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Abstract— A novel framework to context modeling, based on
the probability of co-occurrence of objects and scenes is proposed.
The modeling is quite simple, and builds upon the availability
of robust appearance classifiers. Images are represented by their
posterior probabilities with respect to a set of contextual models,
built upon the bag-of-features image representation, through two
layers of probabilistic modeling. The first layer represents the
image in a semantic space, where each dimension encodes an
appearance-based posterior probability with respect to a concept.
Due to the inherent ambiguity of classifying image patches,
this representation suffers from a certain amount of contextual
noise. The second layer enables robust inference in the presence
of this noise, by modeling the distribution of each concept in
the semantic space. A thorough and systematic experimental
evaluation of the proposed context modeling is presented. It is
shown that it captures the contextual “gist” of natural images.
Scene classification experiments show that contextual classifiers
outperform their appearance-based counterparts, irrespective of
the precise choice and accuracy of the latter. The effectiveness
of the proposed approach to context modeling is further demon-
strated through a comparison to existing approaches on scene
classification and image retrieval, on benchmark datasets. In all
cases, the proposed approach achieves superior results.

Index Terms— Computer Vision, Scene Classification, Context,
Image Retrieval, Topic Models.

I. INTRODUCTION

Visual recognition is a fundamental problem in computer

vision. It subsumes the problems of scene classification [25], [26],

[7], [37], [40], image annotation [9], [15], [24], [13], [5], image

retrieval [12], [46], [39], [54], object recognition/localization [48],

[44], [18], and object detection [56], [43], [16]. While the last

decade has produced significant progress towards the solution

of these problems, the basic strategy has remained constant: 1)

identify a number of visual classes of interest, 2) design a set

of appearance features (or some other visual representation, e.g.,

parts) that are discriminant for those classes, 3) postulate an

architecture for their classification, and 4) rely on sophisticated

statistical tools to learn optimal classifiers from training data. We

refer to the resulting classifiers as “appearance based”. Main re-

cent innovations produced better features, e.g. the ubiquitous SIFT

descriptor [30], efficient classification architectures, namely the

detector cascade of [56], methods for fast object matching [30],

sophisticated discriminant classifiers, such as support vector ma-

chines (SVMs) with various kernels tunned for vision [19], [10],

[7], [61], [8], and sophisticated statistical models [9], [26], [5],

[48], [45], among others.

When compared to biological recognition strategies, strictly

appearance-based methods have the limitation of not exploiting

contextual cues. Psychophysics studies have shown that humans

rarely guide recognition exclusively by the appearance of the
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concepts to recognize. Most frequently, appearance is comple-

mented by the analysis of contextual relationships with other

visual concepts in the field of view [4]. In general, the detection of

a concept of interest (e.g. buildings) is facilitated by the presence,

in the scene, of other concepts (e.g. street, city) which may not

themselves be of interest. Psychophysical studies have shown

that context can depend on multiple clues. For example, object

recognition is known to be affected by properties such as support

(objects do not float in the air), interposition (objects occupy

different volumes), probability (objects appear in different scenes

with different probabilities), position (objects appear in typical

locations), and size (objects have typical relative sizes) [4].

In this work, we investigate an approach to context modeling

based on the probability of co-occurrence of objects and scenes.

This modeling is quite simple, and builds upon the availability

of robust appearance classifiers. A vocabulary of visual concepts

is defined, and statistical models learned for all concepts, with

existing appearance modeling techniques [9], [25], [26]. These

techniques are typically based on the bag-of-features (BoF) repre-

sentation, where images are represented as collections of spatially

localized features. The outputs of the appearance classifiers are

then interpreted as the dimensions of a semantic space, where

each axis represents a visual concept [39], [57], [47], [32]. This

is illustrated in Figure 1, where an image is represented by the

vector of its posterior probabilities under each of the appearance

models. This vector is denoted as a semantic multinomial (SMN)

distribution [39]. An example SMN for a natural image is shown

in Figure 3 (bottom).

This semantic representation inherits many of the benefits of

bag-of-features. Most notably, it is strongly invariant to scene

configurations, an essential attribute for robust scene classification

and object recognition, and has low complexity, a property that

enables large training sets and good generalization. Its main

advantage over bag-of-features is a higher level of abstraction.

While the appearance features are edges, edge orientations, or

frequency bases, those of the semantic representation are concept

probabilities. We have previously shown that this can lead to

substantially better generalization, by comparing the performance

of nearest-neighbors classification with the two representations,

in an image retrieval context [39]. However, the semantic rep-

resentation also has some limitations that can be traced back to

bag-of-features. Most notable among these is a certain amount of

contextual noise, i.e., noise in the probabilities that compose the

SMN. This is usually not due to poor statistical estimation, but

due to the intrinsic ambiguity of the underlying bag-of-features

representation. Since appearance based features have small spatial

support, it is frequently difficult to assign them to a single visual

concept. Hence, the SMN extracted from an image usually assigns

some probability to concepts unrelated to it (e.g. the concepts

“bedroom” and “kitchen” for the “street” image of Figure 3).

While the SMN representation captures co-occurrences of the

semantic concepts present in an image, not all these correspond

to true contextual relationships. In fact, we argue that many (e.g.
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Fig. 1. Image representation in semantic space S, with a semantic multinomial (SMN) distribution. The SMN is a vector of posterior concept probabilities
which encodes the co-occurrence of various concepts in the image, based on visual appearance.

“bedroom” and “kitchen” in Figure 3) are accidental, i.e., casual

coincidences due to the ambiguity of the underlying appearance

representation (image patches that could belong to either a bed or

a kitchen counter). Rather than attempting to eliminate contextual

noise by further processing of appearance features, we propose

a procedure for robust inference of contextual relationships in

the presence of accidental co-occurrences. The idea is to keep

the robustness of the appearance representation, but perform the

classification at a higher level of abstraction, where ambiguity

can be more easily detected.

This is achieved by introducing a second level of representation,

that operates in the space of semantic features. The intuition is

that, in this space, accidental co-occurrences are events of much

smaller probability than true contextual co-occurrences: while

“street” co-occurs with “buildings” in most images, it accidentally

co-occurs with “bedroom” or “kitchen” in a much smaller set.

True contextual relationships can thus be found by identifying

peaks of probability in semantic space. Each visual concept is

modeled by the distribution of the posterior probabilities extracted

from all its training images. This distribution of distributions is

referred as the contextual model for the concept. For large enough

and diverse enough training sets, these models are dominated

by the probabilities of true contextual relationships. Minimum

probability of error (MPE) contextual classification can thus be

implemented by simple application of Bayes’ rule. This suggests

representing images as vectors of posterior probabilities under

the contextual concept models, which we denote by contextual

multinomials (CMN). These are shown much less noisier than

the SMNs learned at the appearance level.

An implementation of contextual modeling is proposed, where

concepts are modeled as mixtures of Gaussian distribution on

appearance space, and mixtures of Dirichlet distributions on

semantic space. It is shown that 1) the contextual representation

outperforms the appearance based representation, and 2) this

holds irrespectively of the choice and accuracy of the underlying

appearance models. An extensive experimental evaluation, involv-

ing the problems of scene classification and image retrieval shows

that, despite its simplicity, the proposed approach is superior to

various contextual modeling procedures in the literature.

