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Parametric Regression on the Grassmannian
Yi Hong, Roland Kwitt, Nikhil Singh, Nuno Vasconcelos and Marc Niethammer

Abstract—We address the problem of fitting parametric curves on the Grassmann manifold for the purpose of intrinsic parametric
regression. We start from the energy minimization formulation of linear least-squares in Euclidean space and generalize this concept
to general nonflat Riemannian manifolds, following an optimal-control point of view. We then specialize this idea to the Grassmann
manifold and demonstrate that it yields a simple, extensible and easy-to-implement solution to the parametric regression problem. In
fact, it allows us to extend the basic geodesic model to (1) a “time-warped” variant and (2) cubic splines. We demonstrate the utility of
the proposed solution on different vision problems, such as shape regression as a function of age, traffic-speed estimation and crowd-
counting from surveillance video clips. Most notably, these problems can be conveniently solved within the same framework without
any specifically-tailored steps along the processing pipeline.

Index Terms—Parametric regression, Grassmann manifold, geodesic shooting, time-warping, cubic splines
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1 INTRODUCTION

MANY data objects in computer vision problems
admit a subspace representation. Examples in-

clude feature sets obtained after dimensionality reduc-
tion via principal component analysis (PCA), observabil-
ity matrix representations of linear dynamical systems,
or landmark-based representations of shapes. Assuming
equal dimensionality (e.g., the same number of land-
marks), data objects can be interpreted as points on the
Grassmannian G(p, n), i.e., the manifold of p-dimensional
linear subspaces of Rn. The seminal work of [1] and
the introduction of efficient processing algorithms to
manipulate points on the Grassmannian [2] has led to a
variety of principled approaches to solve different vision
and learning problems. These include domain adapta-
tion [3], [4], gesture recognition [5], face recognition
under illumination changes [6], or the classification of
visual dynamic processes [7]. Other works have explored
subspace estimation via conjugate gradient descent [8],
mean shift clustering [9], or the definition of suitable
kernel functions [10], [11], [12] that can be used with
a variety of kernel-based machine learning techniques.

Since, most of the time, the primary objective is
to perform classification or recognition tasks on the
Grassmannian, the problem of intrinsic regression in a
parametric setting has gained little attention. However,
modeling the relationship between manifold-valued data
and associated descriptive variables has the potential
to address many problems in a principled way. For
instance, it enables prediction of the descriptive variable
while respecting the geometry of the underlying space.
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Further, in scenarios such as shape regression, a common
problem in computational anatomy, we are specifically
interested in summarizing continuous trajectories that
capture variations in the manifold-valued variable as
a function of the scalar independent variable. Fig. 1
illustrates these two inference objectives. While predic-
tions of the scalar-valued variable could, in principle, be
formulated within existing frameworks such as Gaussian
processes or support vector regression, e.g., by using
Grassmann kernels [10], [11], it is unclear how to or if it
is possible to address the second inference objective in
such a formulation.

In this work, we propose an approach to intrinsic
regression which allows us to directly fit parametric
curves to a collection of data points on the Grassmann
manifold, indexed by a scalar-valued variable. This fa-
cilitates to address both aforementioned inference tasks
within the same framework. Preliminary versions of this
manuscript [13], [14] focused on (1) fitting geodesics and
(2) how to re-parametrize the independent variable to
increase flexibility. The contribution of this work has
multiple aspects, as outlined below.

First, we revisit the optimal-control perspective of
curve fitting in Euclidean space as an example (Section 3)
and then discuss extensions of linear and cubic spline
regression on Riemannian manifolds (Section 4) and the
Grassmannian in particular (Section 5). We argue that
this exposition offers greater insight into the proposed
solution of shooting strategy via optimal-control.

Second, we introduce a variational spline formulation
(Section 5.5) based on the concept of acceleration control.
While this is similar to prior work in the literature,
e.g., Machado et al. [15], it bypasses the need to explicitly
compute the Riemannian curvature tensor which is a
considerable advantage from a computational point of
view. We eventually arrive at a set of evolution equa-
tions for cubic splines on the Grassmannian that enable
straightforward numerical optimization. All proposed
models are simple and natural extensions of classic re-
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Fig. 1: Illustration of parametric regression and inference. At the point marked ⊗, the objective for (1) traffic videos is to predict the
independent variable r∗ (e.g., speed), whereas for (2) corpus callosum shapes we seek the manifold-valued Y∗ at specific values
of the independent variable (e.g., age). Elements on the Grassmannian are visualized as lines through the origin, i.e., Yi ∈ G(1, 2).

gression models in Euclidean space. They provide a
compact representation of the complete curve, as opposed
to discrete curve fitting approaches which typically re-
turn a sampling of the sought-for curves (cf. [16]). In
addition, the parametric form of the curves, i.e., given
by initial conditions, allows to freely move along them
and synthesize additional observations. We also note
that parametric regression opens up the possibility of
statistical analysis of curves on the manifold, which is
essential, e.g., in comparative studies in medical imaging.

Our third contribution is a more comprehensive (com-
pared to [13], [14]) experimental evaluation on synthetic
(Section 6) and real data (Section 7) which includes
comparisons to alternative strategies from the literature.
In particular, we demonstrate versatility of the proposed
approach on two types of vision problems where data
objects admit a representation on the Grassmannian.
First, we model the aging trends in human brain struc-
tures and the rat calvarium (Section 7.2) under an affine-
invariant representation of shape [17]. Second, we use
our models to predict traffic speed and crowd counts
(Section 7.3) from dynamical system representations of
surveillance video clips without any specifically tailored
preprocessing. All these problems are solved within the
same framework with minor parameter adjustments.

In summary, our approach offers a simple solution
that is (1) extensible, (2) easy to implement and (3) does
not require specific knowledge of differential geometric
concepts such as curvature or Jacobi fields.

2 PREVIOUS WORK

At the coarsest level, we distinguish between two cat-
egories of regression approaches: parametric and non-
parametric strategies, with all the known trade-offs on
both sides [18]. In fact, non-parametric regression on
nonflat manifolds has gained considerable attention over
the last years. Strategies range from kernel regression
[19] on the manifold of diffeomorphic transformations
to gradient-descent [20] approaches on manifolds com-
monly encountered in computer vision, such as the
group of rotations SO(3) or Kendall’s shape space. In
other works, discretizations of the curve fitting prob-
lem have been explored [21], [22], [16] which, in some

cases, even allow to employ second-order optimization
methods [23]. Because our work is a representative of
the parametric category, we mostly focus on parametric
approaches in the following review.

While differential geometric concepts, such as
geodesics and intrinsic higher-order curves, have
been well-studied [24], [25], [26], [15], [27], their use
for parametric regression, i.e., finding parametric
relationships between the manifold-valued variable and
an independent scalar-valued variable, has only recently
gained interest. A variety of methods extending concepts
of regression in Euclidean space to nonflat manifolds
have been proposed. Rentmeesters [28], Fletcher [29]
and Hinkle et al. [30] address the problem of geodesic
fitting on Riemannian manifolds, primarily focusing on
symmetric spaces, to which the Grassmannian belongs.
Batzies et al. [27] study a theoretical characterization
of fitting geodesics on the Grassmannian. Niethammer
et al. [31] generalized linear regression to the manifold
of diffeomorphisms to model image time-series data,
followed by works extending this concept [32], [33] and
enabling the use of higher-order models [34].

From a conceptual point of view, we can identify
two groups of solution strategies to solve parametric
regression problems on nonflat manifolds: first, geodesic
shooting based strategies which address the problem
using adjoint methods from an optimal-control point of
view [31], [32], [33], [34], [30]; the second group com-
prises strategies which are based on optimization tech-
niques that leverage Jacobi fields to compute the required
gradients [28], [29]. Our approach is a representative of
the first category. Unlike Jacobi field approaches, our
method does not require computation of the curvature
explicitly and easily extends to higher-order models,
such as the proposed cubic splines extension.

