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Abstract—Motion-Compensated Frame Interpolation (MCFI)
is a technique used extensively for increasing the temporal
frequency of a video sequence. In order to obtain a high quality
interpolation, the motion field between frames must be well-
estimated. However, many current techniques for determining
the motion are prone to errors in occlusion regions, as well as
regions with repetitive structure. We propose an algorithm for
improving both the objective and subjective quality of MCFI by
refining the motion vector field. We first utilize a Discriminant
Saliency classifier to determine which regions of the motion
field are most important to a human observer. These regions
are refined using a multi-stage motion vector refinement which
promotes motion vector candidates based on their likelihood
given a local neighborhood. For regions which fall below the
saliency-threshold, a frame segmentation is used to locate regions
of homogeneous color and texture via Normalized Cuts. Motion
vectors are promoted such that each homogeneous region has a
consistent motion. Experimental results demonstrate an improve-
ment over previous Frame Rate Up-Conversion (FRUC) methods
in both objective and subjective picture quality.

Index Terms—Frame Rate Up-Conversion (FRUC), Discrimi-
nant Saliency, Motion Segmentation, Motion Refinement, Motion
Compensated Frame Interpolation (MCFI).

I. INTRODUCTION

FRUC is an area of significant research with many impor-
tant applications. In mobile video, bandwidth restrictions

make it infeasible to transmit at high frame rates. Instead
the focus is on increasing spatial video quality while reduc-
ing the number of frames transmitted. FRUC is then used
on the receiver end to recreate a smooth video. A typical
example would be transmission at 15Hz with the FRUC
engine performing up-conversion by a factor f two to 30Hz.
Another important application is motion blur reduction for
Liquid Crystal Display (LCD) televisions. This is necessary
because of the sample-and-hold nature of LCD displays, which
causes noticeable motion blur at low frame rates. Newer LCD
displays on the market are capable of displaying at 120 to
240Hz thus significantly reducing the noticeable effect of
motion blur. In order to take advantage of these high frame
rates, FRUC is required to up-convert source material to the
required rate.
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FRUC is composed of two portions: Motion Estimation
(ME) and Motion Compensated Frame Interpolation (MCFI).
A block-based ME algorithm operates by partitioning each
frame into uniform blocks (generally 8x8 pixels) and determin-
ing the relative translation between each block in successive
video frames. The result of the ME step is a motion field for
the entire frame. Next, an intermediate frame is generated by
the algorithm by interpolating along the motion field direction.
Interpolation is performed bi-directionally to avoid any holes
in the resultant frame. Given a motion vector (vx, vy) from
the motion estimator, a block in the interpolated frame ft
is calculated as follows from the current frame ft+1 and
reference frame ft−1:

ft (x, y) = 0.5ft−1

(
x+

vx
2
, y +

vy
2

)
+0.5ft+1

(
x− vx

2
, y − vy

2

)
(1)

Because FRUC is performed on a block basis, there are
several issues which we aim to resolve. One limitation of a
block-based method is that objects in the scene generally do
not conform to block boundaries. Therefore, a single block
may contain multiple objects with conflicting motion. Another
limitation is that the motion vector which minimizes predicted
block error may in fact not be the best choice. This can
occur because of changes in luminance between frames or
due to repetitive structures. Finally, FRUC can suffer from
a ghosting artifact which is caused by large motions being
assigned outside of object boundaries. These shortcomings are
addressed in this work.

There are also difficulties experienced during the MCFI
stage. One primary concern is motion aliasing due to low tem-
poral sampling rates [1]. This occurs when the video frame rate
falls below the Nyquist rate describing an object’s trajectory.
Because the trajectory is incorrect, temporal upconversion is
incapable of recovering the true motion. However, these issues
are negligible in MCFI for most video processing applications.
Most FRUC methods assume that trackable objects in a scene
have momentum over small time scales. As a result, object
motions are close to linear between frames, and are safely
interpolated as such.

We propose a novel method for FRUC aimed at improving
both objective and subjective quality compared with previous
methods. Saliency detection is employed in order to determine
which regions of the scene are visually important to a human
observer, thereby requiring very accurate motion vectors.
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Conversely, motion-vector smoothness and consistency are en-
forced for non-salient regions using a fast frame segmentation.

The paper is organized as follows. In Section II, we present
a review of previous research in FRUC and Motion Com-
pensated Frame Interpolation (MCFI). A detailed overview of
discriminant saliency is introduced in Section III and of frame
segmentation in Section IV. The proposed algorithm is detailed
in Section V along with a description of all parameters used.
Objective and subjective experimental results for the proposed
method are presented in Section VI. Finally, the paper is
concluded in Section VII.