The paper is organized as follows. Section II briefly reviews the

literature on context modeling. Our previous work on appearance

classification and the design of semantic spaces is reviewed on

Section III. Section IV then discusses the limitations of appear-

ance classifiers and introduces contextual models. Some practical

issues in the design of the latter are discussed in Section V. Sec-

tion VI relates the architecture now proposed to the literature on

topic models. An extensive experimental evaluation of contextual

modeling is then presented in Sections VII, VIII, and IX. Finally,

Section X presents some conclusions. A preliminary version of

this work appeared in [41].

II. CONTEXT MODELING

Recent efforts towards context based recognition can be broadly

grouped in two classes. The first, an object-centric approach,

consists of methods that model contextual relationships between

sub-image entities, such as objects. Examples range from sim-

ply accounting for the co-occurrence of different objects in a

scene [38], [17], to explicit learning of the spatial relationships

between objects [18], [60], or an object and its neighboring

image regions [20]. Methods in the second class adopt a scene-

centric representation, whereby context models are learned from

entire images, generating a holistic description of the scene

or its “gist” [34], [57], [26], [35], [25]. Various recent works

have shown that semantic descriptions of natural images can

be obtained with these representations, without explicit image

segmentation [34]. This is consistent with evidence from the

psychology [33] and cognitive neuroscience [1] literatures.

The scene-centric representation has itself been explored in two

ways. One approach is to equate context to a vector of statistics

of low-level visual measurements taken over the entire image.

For example, [34] models scenes according to the differential

regularities of their second order statistics. A second approach

is to rely on the bag-of-features representation. Here, low-level

features are computed locally and aggregated across the image,

to form a holistic context model [57], [26], [42]. Although these

methods usually ignore spatial information, some extensions have

been proposed to weakly encode the latter. These consist of

dividing the image into a coarse grid of spatial regions, and

modeling context within each [34], [25].

The proposed context modelling combines aspects of both the

object-centric and scene-centric strategies. Like the object-centric

methods, we exploit relationships between co-occurring seman-

tic concepts in natural scenes to derive contextual information.

This is, however, accomplished without demarcating individual

concepts or regions in the image. Instead, all conceptual relations

are learned through global scene representations. Moreover, these

relationships are learned in a purely data-driven fashion, i.e. no

external guidance about the statistics of high-level contextual

relationships is required, and the representation consists of full
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probability distributions, not just statistics. The proposed repre-

sentation can be thought as modeling the “gist” of the scene by

the co-occurrences of semantic visual concepts that it contains.

The representation closest to that now proposed is probably the

family of latent topic models, recently popular in vision [26], [37],

[7]. These models were originally proposed in the text literature,

to address the ambiguity of bag-of-words. It was realized that

word histograms cannot account for polysemy (the same word

may represent different meanings) and synonymy (different words

may represent same meaning) [6], [21]. This led to the introduc-

tion of intermediate latent representations, commonly known as

“themes” or “topics”. Borrowing from the text literature, several

authors applied the idea of latent spaces to visual recognition [5],

[2], [45], [48], [26], [37], [7]. The rational is that images which

share frequently co-occurring features have a similar representa-

tion in the latent space. Although successful for text, the benefits

of topic discovery have not been conclusively established for

visual recognition. In fact, a drop in classification performance

is often experienced when unsupervised latent representations are

introduced [28], [37], [25]. This issue is discussed in detail in

Section VI, where we argue that unsupervised topic discovery

is not a good idea for recognition. We show that the architecture

now proposed can be interpreted as a modified topic model, where

the topics are pre-specified and learned in a weakly supervised

manner. This is shown to increase the recognition performance.

The use of appearance based classifier outputs as feature

vectors has also been proposed in [40], [58], [51]. In these works

a classifier is first learned for a given keyword vocabulary —

[58], [51] learn discriminative classifiers from flickr/bing

images, [40] learns a generative model using a labeled image set

— and the outputs of these classifiers are then used as feature vec-

tors for a second layer of classification. In these works, classifier

outputs are simply used as an alternative low dimensional image

representation, without any analysis of their ability to model

context. We discuss the limitations of using appearance models for

context modeling and introduce “contextual models” that address

these limitations. We also present extensive experimental evidence

supporting the benefits of these higher level models, and show

that they achieve higher classification accuracies on benchmark

datasets.

III. APPEARANCE-BASED MODELS AND SEMANTIC

MULTINOMIALS

We start by briefly reviewing appearance-based modeling and

the design of semantic spaces.

A. Notations

Images are observations from a random variable X, defined

on some feature space X of visual measurements. For example,

X could be the space of discrete cosine transform (DCT), or

SIFT descriptors. Each image is represented as a bag of N

feature vectors I = {x1, . . . ,xN},xi ∈ X assumed to be

sampled independently. A collection of images is called an “image

dataset”, D = {I1, . . . , ID}.

Each image is labeled with a label vector, cd according to a

vocabulary of semantic concepts L = {w1, . . . , wL} making D =

{(I1, c1), . . . , (ID, cD)}. Note that cd is a binary L-dimensional

vector such that cd,i = 1 if the dth image was annotated with

the ith keyword in L. The dataset is said to be weakly labeled if

absence of a keyword from caption cd does not necessarily mean

that the associated concept is not present in Id. For example, an

image containing “sky” may not be explicitly labeled with that

keyword. This is usually the case in practical scenarios, since each

image is likely to be annotated with a small caption that only

identifies the semantics deemed as most relevant to the labeler.

In fact, for certain recognition tasks, such as scene classification

or image retrieval, an image is usually annotated with just one

concept. We assume weak labeling throughout this work.

B. Appearance-based Classification

Visual concepts are drawn from a random variable W , which

takes values in {1, . . . , L}. Each concept w induces a probability

density on X , which is approximated by a model PX|W (x|w).

This is denoted as the appearance model for concept w, and

describes how observations are drawn from this concept, in the

low-level visual feature space X . PX|W (x|w) is learned from the

set Dw of all training images whose caption includes the wth

label.

Many appearance recognition systems have been proposed in

the literature, using different appearance models. A simple gener-

ative model for appearance is shown in Figure 2. A concept w is

first sampled, and N feature vectors are then generated from the

class-conditional distribution PX|W (x|w). This model performs

well in weakly supervision concept detection problems [9]. Given

an unseen image I, MPE detection is achieved with the Bayes

decision rule

PW |X(i|I) =
PX|W (I|i)PW (i)

PX(I)
(1)

=

QN
n=1 PX|W (xn|i)PW (i)

QN
n=1 PX(xn)

(2)

where PW |X(i|I) is the probability of presence of the ith concept

in the image, given the observed set of feature vectors I. We

assume a uniform prior concept distribution PW (w), although

any other suitable prior could be used. This leads to

PW |X(i|I) ∝

QN
n=1 PX|W (xn|i)
QN
n=1 PX(xn)

(3)

To model the appearance distribution, we rely on Gaussian mix-

ture models (GMM). These are popular models for the distribution

of visual features [9], [20], [49], [5] and have the form

PX|W (x|w; Ωw) =
X

k

ρ
w
k G(x, µwk ,Σ

w
k ), (4)

where Ωw = {ρwk , µ
w
k ,Σ

w
k }, ρwk is a probability mass function

such that
P

k ρ
w
k = 1, and G(x, µ,Σ) a Gaussian density of

mean µ and covariance Σ. The parameters Ωw are learned with a

hierarchical estimation procedure first proposed in [55], for image

indexing (see [9], [55] for details).