In the context of computer-vision problems, Lui [5]
recently adapted the known Euclidean least-squares so-
lution to the Grassmannian. While this strategy works
remarkably well for the presented gesture recognition
tasks, the formulation does not guarantee the minimiza-
tion of the sum-of-squared geodesic distances within
the manifold, which would be the natural extension of
least-squares to Riemannian manifolds according to the
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Fig. 2: Illustration of time-warped regression in R. The dashed
straight-line (middle) shows the fitting result in the warped time
coordinates, and the solid curve (right) demonstrates the fitting
result to the original data points (left).

literature. Hence, the geometric and variational interpre-
tation of [5] remains unclear. In contrast, we address the
problem from the aforementioned energy-minimization
point of view which allows us to guarantee, by design,
consistency with the geometry of the manifold.

To the best of our knowledge, the closest works to ours
are [28], [29] and [27] in the context of fitting geodesics,
as well as [15] (and to some extent [30]) in the context
of fitting higher-order curves.

In [27], Batzies et al. present a theoretical study of
fitting geodesics (i.e., first-order curves) on the Grass-
mannian and derive a set of optimality criteria. However,
the work is purely theoretical and, as mentioned in
[27, Sect. 1], the objective is not to provide a numer-
ical solution scheme. Rentmeesters [28] and Fletcher
[29] propose optimization based on Jacobi fields to fit
geodesics on general Riemannian manifolds. Contrary
to our approach, it does not follow trivially how to
generalize [28] (or [29]) to higher-order models.

In [15], Machado et al. specifically address the problem
of fitting higher-order curves on Riemannian manifolds.
Based on earlier works by Noakes et al. [24], Camarinha
et al. [25] and Crouch & Leite [26], they introduce
a different variational formulation of the problem and
derive optimality criteria from a theoretical point of
view. From a practical perspective, it remains unclear
(as with [27] in case of geodesics) how these optimality
criteria translate into a numerical optimization scheme.
In other work, Hinkle et al. [30] address the problem of
fitting polynomials, but mostly focus on manifolds with
a Lie group structure1. In that case, adjoint optimization
is greatly simplified. However, in general, curvature
computations are required which can be tedious.

In comparison to prior work, we derive alternative
optimality criteria for geodesics and cubic splines using
principles from optimal-control. These conditions not
only form the basis for our shooting approach, but
also naturally lead to convenient iterative algorithms.
By construction, the obtained solutions are guaranteed
to be the sought-for curves (i.e., geodesics, splines) on
the manifold. In addition, our formulation for cubic
splines does not require computation of the Riemannian
curvature tensor.

1. G(p, n) does not possess such a group structure.
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Fig. 3: Cubic spline regression in R. The left side shows the
regression result, and the remaining plots show the other states.

3 REGRESSION IN Rn VIA OPTIMAL-CONTROL

We start with a review of linear regression in Rn and dis-
cuss its solution via optimal-control. While regression is
a well studied statistical technique and several solutions
exist for univariate and multivariate models, we will see
that the presented optimal-control perspective not only
allows to easily generalize regression to manifolds but
also to define more complex parametric models on these
manifolds.

3.1 Linear regression

A straight line in Rn can be defined as an acceleration-
free curve with parameter t, represented by states,
(x1(t), x2(t)), such that ẋ1 = x2, and ẋ2 = 0, where
x1(t) ∈ Rn is the position of a particle at time t and
x2(t) ∈ Rn represents its velocity at t. Let {yi}N−1i=0 ∈ Rn
denote a collection of N measurements at time instances
{ti}N−1i=0 with ti ∈ [0, 1]. We define the linear regression
problem as that of estimating a parametrized linear
motion of the particle x1(t), such that the path of its
trajectory best fits the measurements in the least-squares
sense. The unconstrained optimization problem, from an
optimal-control perspective, is

min
Θ

E(Θ) =

N−1∑
i=0

‖x1(ti)− yi‖2 +∫ 1

0

λ>1 (ẋ1 − x2) + λ>2 (ẋ2) dt ,

(1)

with Θ = {xi(0)}2i=1, i.e., the initial conditions, and
λ1, λ2 ∈ Rn are time-dependent Lagrangian multipliers.
For readability, we have omitted the argument t for
λ1(t) and λ2(t). These variables are also referred to
as adjoint variables, enforcing the dynamical “straight-
line” constraints. Evaluating the gradients with respect
to the state variables results in the adjoint system as
λ̇1 = 0, and − λ̇2 = λ1, with jumps in λ1 as λ1(t+i ) −
λ1(t−i ) = 2(x1(ti) − yi), at measurements ti. The op-
timality conditions on the gradients also result in the
boundary conditions λ1(1) = 0 and λ2(1) = 0. Finally,
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the gradients with respect to the initial conditions are

∇x1(0)E = −λ1(0), and ∇x2(0)E = −λ2(0) . (2)

These gradients are evaluated by integrating backward
the adjoint system to t = 0 starting from t = 1.

This optimal-control perspective constitutes a general
method for estimating first-order curves which allows
to generalize the notion of straight lines to manifolds
(geodesics), as long as the forward system (dynamics),
the gradient computations, as well as the gradient steps
all respect the geometry of the underlying space.

3.2 Time-warped regression
Fitting straight lines is too restrictive for some data.
Hence, the idea of time-warped regression is to use a
simple model to warp the time-points, or more generally
the independent variable, when comparison to data is
performed, e.g., as in the data matching term of Eq. (1).
The time-warp should maintain the order of the data, and
hence needs to be diffeomorphic. This is conceptually
similar to an error-in-variables model where uncertainties
in the independent variables are modeled. However,
in the concept of time-warping, we are not directly
concerned with modeling such uncertainties, but instead
in obtaining a somewhat richer model based on a known
and easy-to-estimate linear regression model.

In principle, the mapping of the time points could be
described by a general diffeomorphism. In fact, such an
approach is followed in [35] for spatio-temporal atlas-
building in the context of shape analysis. Our motivation
for proposing an approach to linear regression with
parametric time-warps is to keep the model simple while
gaining more flexibility. Extensions to non-parametric
approaches can easily be obtained. A representative of a
simple parametric regression model is logistic regression2

which is typically used to model saturation effects. Un-
der this model, points that are close in time for the linear
fit may be mapped to points far apart in time, thereby
allowing to model saturations for instance (cf. Fig. 2).
Other possibilities of parametric time-warps include
those derived from families of quadratic, logarithmic and
exponential functions.

Formally, let f : R → R, t 7→ t̄ = f(t;θ) denote a
parametrized (by θ) time-warping function and let x1(t)
denote the particle on the regression line in the warped
time coordinates t̄. Following this notation, the states are
denoted as (x1(t), x2(t)) and represent position and slope
in re-parametrized time t. In time-warped regression, the
data matching term in the sum of Eq. (1) then becomes
‖x1(f(ti;θ)) − yi‖2 and the objective (as before) is to
optimize x1(t̄0) and x2(t̄0) as well as the parameter θ.

A convenient way to minimize the energy functional
in Eq. (1) with the adjusted data matching term is to use
an alternating optimization strategy. That is, we first fix
θ to update the initial conditions, and then fix the initial
conditions to update θ. This requires the derivative of

2. Not to be confused with the statistical classification method.

the energy with respect to θ for fixed x1(t̄). Using the
chain rule, we obtain the gradient ∇θE as

2

N−1∑
i=0

(x1(f(ti;θ))− yi)>ẋ1(f(ti;θ))∇θf(ti;θ) . (3)

Given a numerical solution to the regression problem
of Section 3.1, the time-warped extension alternatingly
updates (1) the initial conditions (x1(t̄0), x2(t̄0)) in the
warped time domain using the gradients in Eq. (2) and
(2) θ using the gradient in Eq. (3). Fig. 2 visualizes the
principle of time-warped linear regression on a collec-
tion of artificially generated data points. While the new
model only slightly increases the overall complexity, it
notably increases modeling flexibility by using a curve
instead of a straight line.

3.3 Cubic spline regression
To further increase the flexibility of a regression model,
cubic splines are another commonly used technique.
In this section, we revisit cubic spline regression from
the optimal-control perspective. This will facilitate the
transition to general Riemannian manifolds.

