2160

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012

Counting People With Low-Level Features
and Bayesian Regression

Antoni B. Chan, Member, IEEE, and Nuno Vasconcelos, Senior Member, IEEE

Abstract—An approach to the problem of estimating the size of
inhomogeneous crowds, which are composed of pedestrians that
travel in different directions, without using explicit object segmen-
tation or tracking is proposed. Instead, the crowd is segmented
into components of homogeneous motion, using the mixture of
dynamic-texture motion model. A set of holistic low-level features
is extracted from each segmented region, and a function that maps
features into estimates of the number of people per segment is
learned with Bayesian regression. Two Bayesian regression models
are examined. The first is a combination of Gaussian process re-
gression with a compound kernel, which accounts for both the
global and local trends of the count mapping but is limited by
the real-valued outputs that do not match the discrete counts.
We address this limitation with a second model, which is based
on a Bayesian treatment of Poisson regression that introduces a
prior distribution on the linear weights of the model. Since exact
inference is analytically intractable, a closed-form approximation
is derived that is computationally efficient and kernelizable, en-
abling the representation of nonlinear functions. An approximate
marginal likelihood is also derived for kernel hyperparameter
learning. The two regression-based crowd counting methods are
evaluated on a large pedestrian data set, containing very distinct
camera views, pedestrian traffic, and outliers, such as bikes or
skateboarders. Experimental results show that regression-based
counts are accurate regardless of the crowd size, outperforming
the count estimates produced by state-of-the-art pedestrian de-
tectors. Results on 2 h of video demonstrate the efficiency and
robustness of the regression-based crowd size estimation over long
periods of time.

Index Terms—Bayesian regression, crowd analysis, Gaussian
processes, Poisson regression, surveillance.

I. INTRODUCTION

HERE IS currently a great interest in vision technology
for monitoring all types of environments. This could
have many goals, e.g., security, resource management, urban
planning, or advertising. From a technological standpoint, com-
puter vision solutions typically focus on detecting, tracking,
and analyzing individuals (e.g., finding and tracking a person
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walking in a parking lot or identifying the interaction between
two people). While there has been some success with this type
of “individual-centric” surveillance, it is not scalable to scenes
with large crowds, where each person is depicted by a few
image pixels, people occlude each other in complex ways, and
the number of targets to track is overwhelming. Nonetheless,
there are many problems in monitoring that can be solved
without explicit tracking of individuals. These are problems
where all the information required to perform the task can be
gathered by analyzing the environment holistically or globally,
e.g., monitoring of traffic flows, detection of disturbances in
public spaces, detection of highway speeding, or estimation
of crowd sizes. By definition, these tasks are based on either
properties of the crowd as a whole or an individual’s deviation
from the crowd. In both cases, to accomplish the task, it should
suffice to build good models for the patterns of crowd behavior.
Events could then be detected as variations in these patterns,
and abnormal individual actions could be detected as outliers
with respect to the crowd behavior.

An example surveillance task that can be solved by a “crowd-
centric” approach is that of pedestrian counting. Yet, it is fre-
quently addressed with “individual-centric” methods: detect the
people in the scene [1]-[6], track them over time [3], [7]-[9],
and count the number of tracks. The problem is that, as the
crowd becomes larger and denser, both individual detection and
tracking become close to impossible. In contrast, a “crowd-cen-
tric” approach analyzes global low-level features extracted from
crowd imagery to produce accurate counts. While a number of
“crowd-centric” counting methods have been previously pro-
posed [10]-[16], they have not fully established the viability of
this approach. This has a multitude of reasons: from limited ap-
plications to indoor environments with controlled lighting (e.g.,
subway platforms) [10]-[13], [15] to ignoring crowd dynamics
(i.e., treating people moving in different directions as the same)
[10]-[14], [16], to assumptions of homogeneous crowd density
(i.e., spacing between people) [15], to measuring a surrogate of
the crowd size (e.g., crowd density or percent crowding) [10],
[11], [15], to questionable scalability to scenes involving more
than a few people [16], and to limited experimental validation
of the proposed algorithms [10]-[12], [14], [15].

Unlike these proposals, we show that there is no need for
pedestrian detection, object tracking, or object-based image
primitives to accomplish the pedestrian counting goal, even
when the crowd is sizable and inhomogeneous, e.g., has
subcomponents with different dynamics and appears in uncon-
strained outdoor environments, such as that of Fig. 1. In fact,
we argue that when a “crowd-centric” approach is considered,
the problem appears to become simpler. We simply segment the
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Fig. 1. Scenes containing a sizable crowd with inhomogeneous dynamics due to pedestrian motion in different directions.

crowd into subparts of interest (e.g., groups of people moving in
different directions), extract a set of holistic features from each
segment, and estimate the crowd size with a suitable regression
function [17]. By bypassing intermediate processing stages,
such as people detection or tracking, which are susceptible to
occlusion problems, the proposed approach produces robust
and accurate crowd counts, even when the crowd is large and
dense.

One important aspect of regression-based counting is the
choice of the regression function used to map segment features
into crowd counts. One possibility is to rely on classical regres-
sion methods, such as linear or piecewise linear, regression,
and least squares fits [18]. These methods are not very robust
to outliers and nonlinearities and are prone to overfitting when
the feature space is high-dimensional or when there are little
training data. In these cases, better performance can usually
be obtained with more recent methods, such as Gaussian
process regression (GPR) [19]. GPR has several advantages,
including adaptation to nonlinearities with kernel functions,
robust selection of kernel hyperparameters via maximization
of marginal likelihoods (namely type-II maximum likelihood),
and a Bayesian formalism for inference that enables better
generalization from small training sets. However, the main
limitation of GPR-based counting is that it relies on a contin-
uous real-valued function to map visual features into discrete
counts. This reduces the effectiveness of Bayesian inference.
For example, the predictive distribution does not assign zero
probability to noninteger, or even negative, counts. In result,
there is a need for suboptimal postprocessing operations, such
as quantization and truncation. Furthermore, continuous crowd
estimates increase the complexity of subsequent statistical
inference, e.g., graphical models that identify dependence
between counts measured at different nodes of a camera net-
work. Since this type of inference is much simpler for discrete
variables, the continuous representation that underlies GPR
adds undue complexity.

A standard method for learning mappings into the set of non-
negative integers is Poisson regression [20], which models the
output variable as a Poisson distribution with a log-arrival rate
that is a linear function of the input feature vector. To obtain a
Bayesian model, a popular extension of Poisson regression is to
adopt a hierarchical model, where the log-arrival rate is modeled
with a GP prior [21]-[23]. However, due to the lack of conju-
gacy between the Poisson and the GP, exact inference is analyt-
ically intractable. Existing models [21]-[23] rely on Markov-
chain Monte Carlo (MCMC) methods, which limit these hier-
archical models to small data sets. In this paper, we take a dif-

ferent approach and directly analyze Poisson regression from
a Bayesian perspective, by imposing a Gaussian prior on the
weights of the linear log-arrival rate [24]. We denote this model
as Bayesian Poisson regression (BPR). While exact inference
is still intractable, it is shown that effective closed-form ap-
proximations can be derived. This leads to a regression algo-
rithm that is much more efficient than those previously available
[21]-[23].

The contributions of this paper are threefold, spanning open
questions in computer vision and machine learning. First,
a “crowd-centric” methodology for estimating the sizes of
crowds moving in different directions, which does not depend
on object detection or feature tracking, is presented. Second, a
Bayesian regression procedure is derived for the estimation of
counts, which is a Bayesian extension of Poisson regression.
A closed-form approximation to the predictive distribution,
which can be kernelized to handle nonlinearities, is derived,
together with an approximate procedure for optimizing the
hyperparameters of the kernel function, under the Type-II
maximum marginal likelihood criteria. It is also shown that
the proposed approximation to BPR is related to a GPR with
a specific noise term. Third, the proposed crowd counting
approach is validated on two large data sets of pedestrian
imagery, and its robustness demonstrated through results on 2
hours of video. To our knowledge, this is the first pedestrian
counting system that accounts for multiple pedestrian flows and
successfully operates continuously in an outdoor unconstrained
environment for such periods of time.

