publicly available at:

https://bitbucket.org/yi_hong/ggr_all

1 Residuals to curves on G(p, n)
In [Paper, Algorithms 1 and 2] we need the gradient of the residuals d2g(Y(ri),Yi) (here, Y(ri)
is equal to X1(ri)) with respect to the base point Y(ri) in order to compute the jump conditions
for the adjoint variable λ1. The residual measures the squared geodesic distance between the point
Y(ri) on the fitted curve and the corresponding measurement Yi. To derive this gradient, we
consider the constrained minimization problem of two points with exact matching:

E(Y(r)) =

r1∫
r0

tr Ẏ(r)>Ẏ(r) dr,

subject to Y(r0) = Y0,Y(r1) = Y1

and Y(r0)>Y(r0) = Ip ,

(1)

with Ẏ(r) = (In − Y(r)Y(r)>)C. We know that the squared distance can be formulated as
d2g(Y0,Y1) = minY(r)E(Y(r)) for r0 = 0 and r1 = 1. After adding the constraint on the form

of Ẏ(r) via the time-dependent adjoint variable λ and the constraint Y(0)>Y(0) = Ip via λc, we
obtain (by taking variations), among other terms, the optimality condition

(2C> − λ>)(In −Y(r)Y(r)>) = 0 , (2)

and another optimality condition for a free initial condition1 Y(0)

∇Y(0)E = −λ(0) + Y(0)(λ>c + λc) = 0 . (3)

1Note that technically we started with Y(r0) = Y0, i.e., this condition would not be free and we would not need
to consider variations of Y(r0). However, our goal is to compute the energy gradient with respect to the initial
condition Y(r0). Consequentially, the variation of the energy with respect to it allows us to compute ∇Y(0)E.

1

https://bitbucket.org/yi_hong/ggr_all

Left-multiplication by Y(0)> yields λc + λ>c = Y>(0)λ(0) which we can use to obtain, upon back-
substitution into Eq. (3),

− (In −Y(0)Y(0)>)λ(0) = 0 . (4)

Using Eq. (2) and the above expression for Ẏ(r), we can obtain

∇Y(0)E = −(In −Y(0)Y(0)>)λ(0) = −2Ẏ(0) , (5)

with Ẏ(0) being the tangent vector at Y(0) such that ExpY(0)(Ẏ(0)) = Y(1). This tangent vector

can be computed via the log-map Ẏ(0) = LogY(0)(Y(1)) using the efficient algorithms in [3] for
instance. Further details are also provided in Section 5 of this supplementary material.

2 Line search on the Grassmannian

Performing a line search on the Grassmann manifold in [Paper, Algorithm 1] is not as straight-
forward as in Euclidean space since we need to assure that the constraints for Y(r0) and Ẏ(r0) are
fulfilled for any given step. In particular, changing Y(r0) will change the associated tangent vector
Ẏ(r0). Once, we have updated Y(r0) to Yu(r0) by moving along the geodesic defined by Y(r0)
and the gradient of the energy with respect to this initial point, i.e., ∇Y(r0)E, we can transport

the tangent Ẏ(r0) to Yu(r0) using the closed form solution for parallel transport of [4] (see also
Section 5). In particular,

Ẏu(r0) = [Y(r0)V U]

(
− sin tΣ

cos tΣ

)
U> + (In −UU>)Ẏ(r0) (6)

where H = UΣV> is the compact SVD of the tangent vector at Y(r0) along the geodesic connecting
Y(r0) and Yu(r0). Note that t = 1 in Eq. (6). Algorithm 1 lists the line search procedure in full
technical detail.

Algorithm 1: Grassmannian equivalent of xk+1 = xk −∆tg, where ∆t is the timestep and g
is the gradient.

Data: Y(r0), Ẏ(r0), ∇Y(r0)E, ∇Ẏ(r0)
E, ∆t

Result: Updated Yu(r0) and Ẏu(r0)

Compute Ẏ
u

(r0) = Ẏ(r0)−∆t∇X2(r0)E
Compute Yu(r0) by flowing for ∆t along geodesic with initial condition (Y(r0),−∇X1(r0)E)

Transport Ẏ
u

(r0) along the geodesic connecting Y(r0) to Yu(r0), using (6), resulting in

Ẏ
u

T (r0)
Project updated initial velocity onto the tangent space (for consistency):

Ẏu(r0)← (In −Yu(r0)Yu(r0)>)Ẏ
u

T (r0).