C. Designing a Semantic Space

While the Bayes decision rule for concept detection only re-

quires the largest posterior concept probability for a given image,

the vector of posterior probabilities π = (π1, . . . , πL)T , where

πw = PW |X(w|I) provides a rich description of the image se-

mantics. We refer to this vector as a semantic multinomial (SMN)

distribution, which lies on a probability simplex S , referred to as

the semantic space [39]. As shown in Figure 1, this alternative
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Fig. 2. The generative model underlying image formation at the visual level.
w represents a sample from a vocabulary of semantic concepts, and an image
I is composed of N patches, xn, sampled independently from PX|W (x|w).
Note that, throughout this work, we adopt the standard plate notation of [6]
to represent graphical models.

Fig. 3. An image from the “street” class of the N15 dataset (See Section. VII-
A) along with its SMN. Also highlighted are the two notions of co-

occurrence. Ambiguity co-occurrences on the right: image patches compatible
with multiple unrelated classes. Contextual co-occurrences on the left: patches
of multiple other classes related to “street”.

image representation establishes a mapping from images in X

to SMNs π in S . This can be seen as an abstract projection

of the image onto a space where each concept probability πw,

w = 1, . . . , L is a feature. Unlike X , these features have explicit

semantics. Thus, while inheriting many of the benefits of bag-

of-features, such as invariance to scene configuration and low

complexity, the semantic representation has the advantage of a

higher level of abstraction. While appearance features are edges,

edge orientations, or frequency bases, those of the semantic

representation are concept probabilities. This representation has

been shown successful for image retrieval, where images are

matched using a nearest neighbor operation on the semantic

space [39], [47], [32]. Nevertheless, it is not free of limitations.

D. Limitations of Semantic Representations

One major source of difficulties is that semantic models built

upon the bag-of-features representation of appearance inherit the

ambiguities of the latter. There are two main types of ambiguity.

The first is that contextually unrelated concepts (for example

smoke and clouds) can have similar appearance representation

under bag-of-features. The second is that the resulting seman-

tic descriptors can account for contextual frequencies of co-

occurrence, but not true contextual dependencies. These two prob-

lems are illustrated in Figure 3. First, image patches frequently

have ambiguous interpretation. When considered in isolation,

they can be compatible with many concepts. For example it is

unclear that even a human could confidently assign the patches

shown on the right of Figure 3 to the “street” concept, with

which the image is labeled. Second, appearance-based models

lack information about the interdependence of the semantics of

the patches which compose the images in a class. For example,

the fact that, as shown on the left, images of street scenes typically

contain patches of street, car wheels, and building texture.

We refer to these two observations as co-occurrences. In the

first case, a patch can accidentally co-occur with multiple con-

cepts (the equivalent to polysemy in text analysis). In the second,

patches from multiple concepts typically co-occur in scenes of

a given class (the equivalent to synonymy for text). While only

the co-occurrences of the second type are indicative of true

contextual relationships, SMNs learned from appearance models

capture both types of co-occurrences. This is again illustrated

by the example of Figure 3. On one hand, the displayed SMN

reflects the ambiguity that sometimes exists between patches of

“street scenes” and “bedrooms”, “kitchens” or “living rooms”.

These are all man-made structures which, for example, contain

elongated edges dues to buildings, beds, furniture, etc. Note that

all classes that typically do not have such structures (e.g. natural

scenes such as “mountain”, “forest”, “coast”, or “open country”)

receive close to zero probability. On the other, the SMN reflects

the likely co-occurrence, in “street scenes”, of patches of “inside

city”, “street”, “buildings”, and “highway”. In summary, while

SMN probabilities can be interpreted as semantic features, which

account for co-occurrences due to both ambiguity and context,

they are not purely contextual features.

IV. SEMANTICS-BASED MODELS AND CONTEXT

MULTINOMIALS

One possibility to deal with the ambiguity of the semantic

representation is to explicitly model contextual dependencies.

This can be done by introducing constraints on the appearance

representation, by modeling constellations of parts [16], [14]

or object relationships [50], [18]. However, the introduction of

such constraints increases complexity, and reduces the invariance

of the representation, sacrificing generalization. A more robust

alternative is to keep bag-of-features, but represent images at a

higher level of abstraction, where ambiguity can be more easily

detected. This is the strategy pursued in this work, where we

exploit the fact that the two types of SMN co-occurrences have

different stability, to extract more reliable contextual features.

A. From Semantics to Context

The basic idea is that, while images from the same concept are

expected to exhibit similar contextual co-occurrences, this is not

likely for ambiguity co-occurrences. Although the “street scene”

of Figure 3 contains some patches that could also be attributed to

the “bedroom” concept, it is unlikely that this will hold for most

images of street scenes. By definition, ambiguity co-occurrences

are accidental, otherwise they would reflect common semantics of

the two concepts, and would be contextual co-occurrences. Thus,

while impossible to detect from a single image, stable contextual

co-occurrences should be detectable by joint inspection of all

SMNs derived from the images of a concept.

This is accomplished by extending concept modeling by one

further layer of semantic representation. As illustrated in Figure 4,

each concept w is modeled by the probability distribution of

the SMNs derived from all training images in its training set,

Dw . We refer to this SMN distribution as the contextual model

for w. If Dw is large and diverse, this model is dominated by

the stable properties of the features drawn from concept w. In

this case, the features are SMNs and their stable properties are

the true contextual relationships of w. Hence, concept models

assign high probability to regions of the semantic space occupied
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Fig. 4. Learning the contextual model for the “street” concept, (5), on
semantic space S, from the set of all training images annotated with “street”.

by contextual co-occurrences, and small probability to those of

ambiguity co-occurrences.

For example, since streets typically co-occur with buildings, the

contextual model for “street” assigns high probability to SMNs

that include both concepts. On the other hand, because “street”

only co-occurs accidentally with “bedroom”, SMNs including this

concept receive low-probability. Hence, representing images by

their posterior distribution under contextual models emphasizes

contextual co-occurrences, while suppressing accidental coinci-

dences due to ambiguity. As a parallel to the nomenclature of

the previous section, we refer to the posterior probabilities at this

higher level of abstraction as contextual features, the probability

vector associated with each image as a contextual multinomial

distribution, and the space of such vectors as the contextual space.

B. Contextual Concept Models

Contextual concept models are learned in the semantic space

S . Under the most general formulation, concepts are drawn from

a random variable Y defined on the index set y ∈ {1, . . . , K}

of a concept vocabulary K. In this work, we assume that this

vocabulary is the concept vocabulary L used in visual space

X , i.e. K = L. Note that this assumption implies that if L

is composed of scenes (objects), then the contextual models

account for relationships between scenes (objects). A trivial

extension would be to make concepts on semantic space S

different from those on visual space X , promoting a concept

hierarchy. For example, Y could be defined on the vocabulary of

scenes, K = {‘desert′, ‘beach′, ‘forest′} and W on objects, L =

{‘sand′, ‘water′, ‘sky′, ‘trees′}. In this way, scenes in K would

be naturally composed of objects in L, enabling the contextual

models to account for relationships between scenes and objects.

This would, however, require training images (weakly) labeled

with respect to both L and K. We do not pursue such hierarchical

concept taxonomies in what follows.