This paper is organized as follows. Section II reviews related
work in crowd counting. GPR is discussed in Section III, and
BPR is proposed in Section IV. Section V introduces a crowd
counting system based on motion segmentation and Bayesian
regression. Finally, experimental results on the application of
Bayesian regression to the crowd counting problem are pre-
sented in Section VI.

II. RELATED WORK

Current solutions to crowd counting follow three paradigms:
1) pedestrian detection; 2) visual feature trajectory clustering;
and 3) regression. Pedestrian detection algorithms can be based
on boosting appearance and motion features [1], Bayesian
model-based segmentation [2], [3], histogram-of-gradients
[25], or integrated top-down and bottom-up processing [4].
Because they detect whole pedestrians, these methods are not
very effective in densely crowded scenes involving significant
occlusion. This problem has been addressed to some extent by
the development of part-based detectors [5], [6], [26], [27]. De-
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tection results can be further improved by tracking detections
between multiple frames, e.g., via a Bayesian approach [28] or
boosting [29], or by using stochastic spatial models to simulta-
neously detect and count people as foreground shapes [30].

The second paradigm consists of identifying and tracking
visual features over time. Feature trajectories that exhibit co-
herent motion are clustered, and the number of clusters is used
as an estimate of the number of moving subjects. Examples
of this formulation include [7], which uses the KLT tracker
and agglomerative clustering, and [8], which relies on an un-
supervised Bayesian approach. Counting of feature trajectories
has two disadvantages. First, it requires sophisticated trajectory
management (e.g., handling broken feature tracks due to oc-
clusions or measuring similarities between trajectories of dif-
ferent length) [31]. Second, in crowded environments, it is fre-
quently the case that coherently moving features do not belong
to the same person. Hence, equating the number of people to the
number of trajectory clusters can be quite error prone.

Regression-based crowd counting was first applied to subway
platform monitoring. These methods typically work by: 1) sub-
tracting the background; 2) measuring various features of the
foreground pixels, such as total area [10], [11], [13], edge count
[11]-[13], or texture [ 15]; and 3) estimating the crowd density or
crowd count with a regression function, e.g., linear [10], [13],
piecewise linear [12], or neural networks [11], [15]. In recent
years, regression-based counting has also been applied to out-
door scenes. For example, Kong et al. [14] apply neural net-
works to the histograms of foreground segment areas and edge
orientations. Dong et al. [16] estimates the number of people
in each foreground segment by matching its shape to a data-
base containing the silhouettes of possible people configura-
tions but is only applicable when the number of people in each
segment is small (empirically, less than six). Cong et al. [32]
count the number of people crossing a line of interest using flow
vectors and dynamic mosaics. Lempitsky and Zisserman [33]
proposes a supervised learning framework, which estimates an
image density whose integral over a region of interest (ROI)
yields the count. The main contributions of this paper, with re-
spect to previous approaches to regression-based counting, are
fourfold: 1) integration of regression and robust motion segmen-
tation, which enables counts for crowds moving in different di-
rections (e.g., traveling into or out of a building); 2) integration
of suitable features and Bayesian nonlinear regression, which
enables accurate counts in densely crowded scenes; 3) introduc-
tion of a Bayesian model for discrete regression, which is suit-
able for crowd counting; and 4) demonstration that the proposed
algorithms can robustly operate on video of unconstrained out-
door environments, through validation on a large data set con-
taining 2 hours of video.

Regarding Bayesian regression for discrete counts, Diggle et
al. [21]-[23] and Adams et al. [34] propose hierarchical Poisson
models, where the log-arrival rate is modeled with a GP prior.
Inference is approximated with MCMC, which has been noted
to exhibit slow mixing times and poor convergence properties
[21]. Alternatively, EI-Sayyad [35] directly performs a Bayesian
analysis of standard Poisson regression by adding a Gaussian
prior on the linear weights and proposes a Gaussian approxima-
tion to the posterior weight distribution. In this paper, we extend
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[35] in three ways: 1) we derive a Gaussian posterior that can
handle observations of zero count; 2) we derive a closed-form
predictive count distribution; and 3) we kernelize the regression
function, thus modeling nonlinear log-arrival rates. Our final
contribution is a kernelized closed-form efficient approximation
to BPR. Finally, a regression task similar to counting is ordinal
regression, which learns a mapping to an ordinal scale (ranking
or ordered set), e.g., letter grades. A Bayesian version of ordinal
regression using GP priors was proposed in [36]. However, or-
dinal regression cannot elegantly be used for counting; the or-
dinal scale is fixed upon training, and hence, it cannot predict
counts outside of the training set.

With respect to our previous work, our initial solution to
crowd counting using GPR was presented in [17], and BPR was
proposed in [24]. The contributions of this paper, with respect
to our previous work, are fourfold: 1) we present the complete
derivation for BPR, which was shortened in [24]; 2) we derive
BPR so that it handles zero count observations; 3) we validate
Bayesian regression-based counting on a larger data set and
from two viewpoints (Chan et al. [17], [24] only tested one
viewpoint); and 4) we provide an in-depth comparison between
regression-based counting and counting using person detection.

III. GAUSSIAN PROCESS REGRESSION

Fig. 1 shows examples of a crowded scene on a pedestrian
walkway. We assume that the camera is part of a permanent
surveillance installation; hence, the viewpoint is fixed. The goal
of crowd counting is to estimate the number of people moving in
each direction. The basic idea is that, given a segmentation into
the two crowd subcomponents, certain low-level global features
extracted from each crowd segment are good predictors of the
number of people in that segment. Intuitively, assuming proper
normalization for the scene perspective, one such feature is the
area of the crowd segment (number of segment pixels). Fig. 2(a)
plots the segment area versus the crowd size, along with the least
squares fit by a line. Note that, while there is a global linear trend
relating the two variables, the data have local deviations from
this linear trend, due to confounding factors such as occlusion.
This suggests that additional features are needed to accurately
model crowd counts, along with a regression framework that
can accommodate the local nonlinearities.

One possibility to implement this regression is to rely on
GPR [19]. This is a Bayesian approach to the prediction of a
real-valued function f(x) of a feature vector x € R¢, from a
training sample. Let ¢(x) be a high-dimensional feature trans-
formation of x, ¢ : R* — RP. Consider the case where f(x) is
linear in the transformation space and the target count ¥ modeled
as

fE) =¢x)"w, y=f(x)+e (1)

where w € R”, and the observation noise is assumed indepen-
dent identically distributed (i.i.d.), and Gaussian ¢ ~ N'(0,52).
The Bayesian formulation requires a prior distribution on the
weights, which is assumed Gaussian w ~ A (0, Ep) of covari-
ance 2.
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Fig. 2. Correspondence between crowd size and segment area. (a) Line learned with least squares regression. (b) Nonlinear function learned with GPR. The two

standard deviations error bars are plotted (gray area).

A. Bayesian Prediction

Let X = [x1,--xn] be the matrix of observed feature vec-
tors x;, and lety = [y1 --- yx|’ be the vector of the corre-
sponding counts y;. The posterior distribution of the weights
w, given the observed data {X,y}, is given by Bayes’ rule
p(w|X,y) = (p(y|X, w)p(w)/ [ p(y|X, w)p(w)dw). Given
the novel input x.., the predictive distribution for f, = f(x.) is
the average overall possible model parameterizations [19]

p(fulxe X.y) = /'p(f*|x*,w>p<wwx,y>dw @)
= N(fulitn, 02) 3

where the predictive mean and covariance are

o=kl (K+a20) 'y @
02 = k(% %) — KT (K + 021) ' K. )
K is the kernel matrix with entries K;; = k(x;,x;), and

ke = [k(xs,x1)  k(xs,xx)]T. The kernel function is
k(x,x') = ¢(x)T3,¢(x’); hence, the predictive distribution
only depends on inner products between inputs x;.