Note: when implementing [Paper, Algorithm 1] and [Paper, Algorithm 2] it is important
to pay attention to the ordering of the matrix multiplications, as performing them in an appropriate
order will reduce time and memory complexity.

2

3 Cubic splines on G(p, n)
We derive the evolution equations for X3 and X4 of [Paper, Section 5.5]. First, we show that
by enforcing X>1 X2 = 0 at all time points, we only need to enforce X>1 X1 = Ip initially. This can
be seen by taking the derivative of X>1 X1 with respect to r, i.e.,

d

dr
X>1 X1 = Ẋ>1 X1 + X>1 Ẋ1 = X>2 X1 + X>1 X2 = 0 . (7)

In other words, if X1(0)>X1(0) = Ip holds, then X>1 X1 = Ip holds for all r by enforcing X>1 X2 = 0
at all time points. With this result in mind, the optimization problem of [Paper, Eq. (22)] can
be rewritten as

min
Θ

E(Θ) =
1

2

1∫
0

tr X>3 X3 dr

subject to X2 = Ẋ1

X3 = Ẋ2 + X1X
>
2 X2,

X>1 X2 = 0,

X1(0)>X1(0) = Ip .

(8)

For the first three time-evolving constraints, we introduce three time-dependent adjoint vari-
ables, λ1, λ2, and λ3, to convert the constrained problem to an unconstrained one. We then take
the variations with respect to the state variables which results in the following system of adjoint
equations:

−λ̇>1 + (X>2 X2)λ>2 + λ3X
>
2 = 0,

−λ̇>2 − λ>1 + X>1 λ2X
>
2 + λ>2 X1X

>
2 + λ>3 X>1 = 0,

X>3 − λ>2 = 0 .

(9)

Using X3 = λ2 and setting X4 = λ1, we can rewrite the adjoint equations (9) as

Ẋ>4 = (X>2 X2)X>3 + λ3X
>
2 , (10)

Ẋ>3 = −X>4 + X>1 X3X
>
2 + X>3 X1X

>
2 + λ>3 X>1 . (11)

Next, we derive the form of X3 using the dynamic constraints. By taking the time-derivative of
X>1 X2 we get

d

dr
X>1 X2 = Ẋ>1 X2 + X>1 Ẋ2

= Ẋ>1 X2 + X>1 (X3 −X1X
>
2 X2)

= X>2 X2 + X>1 X3 −X>2 X2

= X>1 X3 .

(12)

3

However, the constraint X>1 X2 = 0 implies d
drX

>
1 X2 = 0 which yields

X>1 X3 = 0 . (13)

Next X>1 X3 = 0 implies d
drX

>
1 X3 = 0 and we get, as a side result,

X>2 X3 + X>1 Ẋ3 = 0 . (14)

We can then use (13) to simplify Eq. (11) to

− Ẋ>3 −X>4 + λ>3 X>1 = 0 ⇔ −Ẋ3 −X4 + X1λ3 = 0 . (15)

Upon left-multiplication of Eq. (15) by X1 we obtain the expression for λ3 as

λ3 = X>1 Ẋ3 + X>1 X4
(14)
= X>1 X4 −X>2 X3 . (16)

Substituting λ3 into Eq. (15) yields the evolution equation for Ẋ3 as

Ẋ3 = −X4 + X1X
>
1 X4 −X1X

>
2 X3 (17)

and substituting λ3 in Eq. (10) yields the evolution equation for Ẋ4

Ẋ4 = X3X
>
2 X2 + X2X

>
4 X1 −X2X

>
3 X2 . (18)

4 System identification

To support a non-uniform weighting of samples during system identification in [Paper, Section
7], we propose a temporally localized variant of [5]. This is beneficial in situations where we
need a considerable number of frames for stable system identification, yet not all samples should
contribute equally to the LDS parameter estimates. Specifically, given the measurement matrix
M = [y1, · · · ,yτ] and a set of weights w = [w1, · · · , wτ], such that

∑
i wi = τ , we perform a

weighted SVD of M, i.e.,
UΣV> = Mdiag(

√
w) . (19)

Then, as in [5], C = U and X = ΣV>. Once the state matrix X has been determined, A can

be computed as A = Xτ
2W

1
2 (Xτ−1

1 W
1
2)†, where † denotes the pseudoinverse, Xτ

2 = [x2, · · · ,xτ],

Xτ−1
1 = [x1, · · · ,xτ−1] and W

1
2 is a diagonal matrix with W

1
2
ii = [12 (wi + wi+1)]1/2.