Since S is itself a probability simplex, one natural model for

a concept y in S is the mixture of Dirichlet distributions

PΠ|Y (π|y; Λy) =
X

k

β
y
k
Dir(π; αy

k
). (5)

This model has parameters Λy = {βy
k
,α

y
k
}, where βk is a

probability mass function (
P

k β
y
k

= 1). Dir(π; α) a Dirichlet

distribution of parameter α = {α1, . . . , αL},

Dir(π; α) =
Γ(

PL
i=1 αi)

QL
i=1 Γ(αi)

L
Y

i=1

(πi)
αi−1

(6)

and Γ(.) the Gamma function. As illustrated in Figure 4, the

parameters Λy are learned from the SMNs π of all images

in Dy , i.e. the images annotated with the yth concept in L.

street

forest
store

0

0.05

0.1

Fig. 5. 3-component Dirichlet mixture learned for the concept “street”.
Also shown, as “*”, are the SMNs associated with each image. The Dirichlet
mixture assigns high probability to the concepts “street” and “store”.

Learning is implemented by maximum likelihood estimation,

using the generalized expectation-maximization (GEM) algorithm

discussed in Appendix I.

Figure 5 shows an example of a 3-component Dirichlet mixture

learned for the semantic concept “street”, on a three-concept

semantic space. This model is estimated from 100 images (shown

as data points on the figure). Note that, although some of the

image SMNs exhibit ambiguity co-occurrences with the “forest”

concept, the Dirichlet mixture is strongly dominated by the

true contextual co-occurrences between the concepts “street” and

“store”. This is an illustration of the ability of the model to lock

onto the true contextual relationships.

C. Contextual Space

The contextual models PΠ|Y (π|y) play, in semantic space S ,

a similar role to that of the appearance models PX|W (x|w) in

visual space X . It follows that MPE concept detection, on a test

image I of SMN π = {π1, . . . , πL}, can be implemented with a

Bayes decision rule based on the posterior concept probabilities

PY |Π(y|π) =
PΠ|Y (π|y)PY (y)

PΠ(π)
. (7)

This is the semantic space equivalent of (2) and, once again, we

assume a uniform concept prior PY (y).

As in Section III-C, it is also possible to design a new semantic

space, by retaining all posterior contextual concept probabilities

θy = PY |Π(y|π). We denote the vector θ = (θ1, . . . , θL)T as

the contextual multinomial (CMN) distribution of image I. As

illustrated in Figure 6, CMN vectors lie on a new probability

simplex C, here referred to as the contextual space. In this way,

the contextual representation establishes a mapping from images

in X to CMNs θ in C. In Section VII we show that CMNs are

much more reliable contextual descriptors than SMNs.

V. LEARNING CONTEXTUAL MODELS

For now, we discuss a number of issues in the implementation

of the architecture introduced above.

A. Computing the Semantic Multinomials

It should be noted that this architecture is generic, in the

sense that any appearance recognition system that produces a

vector of posterior probabilities π, can be used to learn the

proposed contextual models. In fact, these probabilities can even

be produced by systems that do not model appearance explic-

itly, e.g. discriminant classifiers. This is achieved by converting

classifier scores to a posterior probability distribution, using

probability calibration techniques. For example, the distance from

the decision hyperplane learned by an SVM can be converted to a
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Fig. 6. The Contextual multinomial (CMN) of an image as the vector of co-occurrence probabilities of contextually related concepts.
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Fig. 7. SMN for the image shown on the top left computed using (top-right)
(3), (bottom-left) (10) and (bottom-right) (12).

posterior probability using a sigmoidal transform [36]. In practice,

however, care must be taken to guarantee that the appearance

classifiers are not too strong. If they make very hard decisions,

e.g. assign images to a single class, little is left for the context

models to work with. In this case, contextual processing fails to

add any improvement to the appearance classification. This is a

manifestation of the data processing theorem [31] which advises

to postpone hard decisions until the very last stages of processing.

In the implementation above, it is natural to use the posterior

probabilities of (3) as the SMN of image I. However, N tends

to be large, and there is usually very strong evidence in favor of

one concept, not always that of greatest perceptual significance.

For example, if the image has a large region of “sky”, the

existence of many sky patches makes the posterior probability of

the “sky” concept close to one. This is illustrated in Figure 7 (top-

right) where the SMN assigns all probability to a single concept.

Table I shows that this happens frequently: the average entropy

of the SMNs computed on the N15 Dataset (to be introduced

later) is very close to 0. Note that this is the property that

enables the learning of the appearance based models from the

weakly supervised datasets: when all images containing “sky”

are grouped, the overall feature distribution is very close to that

of the “sky” concept, despite the fact that the training set contains

all sorts of spurious image patches from other concepts. This is an

example of the multiple instance learning paradigm [53], where

an image, consisting of some patches from the concept being

modeled and some spurious patches from other concepts, serves as

the positive bag. Although this dominance of the strongest concept

is critical for learning, the data processing theorem advises against

(a) (b)

(c)

Fig. 8. Alternative generative models for image formation at the appearance
level. (a) A concept is sampled per appearance feature vector rather than per
image, from PX|W (x|w). (b) Explicit modeling of the contextual variable Π
from which a single SMN is drawn per image. (c) Graphical model of LDA
with an additional class variable [26].

it during inference. Or, in other words, while multiple instance

learning is required, multiple instance inference is undesirable.

In particular, modeling images as bags-of-features from a single

concept, as in Figure 2, does not lend to contextual inference.

One alternative is to perform inference with the much looser

model of Figure 8(a), where a concept is sampled per appearance

feature vector, rather than per image. Note that, because labeling

information is not available per vector, the models PX|W (x|w)

are still learned as before. The only difference is the inference

procedure. In this case, SMNs are available per image patch

denoted as patch-SMN, π
n = PW |X (wn|xn), n ∈ {1, . . . , N}.

Determining an SMN, denoted the Image-SMN, for the entire

image requires computing a representative for this set of patch-

SMNs. One possibility is the multinomial of minimum average

Kullback-Leibler divergence with all patch-SMNs

π
∗ = arg min

π

1

N

N
X

n=1

KL(π||πn) s.t

L
X

i=1

πi = 1. (8)

As shown in Appendix II, this is the representative

π
∗
i =

exp 1
N

P

n log πni
P

i exp 1
N

P

n log πni
, (9)

which reduces to

π
∗
i =

exp
n

1
n

P

n log PX|W (xn|i)
o

P

j exp
n

1
n

P

n log PX|W (xn|j)
o (10)

for a uniform prior. This is in contrast to the posterior estimate

of (3). Note that while (3) computes a product of likelihoods, (10)

computes their geometric mean.
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TABLE I

SMN ENTROPY.

Model Entropy

Figure 2, Eq (3) 0.003 ± 0.044
Figure 8(a), Eq (10) 2.530 ± 0.435
Figure 8(b), Eq (12) 2.546 ± 0.593
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Fig. 9. left) Four groups of words with equal word histograms. right) Four
groups of edge segments with the equal edge segment histograms. Note that
each group can be derived from the others by a displacement of words or
edge segments. (This figure is best viewed in color)

A second possibility is to adopt the generative model of

Figure 8(b). This explicitly accounts for the contextual variable

Π, from which a single SMN is drawn per image. A concept is

then drawn per image patch. In this case, the Image-SMN is

π
∗ = arg max

π

PΠ|X (π|I). (11)

However, this optimization is intractable, and only approximate

inference is possible. A number of approximations can be used,

including Laplace or variational approximations, sampling, etc.

In Appendix III we show that, for a variational approximation,

π
∗
i =

γi − 1
P

j γj − L
(12)

where, γi is computed with the following iteration,

γ
∗
i =

X

n

φni + αi (13)

φ
∗
ni ∝ PX|W (xn|wn = i) eψ(γi)−ψ(

P

j γj). (14)

Here, αi is the parameter of the prior PΠ(π) which, for compat-

ibility with the assumption of uniform class priors, we set to 1,

ψ(·) the Digamma function, and γi, φni the parameters of the

variational distributions. Figure 7 shows that the SMNs obtained

with (10) and (12) are rich in contextual information. Table I

shows that the two models lead to approximately the same average

SMN entropy on N15, which is much higher than that of (3).