B. Compound Kernel Functions

The class of functions that can be approximated by GPR de-
pends on the covariance or the kernel function employed. For
example, the linear kernel k;(x,x") = 6%(xTx’ + 1) leads
to standard Bayesian linear regression, whereas a squared-ex-
ponential (RBF) kernel k,(x,x') = #2e-(1/8)Ix=x'1" yields
Bayesian regression for locally smooth infinitely differentiable
functions. As shown in Fig. 2(a), the segment area exhibits a
linear trend with the crowd size, with some local nonlinearities
due to occlusions and segmentation errors. To model the domi-
nant linear trend, as well as these nonlinear effects, we can use a
compound kernel with linear and RBF components as follows:

1 2

bra(xix;) = 02 (I, +1) + 6% 7500 (6)

Fig. 2(b) shows an example of a GPR function adapting to

local nonlinearities using the linear-RBF compound kernel. The

inclusion of additional features (particularly texture features)

can make the dominant trend nonlinear. In this case, a kernel
with two RBF components is more appropriate, as shown in

I —x |7 o llxi x5 |7

krr(xi,x;) = #le >3 +62e % )

The first RBF has a larger scale parameter #» and models
the overall trend, whereas the second relies on a smaller scale
parameter 84 to model local nonlinearities.

The kernel hyperparameters #; can be estimated from a
training sample by Type-II maximum likelihood, which maxi-
mizes the marginal likelihood of the training data { X, y'}

log p(y|X. 8) = log / oy |w, X, 0)p(wlf)dw ®)

1 _ 1 N
= - gV K,y - Slog|Ky| — T-log2m (9)
where K, = K + o21, with respect to the parameters 4, e.g.,
using standard gradient ascent methods. Details of this opti-
mization can be found in [19,Chapter 5].

IV. BAYESIAN POISSON REGRESSION

While GPR is a Bayesian framework for regression prob-
lems with real-valued output variables, it is not a natural regres-
sion formulation when the outputs are nonnegative integers, i.c.,
y € Zy = {0,1,2,---}, as is the case for counts. A typical
solution is to model the output variable as Poisson or negative
binomial (NB), with an arrival-rate parameter that is a function
of the input variables, resulting in the standard Poisson regres-
sion or NB regression [20]. Although both these methods model
counts, they do not support Bayesian inference, i.e., do not con-
sider the weight vector 3 as a random variable. This limits their
generalization from small training samples and prevents a prin-
cipled probabilistic approach to learning hyperparameters in a
kernel formulation.

In this section, we propose a Bayesian model for count re-
gression. We start from the standard Poisson regression model,
where the input is x € R?, and the output variable y is Poisson
distributed, with a log-arrival rate that is a linear function in the
transformation space ¢(x) € R, i.e.,
Mx) = "™,y ~ Poisson (A(x))

(10)
where 1/(x) is the log of the arrival rate, A(x) the arrival rate (or
mean of y), and 3 € RP is the weight vector. The likelihood of
y given observation x is

e AN\ (x)¥
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We assume a Gaussian prior on the weight vector
8 ~ N(0,%,). The posterior distribution of 5, given a
training sample { X, y }, is given by Bayes’ rule as follows:

_ ply|X, B)p(B)
p(BIX.y) = Ty X, B)p(B)ds"

Due to the lack of conjugacy between the Poisson likelihood
and the Gaussian prior, (11) does not have a closed-form expres-
sion; therefore, an approximation is necessary.

(11)

A. Approximate Posterior Distribution

We first derive a closed-form approximation to the posterior
distribution in (11), which is based on the approximation of [35].
Consider the data likelihood of a training set { X, y } as follows:

N
L iy, —ev0e)
p(y|X.6) = H y_<'(z (x)vi

i=17"

(12)

N v(xi)(yite) ,—e” 50
— f[ € Cei)lwit )6 Cfcu(xi) F(yl + C)
Iy +¢) yi!

(13)

i=1

where ¢ > 0 is a constant. The approximation is based on two
facts. First, the term in the square brackets is the likelihood of
the data under a log-gamma distribution of parameters (y+¢, 1),
i.e., v ~ Log Gamma(y + ¢, 1) where

e yte), —e”

plvly+c,1) = (14)

Ty +c)
A log-gamma random variable v is the log of a gamma random
variable A, where v = log A. This implies that A is gamma dis-
tributed with parameters (y+c¢, 1). Second, for a large number of

arrivals k, the log-gamma is closely approximated by a Gaussian
[35], [37], [38], i.e.,

Log Gamma(k, 8) = N(p, 0%) (15)

where the parameters are related by
k=020=0%" < o>=k'pu=log(kd). (16)
Hence, (14) can be approximated as

pwly + e, 1) =N (v]log(y +¢). (y+¢)71) . (17)

This is illustrated in Fig. 3, which depicts the accuracy of
the approximation for different values of ¥ + ¢. Applying (17)
to replace the square-bracket term in (13) and defining ¢ =

[90x1) - e )]
p1X.8) ~ T] IV (v(xo) gy + ). (v + )]

=1
T(y; + ¢
.e,cwx,:);(?{; ) (18)
_eféH@Tﬁfslléy—cqu>T,ﬁ N b 4o) "
(27r)%|2y|% yi!

i=1

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012

04r o o N Log—-gamma (y+c=1)
+=-= Log—gamma (y+c=5)
— — — Log—gamma (y+c=20)
. 0.3F o o A Log-gamma (y+c=50)
£ \ Normal
g
502t ] )
2 : . Y : h
! \
o
= /; \\
0.1F t iy : 2\
oy AR\
//// NN

0 - i i i i e ; i
-5 -4 -3 -2 -1 0 1 2 3 4 5
(v-p)/0

Fig. 3. Gaussian approximation of the log-gamma distribution for different

values of y + «. The plot is normalized so that the distributions have zero mean
and unit variance.

where ¥, = diag([1/(y14¢)---1/(yn+c)]),ands = log(y+
¢) is the elementwise logarithm of y 4 ¢. Substituting into (11)
log p(3|X,y) o log p(y| X, 8) + log p(3) (20)
1 1
~ 078 -8R, — aATOTE - IR,
@1

where we have ignored terms independent of (3. Expanding the
norm terms yields

log p(B1 X, y)

1 ~ ) - _
x =3 (Brox'o"p— 23" 0% Ts+ "% s) (22)

1
— c]_T(DTﬂ — iﬂTE;Iﬂ

x —% (87 (ex, 10" + 5,1 - 20" (2%, 's — c01)]
(23)

1 _ _ -
=5 (87 (ez, 0" +3.1) g - 287 0%, ') (24)

where t = s — X, 1 has elements ¢; = log(y; +¢) — ¢/ (y; +¢).
Finally, by completing the square, the posterior distribution is
approximately Gaussian, i.e.,

p(BIX,y) = N (Blitg%s) (25)
with mean and variance
fig = (85,107 + 2, 1) T 8%, 1t (26)
A o _ —1
Y= (0%, 0T+, 1) . (27)

Note that setting ¢ = 0 will yield the original posterior ap-
proximation in [35]. Constant c acts as a parameter that controls
the smoothness of the approximation around y = 0, avoiding
the logarithm of or division by zero. In the experiments, we set
this parameter to ¢ = 1.

B. Bayesian Prediction

Given a novel observation x,, we start by considering the
predicted log-arrival rate v, = ¢(x,)T 3. It follows from (25)
that the posterior distribution of v, is approximately Gaussian:

prslxs, X, y) %N(Z/*LLAL,,,&E) (28)
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with mean and variance

i = d(x)" (B80T + 5,1 T BN, 1
52 =d(x)" (22,127 +2,1) T g(xu).