5 Differential geometric tools on G(p, n)
In this part of the supplementary material, we present the differential geometric “tools” required
for our forward / backward shooting approach. In particular, we provide formulas / derivations
for the Riemannian exponential map (exp-map), the inverse exponential map (aka log-map) and
parallel transport on G(p, n). Additionally, we list exemplary implementations in MATLAB (partly
taken from the manopt [6] toolbox and our source code).

4

http://www.manopt.org

5.1 Exponential map

The exponential map (exp-map) maps a point D in the tangent space TYG(p, n) at Y = span(Y)
to a point Z = span(Z) on the manifold G(p, n), i.e.,

ExpY(tD) = Z, t ∈ [0, 1]

along the geodesic that connects Y and Z. By letting D = UΣV> denote the compact SVD
decomposition of D, the exp-map on G(p, n), in terms of representers Y and Z, can be written as

Z = YV cos(tΣ)V> + U sin(tΣ)V> . (20)

This computation is implemented in the manopt [6] toolbox. For convenience, MATLAB code
(adjusted for readability) is listed below. Computation of D via the inverse exponential map, given
Y and Z as input, is described in the next section.

function Z = exp map(Y,D,t)
% EXP MAP computes the exponential map on the Grassmannian G(p,n).
%
% Input:
% Y − (n x p) matrix (representer for subspace \mathcal{Y})
% D − (n x p) matrix (tangent vector at \mathcal{Y})
% t − Time in [0,1]
%
% Output:
%
% Z − (n x p) matrix; Result of walking along the geodesic, defined
% by (Y,D), for time t;
%
% Reference − Eq. (2.65) from
%
% Edelman et al.
% The Geometry of algorithms with orthogonality constraints
% Online: http://arxiv.org/pdf/physics/9806030.pdf

tD = t*D;
[U, S, V] = svd(tD, 0);
cosS = diag(cos(diag(S)));
sinS = diag(sin(diag(S)));
Z = Y*V*cosS*V' + U*sinS*V';
[Q, unused] = qr(Z, 0);
Z = Q;

end

5.2 Inverse exponential map

The inverse exponential map (log-map) computes the mapping from a neighborhood of U ⊂ G(p, n)
of X to TXG(p, n). In terms of representers X,Y for the subspaces X = span(X),Y = span(Y) we
will write

H = LogX(Y) .

In other words, H is the direction matrix which allows you to start at X and walk along the geodesic
in the direction of H to reach Y in unit time (t = 1), i.e.,

Y = ExpX(H) .

5

http://www.manopt.org

Let H = UΣV>. By multiplying Eq. (20) with X> on the left-hand side (and t = 1), we get

X>Y = X>X︸ ︷︷ ︸
=Ip

V cos(Σ)V> + X>U︸ ︷︷ ︸
=0

sin(Σ)V>

= V cos(Σ)V> .

Consequently, it follows that
U sin(Σ)V> = Y −XX>Y .

We can now write

U sin(Σ)V>(V cos(Σ)V>)−1 = (Y −XX>Y)(X>Y>)−1

which – upon noting that (1) (V cos(Σ)V>)−1 = V cos(Σ)−1V> and (2) V>V = Ip – reduces to

U tan(Σ)V> = (Y −XX>Y)(X>Y>)−1 .

This yields H via a SVD decomposition of (Y −XX>Y)(X>Y>)−1 as

H = LogX(Y) = U arctan(Σ)V> .

This is also the way the Grassmannian log-map is implemented in the manopt [6] toolbox. For
convenience, MATLAB code (adjusted for readability) is listed below.

function H = log map(X,Y)
% LOG MAP computes the inverse exponential map on the Grassmannian.
%
% Input:
% X − (n x p) matrix (representer for subspace \mathcal{X})
% Y − (n x p) matrix (representer for subspace \mathcal{Y})
%
% Output:
%
% H − (n x p) direction matrix in the tangent space at subspace \mathcal{X}

[unused, p] = size(X);
ytx = Y.'*X;
At = Y.'−ytx*X.';
Bt = ytx\At;
[U, S, V] = svd(Bt.', 'econ');

U = U(:, 1:p);
S = diag(S);
S = S(1:p);
V = V(:, 1:p);
H = U*diag(atan(S))*V.';

end

5.3 Parallel transport

Given two subspaces X ,Y, represented via X,Y and a direction matrix H ∈ TXG(p, n) such that
Y = ExpX(H), the objective is to transport an arbitrary tangent vector ∆ at TXG(p, n) to TYG(p, n)

6

http://www.manopt.org

along the geodesic connecting X and Y. According to Edelman et al. [4], letting H = UΣV>,
parallel transport (denoted by τ) can be computed via

τ∆(t) = −YV sin(tΣ)U>∆ + U cos(tΣ)U> + (In −UU>)∆, t ∈ [0, 1] .