3.3.1 Variational formulation
An acceleration-controlled curve with time-dependent
states (x1, x2, x3) such that ẋ1 = x2 and ẋ2 = x3, defines
a cubic curve in Rn. Such a curve is a solution to the
energy minimization problem, cf. [36],

min
Θ

E(Θ) =
1

2

∫ 1

0

‖x3‖2 dt,

subject to ẋ1 = x2(t) and ẋ2 = x3(t) ,

(4)

with Θ = {xi(t)}3i=1. Here, x3 is referred to as the control
variable that describes the acceleration of the dynamics
in this system. Similar to the strategy for fitting straight
lines, we can get a relaxation solution to Eq. (4) by
adding adjoint variables which leads to the system of
adjoint equations λ̇1 = 0 and ẋ3 = −λ1.

3.3.2 From relaxation to shooting
To obtain the shooting formulation, we explicitly add the
evolution of x3, i.e., ẋ3 = −λ1, as another dynamical con-
straint; this increases the order of the dynamics. Setting
x4 = −λ1 results in the classical system of equations for
shooting cubic curves

ẋ1 = x2(t), ẋ2 = x3(t), ẋ3 = x4(t), ẋ4 = 0 . (5)

The states (x1, x2, x3, x4), at all times, are entirely deter-
mined by their initial values {xi(0)}4i=1 and, in particular
we have x1(t) = x1(0) + x2(0)t+ 1

2x3(0)t2 + 1
6x4(0)t3.

3.3.3 Data-independent controls
Using the shooting equations of Eq. (5) for cubic splines,
we can define a smooth curve that best fits the data in the
least-squares sense. Since a cubic polynomial by itself is
restricted to only fit “cubic-like” data, we add flexibility
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by gluing piecewise cubic polynomials together. Typi-
cally, we define controls at pre-defined locations, and
only allow the state x4 to jump at those locations.

We let {tc}Cc=1, tc ∈ (0, 1) denote C data-independent
fixed control points, which implicitly define C + 1 inter-
vals in [0, 1], denoted as {Ic}C+1

c=1 . The constrained energy
minimization problem corresponding to the regression
task, in this setting, can be written as

min
Θ

E(Θ) =

C+1∑
c=1

∑
ti∈Ic

‖x1(ti)− yi‖2,

subject to
ẋ1 = x2(t), ẋ2 = x3(t),

ẋ3 = x4(t), ẋ4 = 0,

}
within Ic

and x1, x2, x3 are continuous across tc ,

(6)

with parameters Θ = {{xi(0)}4i=1, {x4(tc)}Cc=1}. Using
time-dependent adjoint states {λi}4i=1 for the dynamics
constraints, and (time-independent) duals νc,i for the
continuity constraints, we derive the adjoint system of
equations from the unconstrained Lagrangian as

λ̇1 = 0, λ̇2 = −λ1, λ̇3 = −λ2, λ̇4 = −λ3 . (7)

The gradients w.r.t. the initial conditions {xi(0)}4i=1 are

∇x1(0)E = −λ1(0), ∇x2(0)E = −λ2(0),

∇x3(0)E = −λ3(0), ∇x4(0)E = −λ4(0) .
(8)

The jerks (i.e., rate of acceleration change) at x4(tc) are
updated using ∇x4(tc)E = −λ4(tc). The values of the
adjoint variables at 0 are computed by integrating back-
ward the adjoint system starting from ∀i : λi(1) = 0.
Note that λ1, λ2 and λ3 are continuous at joints, but λ1
jumps at the data-point location as per λ1(t+i )−λ1(t−i ) =
2(x1(ti)−yi). During backward integration, λ4 starts with
zero at each tc+1 and the accumulated value at tc is used
for the gradient update of x4(tc).

It is critical to note that, along the time t, such a
formulation guarantees that x4(t) is piecewise constant,
x3(t) is piecewise linear, x2(t) is piecewise quadratic, and
x1(t) is piecewise cubic; this results in a cubic spline
curve. Fig. 3 demonstrates this shooting-based spline
fitting method on data in R. While it is difficult to explain
this data with one simple cubic curve, it suffices to
add one control point to recover the underlying trend.
The state x4 experiences a jump at the control location
that integrates up three-times to give a C2-continuous
evolution for the state x1.

4 REGRESSION ON RIEMANNIAN MANIFOLDS

In this section, we adopt the optimal-control perspective
of Section 3 and generalize the regression problems to
nonflat, smooth Riemannian manifolds. In the literature
this generalization is typically referred to as geodesic
regression. For a thorough treatment of Riemannian man-
ifolds, we refer the reader to [37]. We remark that the
term geodesic regression here does not refer to the model
that is fitted but rather to the fact that the Euclidean
distance in the data matching term of the energies is

replaced by the geodesic distance on the manifold. In
particular, the measurements {yi}N−1i=0 in Euclidean space
now become elements {Yi}N−1i=0 on some Riemannian
manifold M with Riemannian metric 〈·, ·〉p at p ∈ M3.
The geodesic distance, induced by this metric, will be
denoted as dg . We also replace ti with ri, indicating that
the independent value does not have to be time, but can
also represent other entities, such as counts or speed.

Our first objective is to estimate a geodesic γ : R →
M, represented by initial point γ(r0) and initial velocity
γ̇(r0) at the tangent space Tγ(r0)M, i.e.,

min
Θ

E(Θ) = α

∫ 1

0

〈γ̇, γ̇〉γ(r) dr︸ ︷︷ ︸
Regularity

+
1

σ2

N−1∑
i=0

d2g(γ(ri), Yi)︸ ︷︷ ︸
Data-matching

subject to ∇γ̇ γ̇ = 0 (geodesic equation) ,

(9)

with Θ = {γ(0), γ̇(0)} and ∇ denoting the Levi-Civita
connection onM. The covariant derivative ∇γ̇ γ̇ of value
0 ensures that the curve is a geodesic. The parameters
α ≥ 0 and σ > 0 balance the regularity and the data-
matching term. In the Euclidean case, there is typically
no regularity term because we usually do not have prior
knowledge about the slope. Similarly, on Riemannian
manifolds we may penalize the initial velocity by choos-
ing α > 0; but typically, α is also set to 0. The regu-
larity term on the velocity can be further reduced to a
smoothness penalty at r0, i.e.,

∫ 1

0
〈γ̇, γ̇〉dr = 〈γ̇(r0), γ̇(r0)〉,

because of the energy conservation along the geodesic.
Also, since the geodesic is represented by the initial con-
ditions (γ(r0), γ̇(r0)), we can move along the geodesic
and estimate the point γ(ri) that corresponds to Yi.

4.1 Optimization via geodesic shooting
Taking the optimal-control point of view, the second-
order problem of Eq. (9) can be written as a system of
first-order, upon the introduction of auxiliary states

X1(r) = γ(r), and X2(r) = γ̇(r) . (10)

Here, X1 corresponds to the intercept and X2 corresponds
to the slope in classic linear regression. Considering the
simplified smoothness penalty of the previous section,
the constrained minimization of Eq. (9) reduces to

min
Θ

E(Θ) = α〈X2(r0), X2(r0)〉 +

1

σ2

N−1∑
i=0

d2g(X1(ri), Yi)

subject to ∇X2
X2 = 0 ,

(11)

with Θ = {Xi(r0)}2i=1. Note that X1(ri) is the estimated
point on the geodesic at ri, obtained by shooting forward
with X1(r0) and X2(r0). Analogously to the elaborations
of previous sections, we convert Eq. (11) to an un-
constrained minimization problem via time-dependent

3. We omit the subscript p when it is clear from the context.
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adjoint variables, then take variations with respect to
its arguments and eventually get (1) dynamical systems
of states and adjoint variables, (2) boundary conditions
on the adjoint variables, and (3) gradients with respect
to initial conditions. By shooting forward / backward
and updating the initial states via the gradients, we can
obtain a numerical solution to the problem.