29
(30)

Applying the matrix inversion lemma, 52 can be rewritten in
terms of the kernel function

62 =¢(x)T (B, — L, 00T 8,0+ 3,) 10T, p(x.)
= k(xs, %) — kL (K +2,) ke (31)
where k(-,-), K, and k., are defined, as in Section III-A. Using

(42) from the Appendix, the posterior mean fi, can also be
rewritten in terms of the kernel function

fiy = ¢(x.) T8, 0(OT,0 +3,) 1t
=kI(K+%,) 't

(32)
(33)

Since the posterior mean and variance of v, depend only on
the inner product between the inputs, we can apply the “kernel
trick” to obtain nonlinear log-arrival rate functions.
The predictive distribution for g, is

e Xoy) = [ ol dplo e Xoys (G4
where p(y.«|e”*) is a Poisson distribution of the arrival rate
A« = e”+. While this integral does not have analytic solution,
a closed-form approximation is possible. Since v, is approxi-
mately Gaussian, it follows from (15) and (16) that v, is well
approximated by a log-gamma distribution. From v, = log A,
it then follows that A, is approximately gamma distributed:

As|xs, X,y ~ Gamma (6, °, 67" .

Note that the expected time A, between arrivals of the
Poisson process is modeled as the time between &, 2 arrivals

of a Poisson process of rate 52¢f» . Hence, A, ~ ¢/, which is
a sensible approximation. (34) can then be rewritten as

P(ylx.. X y) = /p(y*lx\*)p(A*\x*sX, y)dA, (35)
0

where p(y.|\x) is a Poisson distribution and p(A«|x., X,y) is
a gamma distribution. Since the latter is the conjugate prior for

the former, the integral has an analytical solution, which is an
NB, i.e.,

I (y. +6,2)

p(ys %, X, y) = o+ 1T (559) )% (1 —p)¥, (36)
6'—2
p= “ 37)

6,7 +exp(fiy)

In summary, the predictive distribution of y. can be approx-
imated by an NB as follows:

Yu| %, X,y ~ NegBin (e, 52) (38)
of mean e+ and scale 62, given by (29). The prediction vari-
ance is var(y.) = efv (1 4+ 62¢/+) and grows proportionally to
the variance of ... This is sensible since uncertainty in the pre-
diction of v, is expected to increase the uncertainty of the count
prediction y,. In the ideal case of no uncertainty (62 = 0),
the NB reduces to a Poisson distribution with both mean and
variance of ¢/, Thus, a useful measure of uncertainty for the
prediction y. is the square root of this “extra” variance (i.e.,
overdispersion), i.e., unc(y.) = &, ¢ . Finally, the mode of ¥,
is adjusted downward depending on the amount of overdisper-
(1 —a))et], &, <1

0. LINE where || is

sion, i.e., mode(y) =

the floor function.

C. Learning the Kernel Hyperparameters

The hyperparameters ¢ of kernel k(x,x’) can be estimated
by maximizing the marginal likelihood p(y|X,8). Using the
log-gamma approximation in (19), p(y|X, #) is approximated
in closed form with (see Appendix for derivation)

1 1
log p(y| X, 6) x —§log |K + 2, — §tT(K+ ¥,) "t (39)

Fig. 4 presents two examples of BPR learning using the linear
and RBF kernels. The predictive distributions are plotted in
Fig. 4(a) and (c), and the corresponding log-arrival rate func-
tions are plotted in Fig. 4(b) and (d). While the linear kernel can
only account for exponential trends in the data, the RBF kernel
can easily adapt to the local deviations of the arrival rate.

D. Relationship With GPR

The proposed approximate BPR is closely related to GPR.
The equations for fi,, and 62 in (31) and (33) are almost iden-
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Fig. 5. Crowd counting from low-level features. The scene is segmented into crowds moving in different directions. Features are extracted from each segment
and normalized to account for perspective. The number of people in each segment is estimated with Bayesian regression.

tical to those of the GPR predictive distribution in (4) and (5).
There are two main differences: 1) the noise term >, of BPR
in (31) is dependent on predictions y; (this is a consequence
of assuming a Poisson noise model), whereas the GPR noise
term in (5) is i.i.d. (¢21); 2) the predictive mean /i, in (33) is
computed with the log counts t (assuming ¢ = 0), rather than
the counts y of GPR (this is due to the fact that BPR predicts
log-arrival rates, whereas GPR predicts counts). This suggests
the following interpretation for the approximate BPR. Given the
observed data {X,y} and novel input x,, approximate BPR
models the predictive distribution of the log-arrival rate v, as a
GP with non-i.i.d. observation noise of covariance . The pos-
terior mean fi,, and variance 62 of v, then serve as parameters
of the predictive distribution of 4., which is approximated by an
NB of mean e~ and the scale parameter 2. Note that the pos-
terior variance of v, is the scale parameter of the NB. Hence, in-
creased uncertainty in the predictions of v, by the GP, translates
into increased uncertainty in the prediction of y... The approxi-
mation to the BPR marginal likelihood in (39) differs from that
of the GPR in a similar manner and, hence, has a similar inter-
pretation. In summary, the proposed closed-form approximation
to BPR is equivalent to GPR on the log-arrival rate parameter of
the Poisson distribution. This GP includes a special noise term,
which approximates the uncertainty that arises from the Poisson
noise model. Since BPR can be implemented as GPR, the pro-
posed closed-form approximate posterior is more efficient than
the Laplace or EP approximations, which both use iterative op-
timization. In addition, the approximate predictive distribution
is also calculated efficiently since it avoids numerical integra-
tion. Finally, standard Poisson regression belongs to the family
of generalized linear models [39], which is a general regression
framework for linear covariate regression problems. General-
ized kernel machines and the associated kernel Poisson regres-
sion were proposed in [40]. The proposed BPR is a Bayesian
formulation of kernel Poisson regression.

V. CROWD COUNTING USING LOW-LEVEL FEATURES AND
BAYESIAN REGRESSION

An outline of the proposed crowd counting system is shown
in Fig. 5. The video is first segmented into crowd regions
moving in different directions. Features are then extracted from

each crowd segment, after the application of a perspective
map that weighs pixels according to their approximate size in
the 3-D world. Finally, the number of people per segment is
estimated from the feature vector, using the BPR module of the
previous section. The remainder of this section describes each
of these components.

A. Crowd Segmentation

The first step of the system is to segment the scene into the
crowd subcomponents of interest. The goal is to count people
moving in different directions or with different speeds. This
is accomplished by first using a mixture of dynamic textures
[41] to segment the crowd into subcomponents of distinct mo-
tion flow. The video is represented as collection of spatiotem-
poral patches, which are modeled as independent samples from
a mixture of dynamic textures. The mixture model is learned
with the expectation—maximization algorithm, as described in
[41]. Video locations are then scanned sequentially; a patch is
extracted at each location and assigned to the mixture compo-
nent of the largest posterior probability. The location is declared
to belong to the segmentation region associated with that com-
ponent. For long sequences, where characteristic motions are
not expected to change significantly, the computational cost of
the segmentation can be reduced by learning the mixture model
from a subset of the video (a representative clip). The remaining
video can then be segmented by simple computation of the pos-
terior assignments. Full implementation details are available
in [41].

B. Perspective Normalization

The extraction of features from crowd segments should take
into account the effects of perspective. Because objects closer
to the camera appear larger, any pixels associated with a close
foreground object account for a smaller portion of it than those
of an object farther away. This can be compensated by normal-
izing for perspective during feature extraction (e.g., when com-
puting the segment area). In this paper, each pixel is weighted
according to a perspective normalization map, which is based on
the expected depth of the object that generated the pixel. Pixel
weights encode the relative size of an object at different depths,
with larger weights given to far objects.
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Fig. 6. Perspective map: (a) reference person at the front of walkway, and (b) at the end, and (c) the perspective map, which scales pixels by their relative size in

the true 3d scene.