This is not implemented in the manopt toolbox. For convenience, MATLAB code is listed below.

function Delta = parallel transport(O1,B,O2,t)
% PARALLEL TRANSPORT parallel transports a tangent along geodesic.
%
% Input:
% O1 − (n x p) matrix (representer for subspace \mathcal{X})
% O2 − (n x p) matrix (representer for subspace \mathcal{Y})
% B − (n x p) matrix (tangent vector at \mathcal{X})
% t − time in [0,1]
%
% Output:
%
% Delta − (n x p) matrix (tangent vector B, transported to the
% tangent space at \mathcal{Y}

H = log map(O1,O2); % compute direction matrix
[U,S,V] = svd(H, 'econ');
Sigmat = diag(S)*t;
M = [diag(−sin(Sigmat)); diag(cos(Sigmat))];
part0 =[O1*V U]*(M*(U'*B));
part1 = B − U*(U'*B);
Delta = part0 + part1;

end

5.4 Miscellaneous

The paper only gives a very concise description of the Riemmannian structure of G(p, n). Here,
we provide a more comprehensive description of the relationship between ∆Y and C from [Paper,
Eq. (16)]. Every tangent direction ∆Y ∈ TYG(p, n) at a point Y ∈ G(p, n) (represented by Y) can
be written as

∆Y = (In −YY>)C

= (Y⊥Y>⊥)C

where C is an arbitrary (n× p) matrix and Y⊥ ∈ Rn×(n−p) denotes the orthogonal complement of
Y. This can be interpreted as projecting an arbitrary (n× p) matrix into the subspace span(Y⊥).
Now, if we take the canonical Euclidean metric, we get

tr (∆>Y∆Y) = tr [(In −YY>)C]>[(In −YY>)C]

= tr [C>(In −YY>)C]

since, for orthogonal projectors P = (In −YY>), it holds that P = P2. This is the result listed in
[Paper, Eq. (16)].

7

http://www.manopt.org

6 Additional curve-fitting comparisons

6.1 Synthetic data

In [Paper, Fig. 4], we present a comparison to the work of Su et al. [1] for only one specific
choice of data-matching (controlled via λ1) vs. smoothness (controlled via λ2) balance (due to
space restrictions), in particular, (λ1, λ2) = (1, 0.1) ⇒ λ = λ1/λ2 = 10. Fig. 1 shows additional
comparisons for various choices of λ from λ = 10 in Fig. 1(a) to λ = 0.1 in Fig. 1(d).

6.2 Real (shape) data

In the paper, we compare our methods (Std-GGR, TW-GGR and CS-GGR) to Rentmeesters [2]
and Su et al. [1] on the shape data of [Paper, Section 7]. For [2], the evaluation protocol is exactly
the same as for our approaches, since we also obtain a parametric regression model.

For Su et al. [1], we note two subtle adjustments in the evaluation protocol. First, we cannot run
full leave-one-subject-out cross-validation (CV), since we cannot leave-out the first or the last data
point, simply because we obtain the sought-for curve as a collection of samples along that curve.
Consequently, there would be no way to extrapolate to the left-out time points. For that reason, we
always keep the data instances at the first and last time point and perform leave-one-subject-out
CV on the remaining instances. Computation of the R2 score and the MSE on the corpus callosum
data is then done in the same way as for Std-GGR, TW-GGR and CS-GGR. Table 1 lists the
detailed results of Su et al. [1] for various choices of λ1/λ2.

λ1 λ2 MSE (e-2) R2

1 0.1 1.36 0.29
1 1.0 1.27 0.20
1 5.0 1.25 0.16
1 10.0 1.25 0.15

Table 1: Results of Su et al. [1] on the corpus callosum data of [Paper, Section 7] for various choices of
λ1/λ2. The best result of our methods, reported in [Paper, Table 2], is an MSE of 1.22e-2 (with an R2

score of 0.15). We report the result of Su et al. at λ1/λ2 = 1/10 (i.e., data matching vs. smoothness) in
the paper (marked green here), since the corresponding MSE of 1.25e-2 is closest to the MSE of our best
result. Any further increase in λ2 did not lead to better MSE scores.