4.2 Time-warped regression
The time-warping strategy of Section 3.2 can also be
adapted to Riemannian manifolds, because it focuses
on warping the axis of the independent scalar-valued
variable, not the axis of the dependent manifold-valued
variable. In other words, the time-warped model is
independent of the underlying type of space. Formally,
given a warping function f (cf. Section 3.2), all instances
of the form Xj(ri) in Eq. (11) are replaced by Xj(f(ri;θ))
for j = 1, 2. While the model retains its simplicity, i.e.,
we still fit geodesic curves, the warping function allows
for increased modeling flexibility.

Since we have an existing solution to the problem of
fitting geodesic curves, the easiest way to minimize the
resulting energy is by alternating optimization, similar
to Section 3.2. This requires the derivative of the energy
with respect to θ for fixed Xi(r). Application of the chain
rule and [20, Appendix A] yields

∇θE = 2α〈Ẋ2(f(r0;θ)), X2(f(r0;θ))〉∇θf(r0;θ)

− 2

σ2

N−1∑
i=0

〈LogX1(f(ri;θ)) Yi, Ẋ1(f(ri;θ))〉∇θf(ri;θ)
(12)

where LogX1(f(ri;θ)) Yi denotes the Riemannian log-
map, i.e., the initial velocity of the geodesic connecting
X1(f(ri;θ)) and Yi in unit time and Ẋ1(f(ri;θ)) is the
velocity of the regression geodesic at the warped-time
point. This leaves to choose a good parametric model for
f(r;θ). As we require the time warp to be diffeomorphic,
we choose a parametric model which is diffeomorphic
by construction. One possible choice is the generalized
logistic function [38], e.g., with asymptotes 0 for r → −∞
and 1 for r →∞, given by

f(r;θ) =
1

(1 + βe−k(r−M))1/m
, (13)

with θ = (k,M, β,m). The parameter k controls the
growth rate, M is the time of maximum growth if β = m,
β and m define the value of f at t = M , and m > 0 affects
the asymptote of maximum growth. In our case, we fix
(β,m) = (1, 1) and only optimize for (k,M). By using
this function, we map the original infinite time interval
to a warped time-range from 0 to 1. In summary, the
algorithm using alternating optimization is as follows:

0) Initialize θ such that the warped time is evenly
distributed within (0, 1).

1) Compute {ri = f(ri;θ)}N−1i=0 and perform standard
geodesic regression using the new time-points.

2) Update θ by numerical optimization using the gra-
dient given in Eq. (12).

3) Check convergence. If not converged goto 1).

4.3 Cubic spline regression
Similar to Section 3.3, cubic curves on a Riemannian
manifold M can be defined as solutions to the vari-
ational problem of minimizing an acceleration-based
energy. The notion of acceleration is defined using the co-
variant derivatives on Riemannian manifolds [24], [25].
In particular, we define a time-dependent control, i.e., a
forcing variable X3(r), as

X3(r) = ∇X2(r)X2(r) = ∇Ẋ1(r)
Ẋ1(r) . (14)

We can interpret X3(r) as a control that forces the curve
X1(r) to deviate from being a geodesic [39] (which is
the case if X3(r) = 0). As an end-point problem, a
Riemannian cubic curve is thus defined by the curve
X1(r) such that it minimizes an energy of the form

E(X1) =
1

2

∫ 1

0

‖∇Ẋ1
Ẋ1‖2dt, (15)

where the norm ‖ · ‖ is induced by the metric on M at
X1. In Section 5.5, this concept will be adapted to the
Grassmannian to enable regression with cubic splines.

5 REGRESSION ON THE GRASSMANNIAN

The Grassmannian is a type of Riemannian manifold
where the geodesic distance, parallel transport, as well
as the Riemannian log-/exp-map are relatively simple to
compute (see [2] and suppl. material). Before specializing
our three regression models to this manifold, we first
discuss its Riemannian structure in Section 5.1 (see [40]
for details) and review how different types of data can
be represented on the Grassmannian in Section 5.2.

5.1 Riemannian structure of the Grassmannian
The Grassmann manifold G(p, n) is defined as the set of
p-dimensional linear subspaces of Rn, typically repre-
sented by an orthonormal matrix Y ∈ Rn×p, such that
Y = span(Y) for Y ∈ G(p, n). It can equivalently be
defined as a quotient space within the special orthogonal
group SO(n) as G(p, n) := SO(n)/(SO(n− p)× SO(p)).
The canonical metric gY : TYG(p, n) × TYG(p, n) → R on
G(p, n) is given by

gY(∆Y ,∆Y) = tr ∆>Y∆Y = tr C>(In −YY>)C , (16)

where In denotes the n× n identity matrix, TYG(p, n) is
the tangent space at Y and C ∈ Rn×p is arbitrary. Under
this choice of metric, the arc-length of the geodesic
connecting two subspaces Y,Z ∈ G(p, n) is related to
the canonical angles φ1, . . . φp ∈ [0, π/2] between Y and
Z as d2g(Y,Z) = ||φ||22. In what follows, we slightly
change notation and use d2g(Y,Z), with Y = span(Y)
and Z = span(Z). In fact, the (squared) geodesic dis-
tance can be computed from the SVD decomposition
U(cos Σ)V> = Y>Z as d2g(Y,Z) = || cos−1(diag Σ)||2 (cf.
[2]), where Σ is diagonal with principal angles φi.

Finally, consider a curve γ : [0, 1] → G(p, n), r 7→ γ(r)
such that γ(0) = Y0 and γ(1) = Y1, with Y0 represented
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Algorithm 1: Standard Grassmannian geodesic regression (Std-GGR)

Data: {(ri,Yi)}N−1
i=0 , α and σ2

Result: X1(r0), X2(r0)
Set initial X1(r0) and X2(r0), e.g., X1(r0) = Y0, and X2(r0) = 0.
while not converged do

Solve Eqs. (19) with X1(r0) and X2(r0) forward for r ∈ [r0, rN−1].

Solve

{
λ̇1 = λ2X

>
2 X2, λ1(rN−1+) = 0,

λ̇2 = −λ1 +X2(λ
>
2 X1 +X>1 λ2), λ2(rN−1) = 0

backward with jump conditions

λ1(ri−) = λ1(ri+)− 1
σ2∇X1(ri)d

2
g(X1(ri),Yi), and ∇X1(ri)d

2
g(X1(ri),Yi) computed as −2LogX1(ri)

Yi. For multiple
measurements at a given ri, the jump conditions for each measurement are added up.

Compute gradients with respect to initial conditions:

∇X1(r0)E = −(In −X1(r0)X1(r0)
>)λ1(r0−) +X2(r0)λ2(r0)

>X1(r0),

∇X2(r0)E = 2αX2(r0)− (In −X1(r0)X1(r0)
>)λ2(r0).

Use a line search with these gradients to update X1(r0) and X2(r0) (see suppl. material).
end

by Y0 and Y1 represented by Y1. The geodesic equation for
such a curve, given that Ẏ = d/drY(r)

.
= (In −YY>)C,

on G(p, n) is given by

Ÿ(r) + Y(r)[Ẏ(r)>Ẏ(r)] = 0 , (17)

which also defines the Riemannian exponential map on
the Grassmannian as an ODE for convenient numerical
computations. Integrating Eq. (17), starting with initial
conditions, “shoots” the geodesic forward in time.