The perspective map is estimated by linearly interpolating
the size of a reference person (or object) between two extremes
of the scene. First, a rectangle is marked in the ground plane,
by specifying points {A, B, C,D}, as in Fig. 6(a). It is as-
sumed that 1) {A, B, C, D} form a rectangle in 3-D, and 2)
AB and CD are horizontal lines in the image plane. A refer-
ence person is then selected in the video, and heights h; and ho
estimated as the center of the person move over AB and CD,
as in Fig. 6(a) and (b). In particular, the pixels on the near and
far sides of the rectangle are assigned weights based on the area
of the object at these extremes: pixels on AB receive weight 1
and those on CD weight equal to the area ratio (hywy)/(haws),
where w; is the length of AB and w- is the length of CD. The
remaining pixel weights are obtained by linearly interpolating
the width of the rectangle and the height of the reference person
at each image coordinate and computing the area ratio. Fig. 6(c)
shows the resulting perspective map for the scene in Fig. 6(a).
In this case, objects in the foreground (AB) are approximately
2.4 times bigger than objects in the background (CD). In other
words, pixels on CD are weighted 2.4 times as much as pixels
on AB. We note that many other methods could be used to es-
timate the perspective map, e.g., a combination of a standard
camera calibration technique and a virtual person who is moved
around in the scene [42] or even the inclusion of the spatial
weighting in the regression itself. We found this simple inter-
polation procedure sufficient for our experiments.

C. Feature Extraction

In principle, features such as segment area should vary lin-
early with the number of people in the scene [10], [31]. Fig. 2(a)
shows a plot of this feature versus the crowd size. While the
overall trend is indeed linear, local nonlinearities arise from
a variety of factors, including occlusion, segmentation errors,
and pedestrian configuration (e.g., variable spacing of people
within a segment). To model these nonlinearities, an additional
29 features, which are based on segment shape, edge informa-
tion, and texture, are extracted from the video. When computing
features based on area or size, each pixel is weighted by the
corresponding value in the perspective map. When the features
are based on edges (e.g., edge histogram), each edge pixel is
weighted by the square root of the perspective map value.

1) Segment Features: Features are extracted to capture seg-
ment properties such as shape and size. Features are also ex-
tracted from the segment perimeter, i.e., computed by morpho-
logical erosion with a disk of radius 1.

* Area—number of pixels in the segment.

=0° 6=30° 6=60° 6=90° 0=120° 6 =150°

Fig. 7. Filters used to compute edge orientation.

* Perimeter—number of pixels on the segment perimeter.

* Perimeter edge orientation—a 6-bin histogram of the
orientation of the segment perimeter. The orientation of
each edge pixel is estimated by the orientation of the filter
of maximum response within a set of 17 x 17 oriented
Gaussian filters (see Fig. 7 for examples).

* Perimeter-area ratio—ratio between the segment
perimeter and area. This feature measures the com-
plexity of the segment shape: segments of high ratio
contain irregular perimeters, which may be indicative of
the number of people contained within.

e “Blob” count—number of connected components, with
more than 10 pixels, in the segment.

2) Internal Edge Features: The edges within a crowd seg-
ment are a strong clue about the number of people in it [13],
[14]. A Canny edge detector [43] is applied to the image, the
output is masked to form the internal edge image (see Fig. 8),
and a number of features are extracted.

* FEdge length—number of edge pixels in the segment.

» FEdge orientation—O6-bin histogram of edge orientations.

* Minkowski dimension—fractal dimension of the internal
edges, which estimates the degree of “space-filling” of the
edges [44].

3) Texture Features: Texture features, which are based on
the gray-level cooccurrence matrix, were used in [15] to clas-
sify image patches into five classes of crowd density (very low,
low, moderate, high, and very high). In this paper, we adopt a
similar set of measurements for estimating the number of pedes-
trians in each segment. The image is first quantized into eight
gray levels and masked by the segment. The joint probability
of neighboring pixel values p(¢, 7|6) is then estimated for four
orientation, § € {0°,45°,90°,135°}. A set of three features is
extracted for each # for a total of 12 texture features.

* Homogeneity: the texture smoothness, gg =
>, Pl g10) /(L + i = ).
* Energy: the total sum-squared energy,

Cy = Zq‘,?jp(iﬁ,ﬂH)Z‘
* Entropy: the randomness of the texture distribution, hg =
Zi,j p(é, j|0) log p(i, j|6).
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Fig. 9. Ground-truth annotations. (a) Peds1 database: red and green tracks indicate people moving away from, and toward the camera. (b) Peds2 database: red
and green tracks indicate people walking right or left, whereas cyan and yellow tracks indicate fast objects moving right or left. The ROI used in all experiments

is highlighted and outlined in blue.

Finally, a feature vector is formed by concatenating the 30 fea-
tures, into the vector x € R®", which is used as the input for the
regression module of the previous section.

VI. EXPERIMENTAL EVALUATION

The proposed approach to crowd counting was tested on two
pedestrian databases.

A. Pedestrian Databases

Two hours of video were collected from two viewpoints over-
looking a pedestrian walkway at the University of California
San Diego, using a stationary digital camcorder. The first view-
point, shown in Fig. 9(a), is an oblique view of a walkway,
containing a large number of people. The second, shown in
Fig. 9(b), is a side view of a walkway, containing fewer people.
We refer to these two viewpoints as Pedsl and Peds2, respec-
tively. The original video was captured at 30 fps with a frame
size of 740 x 480 and was later downsampled to 238 x 158
and 10 fps. The first 4000 frames (400 seconds) of each video
sequence were used for ground-truth annotation.

An ROI was selected on the main walkway (see Fig. 9), and
the traveling direction (motion class) and the visible center of
each pedestrian! were manually annotated every five frames.
Pedestrian locations in the remaining frames were estimated by
linear interpolation. Note that the pedestrian locations are only
used to test detection performance of the pedestrian detectors in
Section VI-E. For regression-based counting, only the counts in
each frame are required for training. Peds1 was annotated with
two motion classes: “away” from or “towards” the camera. For
Peds2, the motion was split by direction and speed, resulting in
four motion classes: “right-slow,” “left-slow,” “right-fast,” and
“left-fast.” In addition, each data set also has a “scene” motion
class, which is the total number of moving people in the frame

IBicyclists and skateboarders in Peds1 were treated as regular pedestrians.

(i.e., the sum of the individual motion classes). Example anno-
tations are shown in Fig. 9.

Each database was split into a training set, which was used
to learn the regression model, and a test set, which was used
for validation. On Pedsl, the training set contains 1200 frames
(frames 1401-2600), with the remaining 2800 frames held out
for testing. On Peds2, the training set contains 1000 frames
(frames 1501-2500) with the remaining 3000 frames held out for
testing. Note that these splits test the ability of crowd-counting
algorithms to extrapolate beyond the training set. In contrast,
spacing the training set evenly throughout the data set would
only test the ability to interpolate between the training data,
which provides little insight into generalization ability.

B. Experimental Setup

Since Peds] contains two dominant crowd motions (“away”
and “towards”), a mixture of dynamic textures [41] with K = 2
components was learned from 7 x 7 x 20 spatiotemporal patches,
which were extracted from a short video clip. The model was
then used to segment the full video into two segments. The seg-
ment for the overall “scene” motion class is obtained by taking
the union of the segments of the two motion classes. Peds2 con-
tains four dominant crowd motions (“right-slow,” “left-slow,”
“right-fast,” or “left-fast”); hence, a K = 4 component mixture
was learned from 13 x 13 x 10 patches (larger patches are re-
quired since the people are larger in this video).