B. Data Augmentation

When, as above, an SMN is computed per image, the number of

training images upper bounds the cardinality of the training set

for contextual models. Since there is usually a limited number

of labelled images per concept, this can lead to over fitting.

For example, the 100 images available per concept on N15

are sufficient to learn appearance models (each image contains

thousands of patches), but 100 SMNs do not suffice to learn

Dirichlet mixtures in a 15 dimensional space. One possibility is to

use the patch-SMNs, π
(n), which are abundant. These, however,

tend to be too noisy, due to the ambiguities discussed above. To

overcome this problem we resort to a middle ground between

patch-SMNs and image-SMNs: multiple SMNs are estimated per

image, from random patch subsets. More precisely, a set of

patches is first selected, randomly, from the image. An SMN

is then estimated from this set, as would be done if the image

consisted of these patches alone. The process is repeated with

different patch subsets, generating a number of SMNs per image.

By controlling the number of random sets, it is possible to control

the cardinality of the training set for each contextual model.

The use of random patch subsets simultaneously alleviates the

problems of data scarcity (many subsets can be drawn per image),

and estimation noise (each SMN pools information from multiple

patches). Moreover, similar to the learning of appearance models,

learning contextual models with data augmentation also relies

on the multiple instance learning paradigm where each image,

being a collection of SMNs, serves as the positive bag, with some

SMNs depicting true contextual co-occurrences and some others

ambiguity co-occurrences. In Section VIII-A, we show that this

data augmentation strategy leads to significant improvements in

classification accuracy.

VI. CONNECTIONS TO TOPIC MODELS

The architecture proposed above has several properties in

common with the family of topic models, [6], [21].

A. Topic Models

Like the representation now proposed, topic models have two

layers. Appearance features are used to compute topic prob-

abilities (that correspond to the proposed SMNs), which are

hierarchically propagated to a more abstract layer that computes

class probabilities (correspondent to the proposed CMNs). While

details vary, the models are usually variations of latent Dirichlet

allocation (LDA) [6], or probabilistic latent semantic analysis

(pLSA) [21]. [5], [2] present an extension of LDA for image

annotation. Two other variations are proposed in [26] for natural

scene classification. LDA was also used in [45] for the discovery

of object categories. The application of pLSA to scene classifi-

cation was studied in [37], [7].

B. The Importance of Supervision

While the fundamental ideas of the following discussion apply

to all topic models, we concentrate on LDA, which is the closest

to the proposed architecture. In fact, the graphical model of

Figure 8(b) is that of LDA. Figure 8(c) presents the complete

version of this model, including the concept variable Y at the

semantic level. This is one of the models proposed in [26]. Given

the equivalence of the graphical models, it is worth discussing

in detail the differences between the two approaches. The funda-

mental difference is the level of abstraction of the intermediate

stage of the representation (topics vs. SMNs). While topics are

learned in an unsupervised manner, SMN features have explicit

semantics.

Recall the semantic gap between appearance features and visual

classes. While text features (words) are intrinsically semantic, this

is not the case for vision, where localized appearance features

(e.g. edge segments) have no semantic interpretation. This is

illustrated in Figure 9, where we present four groups of text

(words) and appearance (edge segments) features with identical

distributions. Because the word features are semantic, it is very

difficult to construct a group (sentence) with the same words
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that is semantically far from the others. This is absolutely not

the case for vision, where equivalence of feature distributions

places almost no constraint on the group semantics. As the figure

shows, the exact same segments can very easily be used to

construct groups that depict completely unrelated concepts. The

fact that equivalence of feature distributions does not translate

into semantic equivalence is denoted a semantic gap.

While the semantic gap is small for text (semantic features), it

is large for images. Thus, the success of a representation for text

classification is an unreliable predictor of its success for image

classification. In particular, the observation that unsupervised

topic discovery produces semantic topics for text [6], [21], is very

weak evidence that it will be successful for visual recognition. In

fact, Figure 9 shows that it cannot. In the absence of explicit

supervision for topic semantics, it is impossible to learn that the

four edge groupings of (c) belong to different topics. On the

contrary, the four groups form a perfect appearance cluster, since

their segment histograms are identical. Unfortunately, due to the

semantic gap, this cluster has no well defined semantics as a

whole. Hence, unsupervised topic learning has no ability to bridge

the semantic gap between local appearance and visual classes.

This is unlike the proposed architecture, where SMN features are

learned with explicit supervision, and it does make sense to talk

about a semantic space.

It should be emphasized that in this toy example, although

explicit topic supervision results in four classes of identical dis-

tribution (a highly suboptimal clustering under any unsupervised

learning criteria), it produces the semantically correct statistical

description of the data under the chosen image representation.

Note that, under this model, all images of Figure 9(right) have

an equal chance of being assigned to any of the classes. This

is a classifier of higher probability of error than that learned

without supervision. In fact, it is the weakest possible classifier.

On the other hand, unsupervised topic modeling produces a much

stronger classifier: all images assigned to one class with high

probability, other classes mostly noise. In summary, the super-

vised model reflects both the true semantics of the data and the

ambiguity of the image representation. It attempts to perform the

right classification but can only do so with high uncertainty. The

unsupervised model invents an alternative classification problem,

which has nothing to do with the image semantics but can be

solved very accurately. In addition to producing a semantically

useless image description, it is also confident on its accuracy.

VII. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to

evaluate performance of the proposed contextual modeling.

A. Datasets

To test the proposed contextual modeling framework, we adopt

datasets previously used in the scene classification and image

retrieval literatures.

1) Scene Classification: Scene classification results are pre-

sented for two publicly available datasets.

Natural Scene Categories (N15, N13, N8) consists of fifteen

categories (N15) of natural scenes, first proposed in [25]. This

dataset was constructed using the 13 scene categories (N13)

initially used by [26], [7]. The 13 scene categories themselves

contain 8 categories (N8) originally used in [34], [37], [7]. This

dataset allows direct comparison with published results on scene

classification. Each category contains 200 to 400 images, of

average size 270×250 pixels. 100 images per scene are used

to learn the model, the remaining being used as test set. All

experiments are repeated six times, with random train/test splits.

Corel Image Collection (C50, C43) consists of images from 50

Corel Stock Photo CDs, where each CD contains 100 images of

a common scene. Each image in this dataset is also labeled with

1-5 semantic concepts. This annotated set is commonly used for

the evaluation of image annotation systems [13], [15], [24]. We

construct two different datasets from this collection. The first,

referred to as C50, contains 50 scene classes, each corresponding

to one CD in the collection. For each CD, 90 images are used

to learn class models and the remaining for testing. It has been

argued that CD labels lead to an easy classification problem [59]

as there is high variability between images from different CDs

and high similarity among those from the same CD. To address

these concerns, we construct another dataset from this collection

(C43) that uses a set of manual annotations (disjoint from the CD

labels) as ground truth. 43 semantic concepts are chosen from the

set of annotations of [13] (those with a minimum of 100 annotated

images) and 100 images are randomly selected per concept. Since

an image can be labeled with more than one concept, this results

in a total of 3102 images. Of these, 2766 are randomly selected to

create a test set with approximately 90 images per label, and the

remainder are used for testing. A correct classification is declared

whenever the top predicted label matches any of the groundtruth

labels. All images were normalized to size 181×117 or 117×181

and converted from RGB to the YBR color space.