5.2 Representation on the Grassmannian
We describe two types of data that can be represented
on G(p, n): linear dynamical systems (LDS) and shapes.
Linear dynamical systems. In the computer vision liter-
ature, dynamic texture models [41] are commonly applied
to model videos as realizations of linear dynamical sys-
tems (LDS). For a video, represented by a collection of
vectorized frames y1, . . . ,yτ with yi ∈ Rn, the standard
dynamic texture model with p states has the form

xk+1 = Axk + wk, wk ∼ N (0,W),

yk = Cxk + vk, vk ∼ N (0,R) , (18)

with xk ∈ Rp,A ∈ Rp×p, and C ∈ Rn×p. When
relying on the prevalent system identification of [41], the
matrix C is, by design, of (full) rank p (i.e., the number
of states) and by construction we obtain an observable
system, where a full rank observability matrix O ∈ Rnp×p
is defined as O = [C (CA) (CA2) · · · (CAp−1)]>.
This system identification is not unique because systems
(A,C) and (TAT−1,CT−1) with T ∈ GL(p) have the
same transfer function. Hence, the realization subspace
spanned by O is a point on the Grassmannian G(p, n)
and the observability matrix is a representer of this
subspace. We identify an LDS model for a video by its
np× p orthonormalized observability matrix.
Shapes. Let a shape be represented by a collection of m
landmarks. A shape matrix is constructed from its m land-
marks as L = [(x1, y1, ...); (x2, y2, ...); . . . ; (xm, ym, ...)].
Using SVD on this matrix, i.e., L = UΣV>, we obtain

an affine-invariant shape representation from the left-
singular vectors U [17], [42]. This establishes a mapping
from the shape matrix to a point on the Grassmannian
(with U as the representative). Such a representation has
been used for facial aging regression for instance [43].

5.3 Standard geodesic regression
We start by adapting the inner-product and the squared
geodesic distance in Eq. (9) to G(p, n). Given the auxiliary
states of Eq. (10), now denoted as matrices X1 (initial
point) and X2 (velocity), we can write the geodesic
equation of Eq. (17) as a system of first-order dynamics:

Ẋ1 = X2, and Ẋ2 = −X1(X>2 X2) . (19)

For a point on G(p, n) it should further hold that (1)
X1(r)>X1(r) = Ip and (2) the velocity at X1(r) needs
to be orthogonal to that point, i.e., X1(r)>X2(r) = 0. If
we enforce these two constraints at the starting point r0,
they will remain satisfied along the geodesic. This yields

min
Θ

E(Θ) = α tr X2(r0)>X2(r0) +

1

σ2

N−1∑
i=0

d2g(X1(ri),Yi)

subject to X1(r0)>X1(r0) = Ip,

X1(r0)>X2(r0) = 0 and Eq. (19) ,

(20)

with Θ = {Xi(r0)}2i=1. Based on the adjoint method,
we obtain the shooting solution to Eq. (20), listed in
Alg. 1. Note that the jump conditions on λ1 involve
the gradient of the residual term d2g(X1(ri),Yi) with
respect to X1(ri), i.e., the base point of the residual on the
fitted geodesic; this gradient is −2 LogX1(ri) Yi, cf. suppl.
material. We refer to this problem of fitting a geodesic
as standard Grassmannian geodesic regression (Std-GGR).

5.4 Time-warped regression
Since the concept of time-warped geodesic regression is
generic for Riemannian manifolds, specialization to the
Grassmannian is straightforward. We only need to use



8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Algorithm 2: Cubic-spline Grassmannian geodesic regression (CS-GGR)

Data: {(ri,Yi)}N−1
i=0 , {rc}Cc=1, α and σ2

Result: X1(r0), X2(r0), X3(r0), X4(r0), {X4(r
+
c )}Cc=1

Set initial X1(r0) as Y0 for example, and X2(r0), X3(r0), X4(r0), {X4(r
+
c )}Cc=1 as zero matrices.

while not converged do
Solve Eq. (23) forward in each interval with X1(r0), X2(r0), X3(r0), X4(r0), {X4(r

+
c )}Cc=1, and {X1(r

+
c ) = X1(r

−
c ),

X2(r
+
c ) = X2(r

−
c ), X3(r

+
c ) = X3(r

−
c )}Cc=1.

Solve


λ̇1 = λ2X

>
2 X2 − λ3(X

>
4 X1 −X>3 X2)−X4(λ

>
3 X1 +X>2 λ4),

λ̇2 = −λ1 +X2(λ
>
2 X1 +X>1 λ2 − λ>4 X3 −X>3 λ4) +X3(λ

>
3 X1 +X>2 λ4) + λ4(−X>1 X4 +X>2 X3),

λ̇3 = −λ2 − λ4X
>
2 X2 +X2(X

>
1 λ3 + λ>4 X2) + 2αX3,

λ̇4 = λ3 −X1(X
>
1 λ3 + λ>4 X2)

backward

with λ1(rN−1) = λ2(rN−1) = λ3(rN−1) = λ4(rN−1) = λ4(r
−
c ) = 0, and

{λ1(r
−
c ) = λ1(r

+
c ), λ2(r

−
c ) = λ2(r

+
c ), λ3(r

−
c ) = λ3(r

+
c )}Cc=1, as well as jump conditions

λ1(r
−
i ) = λ1(r

+
i )− 1

σ2∇X1(ri)d
2
g(X1(ri),Yi), and ∇X1(ri)d

2
g(X1(ri),Yi) computed as −2LogX1(ri)

Yi. For multiple
measurements at a given ri, the jump conditions for each measurement are added up.

Compute gradients with respect to initial conditions and the fourth state at control points:

∇X1(r0)E = −(In −X1(r0)X1(r0)
>)λ1(r

−
0 ) +X2(r0)λ2(r0)

>X1(r0) +X3(r0)λ3(r0)
>X1(r0),

∇X2(r0)E = −(In −X1(r0)X1(r0)
>)λ2(r0), ∇X3(r0)E = −(In −X1(r0)X1(r0)

>)λ3(r0),

∇X4(r0)E = −λ4(r0), ∇
X4(r

+
c )
E = −λ4(r

+
c ), c = 1...C .

Use a line search with these gradients to update X1(r0), X2(r0), X3(r0), X4(r0), and {X4(r
+
c )}Cc=1.

end

the Std-GGR solution during the alternating optimiza-
tion steps. By choosing the generalized logistic function
of Eq. (13) to account for saturations of scalar-valued
outputs, the time-warped model on G(p, n) can be used
to capture saturation effects for which standard geodesic
regression is not sensible. We refer to this strategy as
time-warped Grassmannian geodesic regression (TW-GGR).

5.5 Cubic spline regression

To enable cubic spline regression on the Grassmannian,
we follow Section 4.3 and add the external force X3.
In other words, we represent an acceleration-controlled
curve X1(r) on G(p, n) using a dynamic system with
states (X1,X2,X3) such that

X2 = Ẋ1, and X3 = Ẋ2 + X1(X>2 X2) . (21)

Note that if X3 = 0, the second equation is reduced
to the geodesic equation of Eq. (17); this indicates that
the curve is acceleration-free. To obtain an acceleration-
controlled curve, we need to solve

min
Θ

E(Θ) =
1

2

∫ 1

0

tr X>3 X3 dr

subject to X>1 X1 = Ip, X>1 X2 = 0, and Eq. (21)
(22)

with Θ = {Xi(r0)}3i=1. In particular, the relaxation
solution to Eq. (21) gives us (see suppl. material) the
system of equations for shooting cubic curves on G(p, n):

Ẋ1 = X2,

Ẋ2 = X3 −X1X
>
2 X2,

Ẋ3 = −X4 + X1X
>
1 X4 −X1X

>
2 X3,

Ẋ4 = X3X
>
2 X2 + X2X

>
4 X1 −X2X

>
3 X2 .