We treat each motion class (e.g., “away”) as a separate re-
gression problem. The 30-D feature vector of Section V-C was
computed from each crowd segment and each video frame, and
each feature was normalized to zero mean and unit variance.
The GPR and BPR functions were then learned, using maximum
marginal likelihood to obtain the optimal kernel hyperparame-
ters. We used the GPML implementation [19] to find the max-
imum, which uses gradient ascent. For BPR, we modify GPML
to include the special BPR noise term. GPR and BPR were
learned with two kernels: the linear kernel (denoted GPR-I and
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TABLE I

COMPARISON OF REGRESSION APPROACHES AND FEATURE SETS ON PEDS1

MSE err
Feat. Method away towards scene | total away towards  scene | total
Fal linear 3.335 2.868 3.751 9.953 1.451 1.324 1.513 4.288
Faul GPR-1 3.260 2.692 3.654 9.606 1.435 1.278 1.489 4.203
Fail GPR-1r 2.970 2.029 3.787 8.785 1.408 1.093 1.551 4.051
Fall Poisson 2.917 3.065 3.040 9.022 1.336 1.360 1.331 4.027
Fall BPR-1 2.936 2.120 2.910 7.966 1.336 1.160 1.308 3.804
Fall BPR-rr 2.441 1.996 2.975 7.412 1.210 1.124 1.320 | 3.654
Fse BPR-1r 2.751 3.019 6.702 8.867 1.307 1.378 1.365 4.050
Fi BPR-rr 23.300 12.142 60.178 | 95.619 3.478 2.846 5.824 | 12.149
Fe BPR-rr 3.460 4.071 3.406 | 10.938 1.478 1.590 1.431 4.499
Fs BPR-rr 3.396 2.895 4.734 | 11.025 1.384 1.347 1.761 4.491
Fa BPR-rr 3.923 3.224 6.117 | 13.264 1.461 1.470 1.951 4.883
[13] BPR-1r 3.264 3.105 3.640 | 10.010 1.416 1.418 1.478 4.312
[14] BPR-1r 3.118 2.808 3.661 9.587 1.385 1.339 1.500 4.224

BPR-1) and the RBF-RBF compound kernel (denoted as GPR-1r
and BPR-rr). For GPR-1 and BPR-, the initial hyperparameters
were set to § = [1 --- 1], whereas for GPR-rr and BPR-rt, the
optimization was performed over five trials with random initial-
izations to avoid bad local maxima. For completeness, standard
linear least squares and Poisson regression were also tested.

For GPR, counts were estimated by the mean prediction value
ttx, which is rounded to the nearest nonnegative integer. The
standard deviation o, was used as an uncertainty measure. For
BPR, counts were estimated by the mode of the predictive dis-
tribution, and unc(y.) was used as uncertainty measure. The
accuracy of the estimates was evaluated by the mean square
error MSE = (1/M) Z£1(5z — ¢;)? and by the absolute error
err = (1/M) ij; |¢; — ¢;], where ¢; and ¢; are the true and es-
timated counts for frame ¢ and M is the number of test frames.
Experiments were conducted with different subsets of the 30
features: only the segment area (denoted as F, ), segment-based
features (F,), edge-based features (F. ), texture features (F),
and segment and edge features (7. ). The full set of 30 features
is denoted as F,j. The feature sets of [14] (segment size his-
togram and edge orientation histogram) and [13] (segment area
and total edge length) were also tested.

C. Results on Pedsl

Table I presents counting error rates for Peds1 for each of the
motion classes (“away,” “towards,” and “scene”). In addition,
we also report the total MSE and total absolute error as an in-
dicator of overall performance of each method. A number of
conclusions are possible. First, Bayesian regression has better
performance than the non-Bayesian approaches. For example,
BPR-1 achieves an overall error rate of 3.804 versus 4.027 for
standard Poisson regression. The error is further decreased to
3.654 by adopting the compound kernel BPR-rr. Second, the
comparison of the two Bayesian regression models shows that
BPR outperforms GPR. With linear kernels, BPR-1 outperforms
GPR-1 on all classes (total error 3.804 versus 4.203). In the non-
linear case, BPR-rr has significantly lower error than GPR-rr
on the “away” and “scene” classes (e.g., 1.210 versus 1.408 on
the “away” class), and comparable performance (1.124 versus
1.093) on the “towards” class. In general, BPR has the largest
gains in the sequences where GPR has larger error. Third, the

use of sophisticated regression models does make a difference.
The error rate of the best method (BPR-rt, 3.654) is 85% of that
of the worst method (linear least squares, 4.288).

Fourth, performance is also strongly affected by the features
used. This is particularly noticeable on the “away” class, which
has larger crowds. On this class, the error steadily decreases as
more features are included in the model. Using just the area
feature (F,) yields a counting error of 1.461. When the seg-
ment features (F;) are used, the error decreases to 1.384, and
adding the edge features (F.) leads to a further decrease to
1.307. Finally, adding the texture features (F,;) achieves the
lowest error of 1.21. This illustrates the different components
of information contributed by the different feature subsets: the
estimate produced from segment features is robust but coarse,
and the refinement by edge and texture features allows the mod-
eling of various nonlinearities. Note also that the isolated use of
texture features results in very poor performance (overall error
of 12.149). However, these features provide important supple-
mentary information when used in conjunction with others, as
in F,11. Compared with [13] and [14], the full feature set Fyy
performs better on all crowd classes (total errors 3.654 versus
4.312 and 4.224).

The effect of varying the training set size was also exam-
ined by using subsets of the original training set. For a given
training set size, results were averaged over different subsets of
evenly spaced frames. Fig. 10 shows plots of the MSE versus
training set size. Table II summarizes the results obtained with
100 training images. The experiment was repeated for 12 dif-
ferent splits of the training and test sets, with the mean and
standard devitations reported. Note how the Bayesian methods
(BPR and GPR) have much better performance than linear or
Poisson regression when the training set is small. In practice,
this means that the Bayesian crowd counting requires much
fewer training examples and a reduced number of manually an-
notated images.

We observe that Poisson and BPR perform similarly on the
“scene” class for large training sizes. Combining the two mo-
tion segments to form the “scene” segment removes segmen-
tation errors and small segments containing partially occluded
people traveling against the main flow. Hence, the features ex-
tracted from the “scene” segment have fewer outliers, resulting
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Fig. 10. Error rate for training sets of different sizes on Pedsl, for the “away” (left) and “scene” (right) classes. Similar plots were obtained for the “towards”

class and are omitted for brevity.

TABLE II
RESULTS ON PEDS1 USING 100 TRAINING IMAGES. STANDARD DEVIATIONS ARE GIVEN IN PARENTHESIS
MSE err
Method away towards scene away towards scene
linear 4.090(0.609) 3.659(0.500) 4.780(0.818) 1.590(0.124) 1.495(0.109) 1.713(0.158)
GPR-1 3.472(0.288) 1.923(0.128) 4.029(0.298) 1.467(0.079) 1.053(0.041) 1.553(0.060)
GPR-1r 3.118(0.154) 2.272(0.604) 4.465(0.495) 1.408(0.055) 1.160(0.119) 1.656(0.106)
Poisson 3.956(0.598) 3.605(0.395) 3.643(0.370) 1.488(0.086) 1.469(0.077) 1.469(0.080)
BPR-1 3.118(0.094) 2.358(0.093) 3.569(0.141) 1.362(0.019) 1.243(0.028) 1.450(0.037)
BPR-1r 2.924(0.093) 2.320(0.089) 3.537(0.127) 1.324(0.017) 1.233(0.028) 1.442(().031)

TABLE III
COMPARISON OF REGRESSION APPROACHES ON PEDS1 USING DIFFERENT
SEGMENTATION METHODS AND F,11 (“SCENE” CLASS)

scene MSE scene err
Method DTM median GMM DTM median GMM
linear 3.751  4.009 5.563 1.513  1.551 1.898
GPR-1 3.654 3.934 5.623 1.489 1.540 1.900
GPR-rr 3.787 3.676 4.576 1.551 1.476 1.691
Poisson | 3.040 3.585 4.178 1.331 1.449 1.585
BPR-1 2.910 3.453 3.597 | 1.308 1.428 1.445
BPR-rr 2.975 3.378 3.391 1.320 1.415 1.383

in a simpler regression problem. This justifies the similar perfor-
mance of Poisson and BPR. On the other hand, Bayesian regres-
sion improves performance for the other two motion classes,
where segmentation errors or occlusion effects originate a larger
number of outlier features.