2) Image Retrieval: To evaluate retrieval performance, we use

two datasets proposed in [39].

Corel Image Collection (C15) consists of 1, 500 images from

another 15 Corel Stock Photo CDs, divided into a retrieval set of

1, 200 images and a query set of 300 images. CD themes are used

as the ground truth image concepts, creating a 15-dimensional

semantic space.

Flickr Images (F18) consists of 1, 800 images from

www.flickr.com. These images are shot by flickr users,

and hence differ from the Corel Stock Photos, which have

been shot professionally. A set of 1, 440 images serves as

the retrieval dataset, and the remaining 360 as the query set.

Image annotations are those used in [39]. The semantic space is

18-dimensional.

Note that, for all datasets except C43, each image is ex-

plicitly annotated with just one concept, even though it may

depict multiple. Thus, the co-occurrence information learned from

these datasets is purely data driven. In C43, although multiple

annotations are available per image, their co-occurrences are not

explicitly used to learn context. In summary, no high level co-

occurrence information is used to train the contextual models.

B. Appearance Features

Two feature transforms are used for appearance representation.

1) Scale Invariant Feature Transform: SIFT descriptors are

computed at a set of feature points selected 1) by interest point de-

tection (SIFT-INTR), or 2) on a dense regular grid (SIFT-GRID).

Interest points are computed with three saliency measures —

Harris-Laplace, Laplace-of-Gaussian, and Difference-of-Gaussian

- and merged. These measures also provide scale information,

which is used in the computation of SIFT descriptors. For a dense
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TABLE II

IMPACT OF INFERENCE MODEL ON CLASSIFICATION ACCURACY.

Classification Accuracy (%)

Model Appearance Contextual

Image RandomPatch

Figure 2, Eq (3) 71.67 ± 1.17 71.67 ± 1.17 -

Figure 8(a), Eq (10) 71.67 ± 1.17 73.33 ± 0.69 77.20 ± 0.39

Figure 8(b), Eq (12) 54.97 ± 0.58 73.43 ± 0.99 75.14 ± 0.75

grid, feature points are sampled every 8 pixels. SIFT descriptors1

are then computed over a 16 × 16 neighborhood around each

feature point. The two strategies yield about 1000 samples per

image.

2) Discrete Cosine Transform: DCT features are computed on

a dense regular grid, with a step of 8 pixels. 8× 8 image patches

are extracted around each grid point, and 8× 8 DCT coefficients

computed per patch and color channel. For monochrome images

this results in a feature space of 64 dimensions. For color images

the space is 192 dimensional. In this case, appearance distributions

are learned in the 129 dimensional subspace composed of the first

43 DCT coefficients from each channel. For datasets exclusively

comprised of color images, only the DCT features are used.

VIII. RESULTS

A number of classification experiments were performed (N15

dataset) to evaluate the impact of the various parameters of the

proposed contextual representation on recognition performance.

A. Designing the Semantic Space.

In Section V, we discussed three strategies to compute Image-

SMNs. Table II reports their classification accuracy, for both

appearance and contextual modeling with SIFT-GRID. Contextual

models learned from SMNs computed with (3) fail to improve

upon the (already high performing) appearance classifiers. This

is not totally surprising, since these SMNs lack co-occurrence

information (see discussion of Figure. 7). In comparison, SMNs

computed with (10) or (12) are rich in such information, enabling

contextual models to outperform their appearance counterparts.

Note that, although the LDA-like inference algorithm of (12)

yields significantly lower classification performance at the appear-

ance level than that of (10), both strategies attain a classification

accuracy of ∼ 73.3% at the contextual level. Note also that,

despite much weaker performance at appearance-level than (3),

(12) performs substantially better at the contextual level. Together,

these results suggest that the recognition performance at the ap-

pearance level is not necessarily a good predictor of performance

at the contextual level. In particular, the relative performances of

the three inference procedures advise against inference procedures

that make hard decisions at the lower levels of recognition.

To increase the cardinality of the training sets used for con-

textual modeling, 800 random sets of 30 patches are sampled

per image, yielding 800 patch-SMNs per image. Image-SMNs

are then computed from these, with (10) or (12). Table II

reports the benefits of this data augmentation, showing that per-

formance improves in both cases. For (10) classification accuracy

improves from 73.33% to 77.20%, for (12) from 73.43% to

1Computed with the implementation of LEAR
http://lear.inrialpes.fr/people/dorko/downloads.html

TABLE III

IMPACT OF APPEARANCE SPACE ON CLASSIFICATION ACCURACY.

Feature Classification Accuracy (%) Gain

Appearance Models Contextual Models

SIFT-GRID 71.67 ± 1.17 77.20 ± 0.39 7.7%
using (10)

SIFT-GRID 54.97 ± 0.58 75.14 ± 0.75 36.7%
using (12)

SIFT-INTR 68.58 ± 0.41 72.65 ± 0.56 5.9%

DCT 47.33 ± 1.22 73.05 ± 0.54 54.3%

75.14%. Since (12) involves an iterative procedure, which is

more expensive than the closed form of (10), and has weaker

performance, we use (10) in the remaining experiments.

B. Number of Mixture Components

Figure 10(a) presents the classification performance as a func-

tion of the number of contextual mixture components, for SIFT-

GRID, SIFT-INTR and DCT features. In all cases, a single

Dirichlet distribution is insufficient to model the semantic co-

occurrences of N15. As the number of mixture components

increases from 1 to 8, performance rises substantially for SIFT

(e.g. from 72.58% to 76.13% for SIFT-GRID), and dramatically

(from 55.93% to 70.48%) for the DCT. Above 8 components, the

gain is moderate in all cases, with a maximum accuracy of 77.20%

for SIFT-GRID and 73.05% for the DCT. Figure 11 shows the

cluster centers learned with a four-component Dirichlet mixture

using DCT features, for the “street” and “forest” classes. These

cluster centers can be interpreted as the SMNs of the dominant

co-occurrence patters learned for these classes. Two interesting

observations can be made. First, the class mixtures indeed account

for different co-occurrence patterns: in both cases the four cluster

centers are quite distinct. Second, not all cluster centers assign

high probability to the feature vector which is namesake of the

class. In the “street” example, although one of the centers assigns

high probability to the “street” concept, the remaining ones assign

higher probability to alternative concepts, e.g. “tall building”,

“inside city”, “highway” etc. than to “street” itself.

C. Choice of Appearance Features

Table III compares the classification performance of the three

appearance representations. In all cases, the contextual models

yield improved performance, with a gain of 7.7%, 5.9% and over

54% for SIFT-GRID, SIFT-INTR and DCT, respectively. Note

that the contextual models achieve high performance (over 72%)

for all appearance features. More interestingly, this performance

is almost unaffected by that of the underlying appearance classi-

fication, in the sense that very large variations in the latter lead

to relatively small differences in the former.