(23)

It is important to note that X1 does not follow a geodesic
path under non-zero force X3. Hence, the constraints
X1(r)>X1(r) = Ip and X1(r)>X2(r) = 0 should be en-
forced at every instance of r to keep the path on the man-
ifold. However, we can show (see suppl. material) that
enforcing X1(r)>X2(r) = 0 at all times already guaran-
tees that X1(r)>X1(r) = Ip if this holds initially at r = 0.
Also, X1(r)>X2(r) = 0 implies that X1(r)>X3(r) = 0.
By using this fact during relaxation, the constraints are
already implicitly captured in Eqs. (23). Subsequently,
for shooting we only need to guarantee that all these
constraints hold initially. To get a cubic spline curve, we
follow Section 3.3.3 and introduce control points {rc}Cc=1,
which divide the support of the independent variable
into several intervals Ic. The first three states should
be continuous at the control points, but the state X4 is
allowed to jump. Hence, the spline regression problem
on G(p, n) becomes, cf. Eq. (6),

min
Θ

E(Θ) = α

∫ rN−1

r0

tr X>3 X3 dr +

1

σ2

N−1∑
i=0

d2g(X1(ri),Yi)

subject to X1(r0)>X1(r0) = Ip,

X1(r0)>X2(r0) = 0,

X1(r0)>X3(r0) = 0,

X1,X2,X3 are continuous at {rc}Cc=1,

and Eqs. (23) holds in each Ic ,

(24)

with Θ = {{Xi(r0)}4i=1, {X4(r+c )}Cc=1}. Alg. 2 lists the
shooting solution to Eq. (24), referred to as cubic-spline
Grassmannian geodesic regression (CS-GGR).
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Method X1(r0) X2(r0) X3(r0) X4(r0) k M GT vs. Data Data vs. Est. GT vs. Est.
Std-GGR 0.02 0.16 – – – – 0.7e-2 0.7e-2 0.3e-3

Rentmeesters [28] 0.02 0.16 – – – – 0.7e-2 0.6e-2 0.3e-3
TW-GGR 0.02 0.16 – – 0.05 0.6e-2 6.9e-3 6.6e-3 0.3e-3
CS-GGR 0.07 0.54 0.36 0.97 – – 6.8e-3 5.8e-3 1.1e-3

Su et al. [16] – – – – – – 6.8e-3 8.2e-3 3.5e-3

TABLE 1: Comparison of the regression results on synthetic data. First, we report differences in the initial conditions Xi(r0): for X1,
we report the geodesic distance on the Grassmannian; for X2, X3 and X4, we report ‖XEst.

i −XGT
i ‖F /‖XGT

i ‖F . For multiple X4s,
we take the average. For TW-GGR, we also report the difference in the parameters of the time-warp function (k,M ). Second, we
report the mean squared (geodesic) distance (MSD) between two curves. In particular, we compute (1) the MSD between the data
points and the corresponding points on the ground truth (GT) curves (GT vs. Data); (2) the MSD between the data points and the
points on the estimated regression curves (Data vs. Est.) and (3) the MSD between the points on the ground truth curves and the
data points on the estimated regression curves (Data vs. Est.). The second row shows a comparison to [28] (conceptually similar
to [29]). The last row lists the (best) MSDs for the approach of Su et al. [16] on the data used to test CS-GGR (for λ1/λ2 = 10).

6 EXPERIMENTS ON SYNTHETIC DATA

We first demonstrate Std-GGR, TW-GGR and CS-GGR
on synthetic data and compare against two approaches
from the literature [28], [16].

Each data point in the following experiment repre-
sents a 2D sine / cosine signal, sampled at 630 evenly-
spaced locations in [0, 10π]. These signals s ∈ R2×630

are then linearly projected into R24 via s = Us, where
W ∼ N (0, I24) and W = UΣV>. White Gaussian noise
with σ = 0.1 is added to s. For each embedded signal
s ∈ R24×630, we estimate a two-state (i.e., p = 2) LDS
as discussed in Section 5.2, and use the correspond-
ing observability matrix to represent it as a point on
G(2, 48). Besides, each data point has an associated scalar
value; this independent variable is uniformly distributed
within (0, 10) and controls the signal frequency of the data
point. For Std-GGR, we directly use this value as the
signal frequency to generate 2D signals, while for TW-
GGR and CS-GGR, a generalized logistic function or a
sine function is adopted to convert the values to a signal
frequency for data generation. It is important to note
that the largest eigenvalue of the state-transition matrix
A reflects the frequency of the sine / cosine signal.

To quantitatively assess the quality of the fitting re-
sults, we design a “denoising” experiment. The data to
be used for denoising is generated as follows: First, we
use each regression method to estimate a model from
the (clean) data points we just generated. In the second
step, we take the initial conditions of each model, shoot
forward and record the points along the regression curve
at fixed values of the independent variable (i.e., the
signal frequency). These points serve as our ground truth
(GT). In a final step, we take each point on the ground
truth curve, generate a random tangent vector at each
location and shoot forward along that vector for a small
time (e.g., 0.03). The newly generated points then serve
as the “noisy” measurements of the original points.

To obtain fitting results on the noisy data, we initialize
the first state X1 with the first data point, and all
other initial conditions with 0. Table 1 lists the differ-
ences between our estimated regression curves (Est.) and
the corresponding ground truth using two strategies:
(1) comparison of the initial conditions as well as the
parameters of the warping function in TW-GGR; (2)

comparison of the full curves (sampled at the values of
the independent variable) and the data points. The num-
bers indicate that all three models allow us to capture
different types of relationships on G(2, 48). We compare
to [28] which is a representative for Jacobi field based
parametric regression (see also [29]). Since this approach
fits a geodesic and returns an initial point and a velocity
vector (as in Std-GGR), we report the same quantitative
measures in Table 1. As expected, we essentially obtain
the same solution, since the same energy is minimized.

In the context of fitting cubic splines, we compare CS-
GGR against the discrete curve fitting approach of Su et
al. [16], adapted to G(p, n). Since, [16] does not output
the fitted curve in parametric form, but as a collection of
points sampled along the sought-for curve, Table 1 only
reports performance measures computed from sample
points. Additionally, we assess performance by adopting
a different evaluation protocol. In particular, we take the
observability matrices of the linear dynamical systems
estimated from each s as our ground truth. We then per-
turb the signal frequency with Gaussian noise, estimate
new dynamical systems and eventually run [16] and CS-
GGR on the observability matrices of these systems. For
evaluation, we report the mean absolute error (MAE) in
the largest eigenvalue of the state-transition matrix A
to the ground truth. Fig. 4 shows a visualization of the
(real-part) of the largest eigenvalue for different levels of
noise. The data matching / smoothing balance for [16]
was set to (λ1, λ2) = (1, 0.1)4. As we see from Fig. 4, the
numeric results are fairly similar between both strategies.
However, CS-GGR is guaranteed to return a curve with a
smooth change in momentum, whereas controlling data-
matching vs. smoothness in [16] can lead to instanta-
neous momentum changes at the sampling locations.
Further, storage complexity of our approach scales with
the number of control-points, whereas storage complex-
ity of [16] scales with the the number of sampled points,
highlighting one advantage of fitting parametric models
with respect to storage requirements. Finally, we remark
that we can generate arbitrarily many points along our
parametric curves after fitting. In contrast, discrete curve
fitting strategies would require re-estimation of the curve
once the number of desired samples increases.

4. Additional results can be found in the suppl. material.
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Fig. 4: CS-GGR (1 control point) vs. Su et al. [16] (λ1/λ2 = 10)
in terms of the the largest eigenvalue of the state-transition ma-
trix A of Eq. (18) (reconstructed from the observability matrices
that we obtain along each path) to the ground truth.
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Fig. 6: Examples of the UCSD traffic dataset [44].
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Fig. 7: Top: Example frames from the UCSD pedestrian dataset
[45]. Bottom: Total crowd count over all frames (left), and aver-
age people count over a 400-frame sliding window (right).

7 APPLICATIONS

To demonstrate Std-GGR, TW-GGR and CS-GGR on
actual vision data, we present four applications: in the
first two applications, we regress the manifold-valued
variable, i.e., landmark-based shapes; in the last two
applications, we predict the independent variable based
on the regression curve fitted to the manifold-valued
data, i.e., LDS representations of surveillance videos.

7.1 Datasets

Corpus callosum shapes [29]. We use a collection of 32
corpus callosum shapes with ages varying from 19 to 90
years, see Fig. 5. Each shape is represented by m = 64 2D
boundary landmarks, and is projected to a point on the
Grassmannian using the representation of Section 5.2.
Rat calvarium landmarks [46]. We use 18 individuals
with 8 time points from the Vilmann rat data, each in
the age range of 7 to 150 days. Each shape is represented
by a set of 8 landmarks. Fig. 9 (left) shows a selection of
the landmarks projected onto the Grassmannian, using
the same representation as the corpus callosum data.
UCSD traffic dataset [44]. This dataset was introduced
in the context of clustering traffic flow patterns with

LDS models. It contains a collection of short traffic video
clips, acquired by a surveillance system monitoring
highway traffic. There are 253 videos in total and each
video is roughly matched to the speed measurements
from a highway-mounted speed sensor. We use the pre-
processed video clips introduced in [44] which were con-
verted to grayscale and spatially normalized to 48 × 48
pixels with zero mean and unit variance. Our rationale
for using an LDS representation for speed prediction is
the fact that clustering and categorization experiments
in [44] showed compelling evidence that dynamics are
indicative of the traffic class. We argue that the notion
of speed of an object (e.g., a car) could be considered a
property that humans infer from its visual dynamics.