As an alternative to motion segmentation, two background
subtraction methods, i.e., a temporal median filter and an
adaptive GMM [45], were used to obtain the “scene” segment,
which was then used for count regression. The counting re-
sults were improved by applying two postprocessing steps to
the foreground segment: 1) a spatial median filter to remove
spurious noise and 2) morphological dilation (a disk with a
radius of 2) to fill in holes and include pedestrian edges. The
results are summarized in Table III. Counting using DTM
motion segmentation outperforms both background subtraction
methods (1.308 error versus 1.415 and 1.383). Because the
DTM segmentation is based on motion differences, rather than
gray-level differences, it tends to have fewer segmentation
errors (i.e., completely missing part of a person) when a person
has similar gray level to the background.

Finally, Fig. 11 displays the crowd count estimates obtained
with BPR-rr. These estimates track the ground-truth well in
most of the test set. Furthermore, the uncertainty measure

(shown in green) indicates when BPR has lower confidence
in the prediction. This is usually when the size of the crowd
increases. Fig. 12 shows crowd estimates for several test frames
of Pedsl. A video is also available from [46]. In summary,
the count estimates produced by the proposed algorithm are
accurate for a wide range of crowd sizes. This is due to both
the inclusion of texture features, which are informative for
high-density crowds, and the Bayesian nonlinear regression
model, which is quite robust.

D. Crowd Counting Results on Peds?2

The Peds2 data set contains smaller crowds (at most 15
people). We found that the segment and edge features Fg.
worked the best on this data set. Table IV shows the error rates
for the five crowd segments, using the different regression
models. The best overall performance is achieved by GPR-I,
with an overall error of 1.586. The exclusion of the texture fea-
tures and the smaller crowd originates a strong linear trend in
the data, which is better modeled with GPR-1 than the nonlinear
GPR-rr. Both BPR-1 and BPR-1r perform worse than GPR-1
overall (1.927 and 1.776 versus 1.586). This is due two reasons.
First, at lower counts, the F;. features tend to grow linearly
with the count. This does not fit well the exponential model that
underlies BPR-1. Due to the nonlinear kernel, BPR-rr can adapt
to this but appears to suffer from some overfitting. Second, the
observation noise of BPR is inversely proportional to the count.
Hence, uncertainty is high for low counts, limiting how well
BPR can learn local variations in the data. These problems are
due to reduced accuracy of the log-gamma approximation of
(15) when k£ is small. Finally, the estimates obtained with 7,
are more accurate than those of [13] and [14] on all motion
classes and particularly more accurate in the two fast classes.
This indicates that the feature space now proposed is richer and
more informative.
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TABLE IV
COMPARISON OF REGRESSION METHODS AND FEATURE SETS ON PEDS2
MSE err
Feat. Method || right-slow left-slow right-fast left-fast scene | total right-slow left-slow right-fast left-fast scene | total
Fse GPR-I 0.686 0.476 0.009 0.004 0.990| 2.165 0.485 0.417 0.009 0.004 0.671| 1.586
Fse GPR-rr 0.877 0.508 0.024 0.009 1.142 | 2.560 0.576 0.442 0.024 0.009 0.740 | 1.790
Fse BPR-1 1.055 0.598 0.017 0.009 1.253 | 2.932 0.698 0.451 0.017 0.009 0.753 | 1.927
Fse BPR-mr 0.933 0.458 0.016 0.008 1.132 | 2.547 0.615 0.394 0.016 0.008 0.743 | 1.776
[13] GPR-I 0.736 0.614 0.017 0.032 1.144 | 2.543 0.528 0.510 0.017 0.018 0.729 | 1.802
[14] GPR-1 0.706 0.491 0.020 0.011 1.048 | 2.277 0.499 0.424 0.020 0.009 0.714 | 1.666
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Fig. 11. Crowd counting results on Peds1: (a) “away,” (b) “towards,” and (c) “scene” classes. Gray levels indicate probabilities of the predictive distribution. The
uncertainty measure of the prediction is plotted in green, with the axes on the right.

Fig. 12. Crowd counting examples: The red and green segments are the “away” and “towards” components of the crowd. The estimated crowd count for each
segment is shown in the top left, with the (uncertainty) and the (ground truth). The prediction for the “scene” class, which is count of the whole scene, is shown in

the top right. The ROI is also highlighted.

Fig. 13 shows the crowd count estimates (using F.. and
GPR-1) for the five motion classes over time, and Fig. 14
presents the crowd estimates for several frames in the test
set. Video results are also available from [46]. The estimates
track the ground-truth well in most frames, for both the fast
and slow motion classes. One error occurs for the “right-fast”
class, where one skateboarder is missed due to an error in the

segmentation, as displayed in the last image of Fig. 14. In
summary, the results on Peds2, again, suggest the efficacy of
regression-based crowd counting from low-level features.

E. Comparison With Pedestrian Detection Algorithms

In this section, we compare regression-based crowd counting
with counting using two state-of-the-art pedestrian detectors.
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Fig. 14. Counting examples from Peds2: The red and green segments are the “right-slow” and “left-slow” components of the crowd, and the blue and yellow
segments are the “right-fast” and “left-fast” ones. The estimated crowd count for each segment is shown in the top left, with the (uncertainty) and the (ground
truth). The count for the “scene” class, which is the count of the whole scene, is shown in white text.

The first detects pedestrians with an SVM and the histogram-of-
gradient (HOG) feature [25]. The second is based on a discrimi-
natively trained deformable part model (DPM) [26]. The detec-
tors were provided by the respective authors. They were both
run on the full-resolution video frames (740 x 480), and a filter
was applied to remove detections that are outside the ROI, in-
consistent with the perspective of the scene or given low con-
fidence. Nonmaximum suppression was also applied to remove
multiple detections of the same object.

We start by evaluating the performance of the two detec-
tors. Each ground-truth pedestrian was uniquely mapped to the
closest detection, and a true positive (TP) was recorded if the
ground-truth location was within the detection bounding box.
A false positive (FP) was recorded otherwise. Fig. 15 plots the
ROC curves for HOG and DPM on Pedsl and Peds2. These
curves are obtained by varying the threshold of the confidence
filter. HOG outperforms DPM on both data sets, with a smaller
FP rate per image. However, neither algorithm is able to achieve
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TABLE V
COUNTING ACCURACY OF BAYESIAN REGRESSION (BPR AND GPR) AND PEDESTRIAN DETECTION (HOG AND DPM)
Pedsl Peds2
Method | MSE err bias var. Method | MSE err bias var.
Fau BPR-rr | 2.975 1.320 0.101 2.966 Fse GPR-1 0990 0.671 0.150 0.968
DPM [26] 24.721 4.012 1.621  22.100 DPM [26] 4.645 1.565 —0.983 3.680
HOG [25] 39.755 5.321 —5.315 11.510 HOG [25] 10.834 2.607 —2.595 4.103
DPM BPR-1 | 51.489 6.298 5.256  23.875 DPM GPR-I 4.312 1.507 —0.741 3.765
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50 T T T T ! T T
40_ ........................................... ....... ’ ...... ‘ ........................................... s f e SR G ER SRR T s SRR Sl R S SR e e R § =
0 gt WYt L ) P
g oo R TN .
S 20} - , -%]»CM e Mﬁ‘ _ o j}\\!“ i \ ...... '\f’ ........... -m 'f\‘m‘;\i‘\J& “)‘, N m’ Y M / N
Wiy : i A4 by TALHE % A
TORRAA < ccvvcs oo st R Ny  IRRRTERT T ; ............................................ P e T RERERRTRLL
0 I I I i I 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
frame
20 ] | I I truth
] S et R A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA = ggl\é H
b) £ 10 ; i n ] :
=TT EANYRIG—— S |  M—— S 1, ST XY WUURRN | IO . PSR DRI SR . S _
s N f“, i, | “ : F
P TAT Y LT W S
i SN - L U . \. 1' - BT [l T WYY, .| CREREE "
° ‘ -NW r n nW g b V\/*/” ;M ‘ ‘w”w \‘“ \" ‘5{;’ w KL ” A '\/”‘ E‘\r' v'*’ l' "M‘ d L ‘1[) : "‘r iy ‘a’\
00 500 1000 1500 2000 2500 3000 3500 4000
frame

Fig. 16. Crowd counts produced by the HOG [25]

avery high TP rate (the maximum TP rate is 74% on Peds1), due
to the large number of occlusions in these scenes.