This hypothesis was studied in greater detail, by measuring

how contextual-level performance depends on the “quality” of the

appearance classification. The number of Gaussian components

in the appearance models was the parameter adopted to control

this “quality”. Figure 10(b) and (c) shows that decreasing this

parameter leads to a substantial degradation of appearance-level

recognition, for both SIFT and DCT. Nevertheless, the perfor-

mance of the contextual classifiers, built with these appearance

classifiers, does not change substantially. On the contrary, the

contextual classifiers assure a classification gain that compensates

for the losses in appearance classification. For SIFT-GRID, this
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Fig. 10. (a) Classification accuracy as a function of the number of mixture components of the contextual class distributions, for both DCT and SIFT. (b)
Dependence of appearance and contextual classification on the accuracy of the appearance modeling for SIFT-GRID features, (c) for DCT features. The
performance of contextual classification remains fairly stable across the range of appearance models.
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Fig. 11. Four cluster centers for the class “street” (left) and “forest” (right). Note that each class comprises different co-occurrence patterns.

gain ranges from about 20% at 64 Gaussian mixture components,

to about 8% at 512. For the DCT, corresponding gains are

of 65% and 54% respectively. In result, while the appearance

classifier experiences a drop of 17% (21%) for DCT (SIFT-GRID)

as the number of components is reduced from 512 to 64, the

performance of contextual classification drops by only a small

margin of 2% (5%).

Overall, the performance of the contextual classifier is not even

strongly affected by the feature transformation adopted. While,

at the appearance level, the performance of the DCT is not

comparable to that of SIFT, the choice of transform is much less

critical when contextual modeling is included: the two transforms

lead to similar performance at the contextual level. This suggests

that 1) any reasonable architecture could, in principle, be adopted

for appearance classification, and 2) there is no need for extensive

optimization at this level. This is an interesting conclusion, given

that accurate appearance classification has been a central theme

in the recognition literature over the last decades.

D. Some Examples

The ability of contextual modeling to compensate for clas-

sification noise at the appearance level can be observed by

simple inspection of the posterior distributions at the two levels.

Figure 12 shows two images from the “street” class of N15, and an

image each from the “Ireland” and “Mayan ruins” CD of the Corel

Collection. The SMN and CMN vectors computed from each im-

age are shown in the second and third column, respectively. Two

observations can be made. First, as discussed in Section. III-D, the

SMN vectors can include substantial contextual noise, reflecting

both types of concept co-occurrences. For example, patches

from the first image (“street” class) have high probability under

concepts such as “bedroom”, “livingroom”, “kitchen”, “inside

city”, “tall building”. Some of these co-occurrences (“bedroom”,

“livingroom”, “kitchen”) are due to patch ambiguities. Others

(“inside city”, “tall building”) are consistent with the fact that

the concepts are contextually dependent. The SMN representation

has no power to disambiguate between the two types of co-

occurrences. This is more pronounced for larger semantic spaces:

the SMNs of Corel images (43 dimensional space) exhibit much

denser co-occurrence patterns than those of N15.

Second, CMNs are remarkably noise-free for all semantic

spaces considered. They capture the “gist” of the underlying

scenes, assigning high probability only to truly contextual con-

cepts. This increased robustness follows from the fact that con-

textual models learn the statistical structure of the contextual co-

occurrences that characterize all SMNs associated with each class.

This makes class models at contextual level mitigate ambiguity

co-occurrences, which tend to be spurious, while accentuating

true contextual co-occurrences, which are stable. Consider, for

example, the top image in the fourth column. Its SMN is a

frequently occurring training example for contextual models of

“street”, “house”, “people” (this is true even though the image has

low probability of “street” and “house” under appearance model-

ing), etc. On the other hand, it is an unlikely training pattern for

contextual models of “bear” and “hills”, which only accidentally

co-occur with “street” or “house”. Hence, this SMN has large

posterior probability under contextual models for “house” and

“street”, but not for “bear” or “hills”.
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Fig. 12. left) Two images from the “street” class of N15, and right) an image each from the “Ireland” and “Mayan ruins” CD of the Corel collection. Also
shown with the images are the SMN and CMN vectors (middle and right column respectively). Notice that the CMN vectors are noise-free and capture the
“gist” of the image.

E. Complexity

In this section we report approximate running times for training

and testing, under both the appearance and contextual class

models. All experiments are conducted on an 2x Intel Xeon

E5504 Quad-core 2.00GHz processor, with average image size

of 270 × 250 pixels. Learning of appearance models requires

computing SIFT/DCT features, which takes about 800/20ms per

image respectively. Given these features, 512 component Gaussian

mixture models are learned from 100 training images in about

3 minutes per class, using the hierarchical approach of [55].

For testing, computing the likelihood of a given image requires

about 50ms per class. These likelihoods serve as features for

the contextual models. A 42 component Dirichlet mixture model,

learned from 100 training images, with 800 SMNs per image,

requires about 2 minutes to learn. During testing, it takes about

30ms to compute the likelihood of an image under each contextual

class model.

IX. COMPARISON WITH PREVIOUS WORK

In this section we compare the proposed contextual recognition

with existing solutions to scene classification and image retrieval.

A. Scene Classification

Given the posterior probabilities of (7), MPE scene classifi-

cation can be implemented by application of Bayes rule. This

consists of assigning image I, of SMN π, to the scene class y

of largest posterior PY |Π(y|π). Table IV compares the resulting

classification accuracies for N15, N13, and N8, with those of

many methods in the literature. A number of observations can

be made from the table. First, contextual modeling achieves

the best results on all three datasets. Its performance is quite

superior to that of topic discovery models (LDA [26], pLSA [7],

[37]), of which only [7] is remotely competitive. Even so, the

classification rates of the latter (72.7% on N15 , 74.7% on

N13, and 82.5% on N8) are well below those of the former

(77.2%, 80.86%, and 85.6%). Somewhat closer to this (74.8%

on N15, 74.7% on N13) is the performance of SVMs with the

bag-of-words representation (BoW)2. Note, however, that these

require much higher dimensional spaces, e.g. a 400 visual-word

2This representation is obtained by vector quantizing the space of descrip-
tors and representing an image with a visual word histogram.

vocabulary [25], and storage of a number of support vectors

that grows with the number of classes and training examples.

Contextual modeling has lower dimensionality, lower complexity,

and achieves a higher classification accuracy3. Also reported

is a baseline with discriminative learning [40] where an SVM

classifier is applied to the vector of outputs of the appearance

classifiers. Again, the proposed context models achieve superior

classification performance on all datasets.

Within the area of context modeling, e.g. comparing to the

methods of [34], [27], the proposed approach is again more

effective. For the N8 (N13, N15) dataset, [34] ([22], [25]) report

a classification accuracy of 83.7% (55%, 45.3%4), respectively,

using the “gist” features of [34]. The corresponding figures for

the proposed contextual models are 85.6% (80.86%, 77.2%).

Finally, Table V presents classification results for the C50

and C43 datasets. Contextual modeling again improves on the

classification accuracy achievable with appearance classifiers.

For C50 the absolute gain is of 4.2%, for C43 of 3%. When

compared to the top performing published methods on the natural

scene dataset [25], [7] the proposed contextual modeling again

achieves significantly higher accuracy. On C50, its accuracy is

57.8% while [25] and [7] achieve classification rates of 48.4%

and 40.2%, respectively. On C43, the corresponding numbers are

42.9%, 36.3%, and 33.0%. Overall, it can be concluded that the

proposed contextual modeling consistently outperforms existing

context-based scene classification methods in the literature.

B. Image Retrieval Performance

Finally, the benefits of holistic context modeling were evaluated

on the task of content based image retrieval, using the well known

3We note that better results have been reported for an extension of the BoW
representation that includes a weak encoding of spatial information [25], [62].
These results are the current state-of-the-art for N15: 81.4% [25] using a
SVM classifier on an 8400 dimensional space; 85.2% [62] using a nearest
neighbor classifier on an 8192 dimensional space. Note that the performance
of these approaches without the additional spatial encoding is 74.8% and
75.8%, respectively, which is well below the 77.2% achieved by the proposed
contextual models. Although contextual classification could also be augmented
with weak encoding of spatial information — one possibility is to learn
contextual class models for different image sub-regions and model the overall
contextual class model as a mixture of these sub-region models — it remains
to be determined if the gains would be as large as for the BoW representation.
We leave this as a topic for future work.