UCSD pedestrian dataset [45]. We use the Peds1 subset
which contains 4000 frames with a ground-truth people
count associated with each frame, see Fig. 7. Similar
to [45] we ask the question whether we can infer the
number of people in a scene (or clip) without actually
detecting the people. While this problem has been ad-
dressed by resorting to crowd / motion segmentation
and Gaussian process regression on low-level features
extracted from the segmentation regions, we go one step
further and try to avoid any preprocessing at all. In fact,
our objective is to infer an average people count from an
LDS representation of short video segments (i.e., within
a temporal sliding window). This is plausible because
the visual dynamics of a scene change as people appear
in it. In fact, it could be considered as another form of
“traffic”. Further, an LDS does not only model the dy-
namics, but also the appearance of videos; both aspects
are represented in the observability matrix. However,
such a strategy does not allow for fine-grain frame-by-
frame predictions as in [45]. Yet, it has the advantages of
not requiring any pre-selection of features or potentially
unstable preprocessing steps such as the aforementioned
crowd segmentation. In our setup, we split the 4000
frames into 37 video clips via a sliding window of size
400, shifted by 100 frames (see Fig. 7), and associate an
average people count with each clip. The clips are spa-
tially down-sampled to 60×40 pixel (original: 238×158)
to keep the observability matrices at a reasonable size.
Since the overlap between the clips potentially biases the
experiments, we introduce a weighted variant of system
identification (see suppl. material) with weights based
on a Gaussian function centered at the middle of the
sliding window and a standard deviation of 100. While
this ensures stable system identification, by still using
400 frames, it reduces the impact of the overlapping
frames on the parameter estimates. With this strategy,
the average crowd count is localized to a smaller region.

General settings. In all experiments, α in the energy
function is set to 0, σ to 1, the initial point is set to
be the first data point, and all other initial conditions
are set to zero. For the parameter(s) θ of TW-GGR, we
fix (β,m) = (1, 1) so that M is the time of the maximal
growth. Usually, one control point is used in CS-GGR.
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Fig. 8: Comparison between Std-GGR, TW-GGR and CS-GGR (with one control point) on the corpus callosum data [29]. The
shapes are generated along the fitted curves and are colored by age (best viewed in color).
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Fig. 9: Comparison between Std-GGR, TW-GGR and CS-GGR (with one control point) on the rat calvarium data (3/8 landmarks
shown) [46]. The shapes are generated along the fitted curves and the landmarks are colored by age in days (best-viewed in color).

Corpus callosum [47]

[28]
Std- TW- (1)CS- (2)CS-

[16]
GGR GGR GGR GGR

Energy 0.35 0.35 0.34 0.32 0.31 –
R2 0.12 0.12 0.15 0.21 0.23 0.15

MSE (e-2) 1.25 1.25 1.22 1.36 1.43 1.25

Rat calvarium [46]

[28]
Std- TW- (1)CS- (2)CS-

[16]
GGR GGR GGR GGR

Energy 0.32 0.32 0.18 0.16 0.16 –
R2 0.61 0.61 0.79 0.81 0.81 0.89†

MSE (e-3) 2.3 2.3 1.3 1.2 1.2 4.1†

TABLE 2: Comparison of Std-GGR, TW-GGR and CS-GGR
with one (1) and two (2) control points to the approaches of
Rentmeesters [28] and Su et al. [16] (for λ1/λ2 = 1/10). For
Energy and MSE smaller values are better, for R2 larger values
are better. In case of [16], we fit one curve to each individual in
the rat calvarium data; MSE and R2 are then averaged.

7.2 Regressing the manifold-valued variable

The first category of applications leverages the regressed
relationship between the independent variable, i.e., age,
and the manifold-valued dependent variable, i.e., shapes.
The objective is to estimate the shape for a given age. We
demonstrate Std-GGR, TW-GGR and CS-GGR on both
corpus callosum and rat calvarium data. The control
point for CS-GGR is set to the mean age of the subjects.
Three measures are used to quantitatively compare the
regression results: (1) the regression energy, i.e., the data
matching error over all observations; (2) the R2 statistic
on the Grassmannian, which is between 0 and 1, with
1 indicating a perfect fit and 0 indicating a fit no better
than the Fréchet mean (see [47] for more details); and (3)
the mean squared error (MSE) on the testing data, reported
by means of (leave-one-subject-out) crossvalidation (CV).
On both datasets, we compare against the approaches of
Rentmeesters [28] and Su et al. [16]. In case of the latter
approach, the data vs. smoothness weighting (i.e., λ1/λ2)

is chosen to achieve an MSE as close as possible (or
better) to the best result of our approaches.

Corpus callosum aging. Fig. 8 shows the corpus callo-
sum shapes along the fitted curves for the time points
in the data. The shapes are recovered from the points
along the curve through scaling by the mean singular
values of the SVD results. Table 2 lists the quantita-
tive measurements. With Std-GGR, the corpus callosum
starts to shrink from age 19 (= mini{ti}32i=1), which is
consistent with the regression results in [47] and [30].
However, according to biological studies [48], [49], the
corpus callosum size remains stable during the most
active years of the lifespan, which is consistent with
our TW-GGR result. As we can see from the optimized
logistic function in Fig. 10 (left), TW-GGR estimates that
thinning starts at ≈ 50 years, and at the age of 65, the
shrinking rate reaches its peak. From the CS-GGR results,
we first observe that the R2 value increases notably to
0.21/0.23, compared to 0.12 for Std-GGR. While this sug-
gests a better fit to the data, it is not a fair comparison,
since the number of parameters for CS-GGR increases
as well and a higher R2 value is expected. Secondly,
the more interesting observation is that, qualitatively,
we observe higher-order shape changes in the anterior
and posterior regions of the corpus callosum, shown
in the zoomed-in regions of Fig. 8; this is similar to
what is reported in [30] for polynomial regression in 2D
Kendall shape space. However, our shape representation,
by design, easily extends to point configurations in R3.
This is in contrast to 3D Kendall shape space which has a
substantially more complex structure than its 2D variant
[50]. Additionally, we notice that the result of [28] equals
the result obtained via Std-GGR (as expected). For [16],
the result is comparable to TW-GGR.
Rat calvarium growth. Fig. 9 (leftmost) shows the pro-
jection of the original data on G(2, 8), as well as (part of)
the data samples generated along the fitted curves. Table
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Fig. 10: Estimated time-warp functions for TW-GGR.

2 lists the performance measures. From the zoomed-in
regions in Fig. 9, we observe that the rat calvarium grows
at an approximately constant speed during the first 150
days if the relationship is modeled by Std-GGR. How-
ever, the estimated logistic curve for TW-GGR, shown
in Fig. 10 (right), indicates that the rat calvarium only
grows fast in the first few weeks, reaching its peak
at 30 days; then, the rate of growth gradually levels
off and becomes steady after around 14 weeks. In fact,
similar growth curves for the rat skull were reported
in [51]. Based on their study, the growth velocities of
viscerocranium length and nurocranium width rose to
the peak in the 26− 32 days period. Comparing the R2

values for TW-GGR and CS-GGR, we see an interesting
effect: although, we have more parameters in CS-GGR,
the R2 score only marginally improves. This indicates
that TW-GGR already sufficiently captures the relation-
ship between age and shape. It further confirms, to a
large extent, a hypothesis from [30], where the authors
noted that the cubic polynomial in 2D Kendall shape
space degrades to a geodesic under polynomial time
re-parametrization. Since TW-GGR re-parametrizes time
(not via a cubic polynomial, but via a logistic function),
it is not surprising that this relatively simple model
exhibits similar performance to the more complex CS-
GGR model. Similar to the corpus callosum data (and
the synthetic data), [28] gives the same results as Std-
GGR. For [16], we record an MSE of 4.1e-3, however, the
corresponding R2 score is higher. This can be explained,
in part, by the fact that we fit one model per individual
(as opposed to one model for all individuals) and then
average the MSE and R2 scores. This is done because [16]
cannot handle multiple data instances per time point.