Next, each detector was used to count the number of people in
each frame, regardless of the direction of motion (corresponding
to the “scene” class). The confidence threshold was chosen to
minimize the counting error on the training set. In addition to
the count error and MSE, we also report the bias and variance
of the estimates bias (1/M) Zl 1(ei — ¢;) and var
(1/M) Zl 1(¢; — bias)?. The counting performance of DPM
and HOG is summarized in Table V, and the crowd counts are
displayed in Fig. 16. For crowd counting, DPM has a lower av-
erage error rate than HOG (e.g., 4.012 versus 5.321 on Pedsl).
This is an artifact of the high FP rate of DPM; the false detec-
tions artificially boost the count, although the algorithm has a
lower TP rate. On the other hand, HOG always underestimates
the crowd count, as is evident in Fig. 16 and the biases of —5.315

and DPM [26] detectors on (a) Peds1 and (b) Peds2.

and —2.595. Both detectors perform significantly worse than re-
gression-based crowd counting (BPR or GPR). In particular, the
average error of the former is more than double that of the latter
(e.g., 4.012 for DPM versus 1.320 for BPR on Pedsl). Fig. 17
shows the error as a function of ground-truth crowd size. For
the pedestrian detectors, the error increases significantly with
the crowd size, due to occlusion. On the other hand, the per-
formance of Bayesian regression remains relatively constant.
These results demonstrate that regression-based counting can
perform well above state-of-the-art pedestrian detectors, partic-
ularly when the crowd is dense.

Finally, we applied Bayesian regression (BPR or GPR) on
the detector counts (HOG or DPM), in order to remove any sys-
tematic bias in the count prediction. Using the training set, a
Bayesian regression function was learned to map the detector
count to the ground-truth count. The counting accuracy on the
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Fig. 18. Example counting results on the full Peds1 data set.

test set was then computed using the regression function. The
(best) results are presented in the bottom half of Table V. There
is not a significant improvement compared with the raw counts,
suggesting that there is no systematic warping between the de-
tector counts and the actual counts.

F. Extended Results on Pedsl and Peds?2

The final experiment tested the robustness of regres-
sion-based counting on 2 hours of video from Peds1 and Peds2.
For both data sets, the top-performing model and feature set
(BPR-rr with F.j for Pedsl and GPR-1 with F,. for Peds2)
were trained using 2000 frames of the annotated data set (every
other frame). Counts were then estimated on the remaining
50 min of each video. Examples of the predictions on Pedsl
are shown in Fig. 18, and full video results are available from
[46]. Qualitatively, the counting algorithm tracks the changes
in pedestrian traffic fairly well. Most errors tend to occur when
there are very few people (less than two) in the scene. These
errors are reasonable, considering that there are no training
examples with such few people in Pedsl. This problem could
be easily fixed by adding more training examples. Note that
BPR signals lack confidence in these estimates, by assigning
them large standard deviations (e.g., fifth and sixth images of
Fig. 18).

A more challenging set of errors occurs when bicycles, skate-
boarders, and golf carts travel quickly on the Pedsl walkway
(e.g., first image of Fig. 18). Again, these errors are reasonable
since there are very few examples of fast moving bicycles and
no examples of carts in the training set. These cases could be
handled by either: 1) adding more mixture components to the

segmentation algorithm to label fast moving objects as a dif-
ferent class, or 2) detecting outlier objects that have different
appearance or motion from the dominant crowd. In both cases,
the segmentation task is not as straightforward due to the scene
perspective; people moving in the foreground areas travel at the
same speed as bikes moving in the background areas. Future
work will be directed at developing segmentation algorithms to
handle these cases.

Examples of prediction on Peds2 are displayed in Fig. 19.
Similar to Peds1, the algorithm tracks the changes in pedestrian
traffic fairly well. Most errors tend to occur on objects that are
not seen in the database, e.g., three people pulling carts (sixth
image in Fig. 19), or the small truck (final image of Fig. 19).
Again, these errors are reasonable, considering that these ob-
jects were not seen in the training set, and the problem could be
fixed by simply adding training examples of such cases or by
detecting them as outliers.

VII. CONCLUSION

In this paper, we have proposed the use of Bayesian regres-
sion to estimate the size of inhomogeneous crowds, which
are composed of pedestrians traveling in different directions,
without using intermediate vision operations, such as object de-
tection or feature tracking. Two solutions were presented, based
on the GPR and BPR. The intractability of the latter was ad-
dressed through the derivation of closed-form approximations
to the predictive distribution. It was shown that the BPR model
can be kernelized, to represent nonlinear log-arrival rates, and
that the hyperparameters of the kernel can be estimated by
approximate maximum marginal likelihood. Regression-based
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Fig. 19. Example counting results on the full Peds2 video.

counting was validated on two large data sets and was shown
to provide robust count estimates regardless of the crowd size.

Comparing the two Bayesian regression methods, BPR was
found more accurate for denser crowds, whereas GPR per-
formed better when the crowd was less dense (in which case, the
regression mapping is more linear). Both Bayesian regression
models were shown to generalize well from small training sets,
requiring significantly smaller amounts of hand-annotated data
than non-Bayesian crowd counting approaches. The regres-
sion-based count estimates were also shown substantially more
accurate than those produced by state-of-the-art pedestrian
detectors. Finally, regression-based counting was successfully
applied to 2 hours of video, suggesting that systems based on
the proposed approach could be used in real-world environ-
ments for long periods of time.

One limitation, for crowd counting, of Bayesian regression
is that it requires training for each particular viewpoint. This
is an acceptable restriction for permanent surveillance systems.
However, the training requirement may hinder the ability to
quickly deploy a crowd counting system (e.g., during a parade).
The lack of viewpoint invariance likely stems from several col-
luding factors: 1) changes in segment shape due to motion and
perspective; 2) changes in a person’s silhouette due to viewing
angle; and 3) changes in the appearance of dense crowds. Future
work will be directed at improving training across viewpoints,
by developing perspective invariant features, by transferring
knowledge across viewpoints (using probabilistic priors), or by
accounting for a perspective within the kernel function itself.
Further improvements to the performance of Bayesian counting
from sparse crowds should also be possible. On BPR, a training
example associated with a sparse crowd has less weight (more
uncertainty) than one associated with a denser crowd. This de-
rives from the Poisson noise model and diminishes the ability of
BPR to model local variations of sparse crowds (in the presence
of count uncertainty, Bayesian regression tends to smoothen
the regression mapping). Future work will study noise models
without this restriction.

APPENDIX
1) Property 1: Consider the following:

ox, 1278, +5,) =05, 10TE, 0+ &
= (@z;l@T + 2;1) 3, 0.

(40)
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Premultiplying by (®X,'®” + X 1) " and postmultiplying
by (7%, ® + 3,) ! yield
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2) BPR Marginal Likelihood: We derive the BPR marginal
likelihood of Section IV-C. In all equations, we only write the
terms that depend on kernel {®, ¥,,, 5}. Using (19), the joint
log-likelihood of {y, 3} can be approximated as
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where A = @ '®T + 3 ! and t and s are defined, as in
Section IV-A. By completing the square
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where in (50), we use the matrix inversion lemma. The marginal
likelihood can thus be approximated as

p(y|X,8,0) = /p(y,mx,e)dg 51)
N|E ‘%e—%tT(ZU-]—@TZp@)—lt
~ |8, e
o [t etiog s
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Using the block determinant property, | A| can be rewritten as

Al =[5, + 0%, o | (55)
=255, - eTRel  (56)
= = 2 2y + K (57)

Substituting into the log of (54) yields

) 1 1
log p(y| X, 3,6) ~ 3 log [3,| — 5 log |®7Y,® + 3|

1 _
- EtT(<1>TE,,cI> +3,)7 't (58)

Finally, dropping the term that does not depend on the kernel
hyperparameters § yields (39).
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