4Using a 16 dimensional “gist” like feature instead of the commonly used
512 dimensions.
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TABLE IV

CLASSIFICATION RESULTS ON NATURAL SCENE CATEGORIES.

Method Classif. Dims.a Accuracy (%)

N15 Dataset

Contextual Models Bayes 15 77.20 ± 0.39

pLSA [7]b SVM 40 72.7

pLSA [25] SVM 60 63.3

LDA [26]e Bayesian 40 59.0

“gist” like [25] SVM 16 45.3 ± 0.5

BoW [25] SVM 400 74.8 ± 0.3

BoW [25] SVM 200 72.2 ± 0.6

Bag of Concepts [28]c SVM 100 73.01

Kernel Codebook [52] SVM 3200 ∼75d

Diffusion Distance [29] SVM 2000 74.9

SIS [11] SVM 200 74.94

Semantic Space [40] SVM 15 73.95 ± 0.74

N13 Dataset

Contextual Models Bayes 13 80.86 ± 0.50

LDA [26] Bayesian 40 65.2

pLSA [7]b SVM 35 74.3

pLSA [37] SVM 40 60.8

pLSA [25] SVM 60 65.9

BoW [25] SVM 200 74.7

Taxonomy [3] Bayesian 40 68

“gist” features [22] SVM 512 ∼55d

Semantic Space [40] SVM 13 77.57 ± 1.12

N8 Dataset

Contextual Models Bayes 8 85.60 ± 0.70

Context Ancestry [27] Logistic 484 82

pLSA [7]b SVM 25 82.5

HDP-HMT [23] Bayesian 200 84.5

“gist” [34]f SVM 512 83.7

Semantic Space [40] SVM 8 84.24 ± 0.71

a Dimensionality of the space on which classification is performed
b Uses half of the dataset for training
c Uses a subset of test images per concept
d Accuracy estimated from figure
e Our implementation of the algorithm
f Gist features implicitly uses weak spatial information

query-by-example paradigm. This is a nearest-neighbor classifier,

where a vector of global image features extracted from a query

image is used to retrieve the images of closest feature vector in

an image database. In previous work [39], we have shown that

state-of-the-art results for this type of operation are obtained by

using appearance-level posterior distributions (SMNs) as feature

vectors. In this work, we compare results of using the distributions

obtained at the contextual (CMN) and appearance (SMN) levels.

The similarity between the distributions of the query and database

images is measured with the Kullback-Leibler divergence [39].

Figure 13(left), presents precision-recall (PR) curves on C15

and F18. Also shown are the performance of the image matching

system of [54], which is based on the MPE retrieval principle

now used but does not rely on semantic modeling, and chance-

level retrieval. Note how the precision of contextual modeling is

significantly superior to those of the other methods at all levels

of recall. For example, on C15, the mean-average precision (area

under PR curve) of CMN (0.73) is 32% higher than that of SMN

(0.55). The respective figures for F18 are 0.54 and 0.39, a gain

of over 38%. Overall, the PR curves of CMN are remarkably flat,

attaining high precision at high levels of recall. This is unlike

any other retrieval method that we are aware of. It indicates very

good generalization: while most retrieval approaches (even image

matching) can usually find a few images in the class of the query,

it is much more difficult to generalize to images in the class that

TABLE V

CLASSIFICATION RESULTS ON COREL COLLECTION.

Methoda Classif. Dims. Accuracy (%)

C50 Dataset

Contextual Models Bayes 50 57.8

Appearance Models Bayes 129 53.6

Bag of Words [25] SVM 512 48.4

pLSA [7] SVM 50 40.2

LDA [26] Bayes 50 31.0

C43 Dataset

Contextual Models Bayes 43 42.9

Appearance Models Bayes 129 39.9

Bag of Words [25] SVM 512 36.3

pLSA [7] SVM 50 33.0

LDA [26] Bayes 50 24.6

a Our implementation of the algorithms

are not visually similar to the query.

Figure 13(right) illustrates the improved generalization of con-

textual modeling. It presents retrieval results for the three systems

(top three rows of every query show the top retrieved images

using visual matching, SMN, and CMN respectively). The first

column shows the queries while the remaining columns show

the top five retrieved images. Note how visual matching has no

ability to bridge the semantic gap, simply matching semantically

unrelated images of similar color and texture. This is unlike the

semantic representations (SMN and CMN) which are much more

effective at bridging the gap, leading to a much smaller number

of semantically irrelevant matches. In particular, the ability of the

CMN-based system to retrieve images in the query’s class is quite

impressive, given the high variability of visual appearance.

X. CONCLUSION

In this work, we have proposed an approach to context

modeling based on the probability of co-occurrence of objects

and scenes. The proposed modeling is quite simple, and builds

upon the availability of robust appearance classifiers. Images are

represented by their posterior probabilities with respect to a set of

contextual models, built upon the bag-of-features image represen-

tation through two layers of probabilistic modeling. The first layer

represents the image in a semantic space, where each dimension

encodes an appearance-based posterior probability with respect

to a visual concept. This representation has a higher level of

abstraction than bag-of-features but suffers from a certain amount

of contextual noise, due to the inherent ambiguity of classifying

image patches. The second layer enables robust inference in

the presence of this noise, by modeling the distribution of each

concept in the semantic space. The image is then represented

by its posterior probabilities with respect to these distributions.

This was shown to produce posterior distributions that emphasize

concept co-occurrences due to true contextual relationships and

inhibit accidental co-occurrences due to ambiguity.

The overall representation is similar to a topic model, but

where topics are learned in a supervised manner. Supervised

learning is a necessary condition for overcoming the semantic

gap between the low-level patch representation and the higher-

level contextual relationships. While multiple instance learning

is required to cope with the uncertainty of the appearance rep-

resentation, multiple instance inference was shown ineffective.

Best results are obtained with weaker, patch-based, inference that

leads to an appearance representation of higher entropy. This
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Fig. 13. right) Precision-recall curves achieved with SMN, CMN, visual matching and chance level image retrieval for (top) F18, (bottom) C15 datasets.
left) Retrieval results for four image queries shown on the left-most column. The first, second, and third row of every query show the five top matches using
image matching, SMN, and CMN-based retrieval, respectively.

prevents a greedy commitment to premature image explanations

that, while consistent with appearance statistics, do not take

context into account. The latter goal is better served by inference

procedures that assign non-zero probability to multiple plausible

classes, at the appearance level. Interestingly, we found a weak

correlation between the quality of the appearance classification

and the corresponding quality at the contextual level. In fact,

some variations of the representation with weak appearance-

level performance were top-performers at the contextual level. It

appears that, while supervision is critical to bridging the semantic

gap during learning, soft appearance-level decisions are more

effective during inference. This is an interesting finding, given

the emphasis on highly accurate appearance classification in the

literature.

The contextual representation was shown to outperform the

appearance representation in the tasks of scene classification and

image retrieval. In both cases, it was also shown that, despite its

simplicity, the proposed contextual models are superior to various

previous proposals in the literature. The gains with respect to

appearance modeling were shown to hold irrespectively of the

choice and accuracy of the underlying appearance models.
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