7.3 Predicting the independent variable
In the second category of applications the objective is to
predict the independent variable using its regressed relation-
ship with the manifold-valued dependent variable. Specifi-
cally, given a point on G(p, n), e.g., an LDS representation
of a video clip, we search along the regressed curve
(with a step size of 0.05 in our experiments) to find its
closest point, and then take the corresponding indepen-
dent variable of this closest point as its predicted value.
This could be considered a variant of nearest-neighbor
regression where the search space is restricted to the
sampled curve. The case when the search space is not
restricted, but contains all data points, will be referred to
as our baseline. Note that in our case, search complexity is
controlled via the step-size, while the search complexity
for the baseline scales linearly with the sample size.

Furthermore, we remark that in this category of ap-
plications, TW-GGR is not appropriate for predicting the
independent variable for the following reasons: First, in
case of the traffic speed measurement, the generalized
logistic function tends to degenerate to almost a step-
function, due to the limited number of measurement
points in the central regions. In other words, two greatly
different independent variables would correspond to
two very close data points, even the same one, which
would result in a large prediction error. Second, in
case of crowd-counting, there is absolutely no prior
knowledge about any saturation or growth effect which
could be modeled via a logistic function. Consequently,
we only demonstrate Std-GGR and CS-GGR on the two
datasets. Note that prediction based on nearest neighbors
could be problematic in case of CS-GGR, since the model
does not guarantee a monotonic curve. We report the
mean regression energy and the mean absolute error
(MAE), computed over all folds in a cross-validation
setup with a dataset-dependent number of folds.
Speed prediction. For each video clip, we estimate LDS
models with p = 10 states. The control point of CS-GGR
and the breakpoint for piecewise Std-GGR is set at 50
[mph]. Results are reported for 5-fold CV, see Fig. 11.
The quantitative comparison to the baseline in Table 3
shows that piecewise Std-GGR has the best performance.
Crowd counting. For each video clip, we estimate LDS
models with p = 10 states using weighted system identi-
fication. For CS-GGR, the control point is set to a count of
23 people which separates the 37 videos into two groups
of roughly equal size. Quantitative results for 4-fold CV
are reported in Table 3. Fig. 12 shows the predictions vs.
the ground truth; and both Std-GGR and CS-GGR output
predictions “close” to the ground truth, mostly within 1σ
(shaded region) of the average crowd count. However, a
closer look at Table 3 reveals a typical overfitting effect
for CS-GGR: while the training MAE is quite low, the
testing MAE is higher than for the simpler Std-GGR
approach. Even though both models exhibit comparable
performance (considering the standard deviations), Std-
GGR is preferable, due to fewer parameters and its
guaranteed monotonic regression curve.

8 DISCUSSION
In this paper, we developed a general theory for para-
metric regression on the Grassmann manifold from an
optimal-control perspective. By introducing the basic
principles for fitting models of increasing order for the
special case of M = Rn, we established the framework
that was then used for a generalization to Riemannian
manifolds and, in particular, the Grassmann manifold.

From an application point of view, we have seen that
quite different vision problems can be solved within the
same framework under minimal data preprocessing. We
compared our regression approaches to two alternative
approaches in the literature. In comparison, we achieved
similar or better performance, while providing a uni-
fied formulation and straightforward implementation.
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Traffic speed Crowd counting
Baseline Std-GGR Std-GGR (PW) CS-GGR Baseline Std-GGR Std-GGR (PW) CS-GGR

Mean energy – 2554.88 2461.95 2670.84 – 273.81 224.87 244.02

Train-MAE – 2.98± 0.33 1.48± 0.07 2.42± 0.35 – 0.97± 0.07 0.59± 0.13 0.63± 0.19

Test-MAE 4.14± 0.36 4.44± 0.16 3.46± 0.64 6.32± 1.62 2.40± 0.53 1.88± 0.75 2.14± 1.03 2.11± 0.76

TABLE 3: Mean energy and mean absolute errors (MAE) over all CV-folds ±1σ on training and testing data. Comparisons to [28]
and [16] were left-out, because [28] did not converge appropriately and [16] did not scale to the size of these problems.
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Fig. 11: Traffic speed predictions via 5-fold CV. The red solid
curve shows the ground truth (best-viewed in color).
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Fig. 12: Crowd counting results via 4-fold CV. Predictions are
shown as a function of the sliding window index. The gray enve-
lope indicates the weighted standard deviation (±1σ) around the
average crowd size in a sliding window (best-viewed in color).

Our approaches also scale better to larger problems,
thereby allowing for experiments on the traffic and the
pedestrian data sets. While the presented applications
are limited to shape analysis and surveillance video
processing, our method should be widely applicable
to other problems on the Grassmann manifold, e.g.,
domain adaptation, facial pose regression, or the recently
proposed domain evolution problems.

Regarding the limitations of the proposed approach,
we note that the issue of model selection is critical. In
fact, whether we should use Std-GGR, TW-GGR or CS-
GGR highly depends on our prior knowledge of the data.
In shape regression, for instance such prior knowledge
is frequently available, since the medical / biological
literature already provides evidence for different growth
and saturation effects as a function of age. For appli-
cations where prediction of the independent variable
is of importance, e.g., traffic or or crowd surveillance,
we additionally have computational constraints in many
cases. Interestingly, a simple geodesic curve as a model
for regression can often provide sufficiently good per-
formance, as we observed in the crowd counting ex-
periment. We hypothesize that this can be explained, to
some extent, by the fact that geodesic regression respects
the geometry of the underlying space. In this space,
the relationship between the dependent and the inde-

pendent variable might be relatively simple to model.
In contrast, approaches where video content is repre-
sented by feature vectors and conventional regression
approaches with standard kernels are used, more flexible
models might be needed. TW-GGR can serve as a hybrid
solution when we have prior knowledge about the data;
however, samples throughout the range of the indepen-
dent variable are needed to avoid degenerate cases of
the warping function, which could be avoided via regu-
larization. Furthermore, the model criticism approach in
[52] provides another alternative for model selection.

ACKNOWLEDGMENTS

This work was supported by NSF grants EECS-1148870
and IIS-1208522.

REFERENCES
[1] A. Edelman, T. Arias, and S. T. Smith, “The geometry of algo-

rithms with orthogonality constraints,” SIAM J. Matrix Anal. Appl.,
vol. 20, no. 2, pp. 303–353, 1998.

[2] K. Gallivan, A. Srivastava, L. Xiuwen, and P. V. Dooren, “Efficient
algorithms for inferences on Grassmann manifolds,” in Statistical
Signal Processing Workshop, 2003, pp. 315–318.

[3] R. Gopalan, R. Li, and R. Chellappa, “Domain adaption for object
recognition: An unsupervised approach,” in ICCV, 2011.

[4] J. Zheng, M.-Y. Liu, R. Chellappa, and P. Phillips, “A Grassmann
manifold-based domain adaption approach,” in ICML, 2012.

[5] Y. Lui, “Human gesture recognition on product manifolds,” JMLR,
vol. 13, pp. 3297–3321, 2012.

[6] Y. Lui, J. Beveridge, and M. Kirby, “Canonical Stiefel quotient and
its application to generic face recognition in illumination spaces,”
in BTAS, 2009.

[7] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa,
“Statistical computations on Grassmann and Stiefel manifolds for
image and video-based recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 11, pp. 2273–2285, 2011.

[8] S. Mittal and P. Meer, “Conjugate gradient descent on Grassmann
manifolds for robust subspace estimation,” Image Vision Comput.,
vol. 30, pp. 417–427, 2012.
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