The second difference is in the evaluation protocol for the rat calvarium data. This dataset has
multiple data instances at each time point. In particular, we have 18 data instances (i.e., the 18
individuals) at each of the 8 time points in the data. The method of Su et al. does not directly
support such a setting. For that reason, we fit one model per individual, compute MSE and R2

and then average the results. Table 2 reports the detailed results for various choices of λ1/λ2.

8

λ1 λ2 MSE (e-3) R2

1 0.1 4.4 0.97
1 1.0 4.4 0.93
1 5.0 4.3 0.92
1 10.0 4.1 0.89

Table 2: Results of Su et al. [1] on the rat calvarium data of [Paper, Section 7] for various choices of
λ1/λ2. The best result of our methods, reported in [Paper, Table 2], is an MSE of 1.2e-3 (with a R2

score of 0.81). We report the result of Su et al. at λ1/λ2 = 1/10 (i.e., data matching vs. smoothness) in
the paper (marked green here), since the corresponding MSE of 4.1e-3 is closest to the MSE of our best
result. Any further increase in λ2 did not lead to better MSE scores.

References

[1] J. Su, I. Dryden, E. Klassen, H. Le, and A. Srivastava, “Fitting smoothing splines to time-indexed,
noisy points on non-linear manifolds,” Image Vision Comput., vol. 30, pp. 428–442, 2012.

[2] Q. Rentmeesters, “A gradient method for geodesic data fitting on some symmetric Riemannian mani-
folds,” in CDC-ECC, 2011.

[3] K. Gallivan, A. Srivastava, L. Xiuwen, and P. V. Dooren, “Efficient algorithms for inferences on Grass-
mann manifolds,” in Statistical Signal Processing Workshop, 2003, pp. 315–318.

[4] A. Edelman, T. Arias, and S. T. Smith, “The geometry of algorithms with orthogonality constraints,”
SIAM J. Matrix Anal. Appl., vol. 20, no. 2, pp. 303–353, 1998.

[5] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto, “Dynamic textures,” Int. J. Comput. Vision, vol. 51,
no. 2, pp. 91–109, 2003.

[6] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a Matlab toolbox for optimization on
manifolds,” Journal of Machine Learning Research, vol. 15, pp. 1455–1459, 2014. [Online]. Available:
http://www.manopt.org

9

http://www.manopt.org

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.1)

No noise

Ours (MAE=0.0007)

Su12a (MAE=0.0014)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.2)

No noise

Ours (MAE=0.0013)

Su12a (MAE=0.0016)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.4)

No noise

Ours (MAE=0.0026)

Su12a (MAE=0.0032)

(a) λ1 = 1, λ2 = 0.1

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.1)

No noise

Ours (MAE=0.0007)

Su12a (MAE=0.0008)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.2)

No noise

Ours (MAE=0.0013)

Su12a (MAE=0.0013)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.4)

No noise

Ours (MAE=0.0026)

Su12a (MAE=0.0024)

(b) λ1 = 1, λ2 = 0.5

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.1)

No noise

Ours (MAE=0.0007)

Su12a (MAE=0.0010)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.2)

No noise

Ours (MAE=0.0013)

Su12a (MAE=0.0014)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.4)

No noise

Ours (MAE=0.0026)

Su12a (MAE=0.0024)

(c) λ1 = 1, λ2 = 1

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.1)

No noise

Ours (MAE=0.0007)

Su12a (MAE=0.0026)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.2)

No noise

Ours (MAE=0.0013)

Su12a (MAE=0.0027)

0 5 10 15
0.92

0.93

0.94

0.95

0.96

0.97

Frequency noise=N(0,0.4)

No noise

Ours (MAE=0.0026)

Su12a (MAE=0.0030)

(d) λ1 = 1, λ2 = 10

Figure 1: Additional comparisons to Su et al. [1] for various choices of λ1, λ2 and different levels of
Gaussian noise added to the signal frequencies. The x-axis shows the index of 20 different signal frequencies
(obtained by sampling a sine function), the y-axis shows the real-part of the largest eigenvalue of the
state-transition matrix A, reconstructed from the observability matrices of the associated linear dynamical
systems (Fig. 1(a) is shown in [Paper, Fig. 4]).

10