II. PREVIOUS WORK

Improvement of FRUC techniques has been the scope of
many research projects over the past few decades. A very early
contribution is the idea of 3D Recursive Search (3DRS) for
ME [2], in which motion vectors are estimated based on spatial
and temporal candidates from the same neighborhood. By
considering candidates which have already been encountered,
3DRS is an efficient method which promotes a smooth motion
field. Temporal Compensated ME with Simple Block-based
Prediction (TC-SBP) is another method similar to 3DRS in
that it exploits spatial and temporal candidates [3]. In this
method, only three candidates are necessary for block predic-
tion, while temporal update candidates aid in convergence of
the global motion field. While these methods exploit spatial
information for ME, frequency information is exploited by
Phase Plane Correlation [4]. This method has the benefit of
arbitrarily accurate motion vectors as well as good estimation
of local motion. However, the assumptions behind PPC are
only valid for blocks undergoing pure translation. More recent
approaches such as [5] focus on improving FRUC for regions
with high block error by merging neighboring regions with
large error. Another approach is to iteratively refine the motion
vector field while propagating motion vector candidates [6].
Gao et al. proposed the idea of Adaptive FRUC based on
Motion Classification [7]. In this work, the scene is classified
into global and local motion regions, and bidirectional or
unidirectional ME is used based on the classification result.

This paper considers recent research into the field of
saliency for determination of visually important regions.
Saliency has previously been used for the task of video
compression by Itti [8]. In this work, salient locations are
determined for each frame of a video sequence and the
frame is then blurred for regions sufficiently distant from
the determined salient locations. This allows for the blurred
regions to be compressed using fewer bits while the salient
locations remain untouched. Research by Walther and Koch [9]
models bottom-up saliency as a biologically plausible model
of contrast between Gabor-filter orientation and color oppency.
Gabor filtering is consistent with spatial filtering in the pri-
mary visual cortex, while color oppency is consistent with
processing by retinal ganglion cells. In [10], the link between
human recognition and bottom-up saliency is explored. It is
determined that Human observers require very little spatial
attention in order to recognize animals in images of natural
scenes, supporting bottom-up saliency for detection of impor-
tant regions in a scene. A bottom-up discriminant saliency

detector is proposed in [11], built upon a center-surround
framework. This detector performs well for predicting human-
eye fixation, and is also in agreement with related literature in
psychophysics of the Human Visual System (HVS).

Segmentation has been used extensively for previous video
processing applications. Among these, it is typical to use
optical flow [12], [13] for motion estimation, rather than block-
based methods. An early contribution to the field of motion
segmentation is due to Thompson [14]. A combination of
motion information and contrast is used in order to segment
a scene into regions of consistent motion. This work makes
use of a non-matching technique for motion estimation based
on time-varying changes in intensity and image gradient. A
contribution by Tian and Shah handles the problems of motion
estimation and segmentation concurrently [15]. In this work,
Markov Random Field (MRF) techniques are exploited in
order to simultaneously compute the motion between adjacent
frames and segment the scene into a collection of objects.
Similar research is conducted in [16], where a Bayesian
framework is introduced to model the motion field as the
sum of a parametric motion model (based on the scene
segmentation) and a residual motion vector. Khan and Shah
propose a method for video segmentation using spatial loca-
tion, color and motion for segmentation [17]. They show that
the fusion of these features performs better than any single
feature used independently. A separate approach is explored
by Cremers and Soatto in [18]. Rather than segmenting each
frame of a sequence into regions, this work aims to segment an
entire sequence into disjoint phases of homogeneous motion,
however demonstrated results depend heavily on the initial-
ization of the segmentation parameters. Finally, a patent by
Eastman Kodak [19] introduces a method for FRUC based on
segmentation of the image into foreground and background
regions. Separate motion data is used for each region and
the occlusion regions are handled gracefully. However, this
method assumes that the occlusions are manually marked by
a Human technician rather than determined algorithmically.

III. DISCRIMINANT SALIENCY

Human observers typically focus their visual attention on
small regions of the video frame that appear interesting. By
subjecting only these attended regions to post-processing such
as motion vector refinement, the quality of FRUC can be im-
proved while keeping computational complexity manageable.
The automatic selection of the regions of interest as perceived
by the human visual system (HVS) has been well studied in
the context of bottom-up saliency, and has been applied to
improve video compression [8]. However, these techniques
have been developed for static images and are not suitable
for motion based region of interest identification. Therefore,
in this work, we use the recently proposed discriminant center-
surround model for motion saliency [20] to automatically
identify salient moving objects.

A. Discriminant Center-Surround Motion Saliency
Discriminant center-surround saliency is a biologically plau-

sible algorithm that has been shown to replicate the psy-
chophysics of saliency mechanisms in the HVS. It can directly
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Fig. 1. Discriminant Saliency map using dynamic texture model, (a) input
frame from “Speedway” sequence, (b) saliency map. Larger pixel intensity
(closer to white) represents higher saliency value.

be applied to motion saliency simply by using appropriate
motion models such as optical flow or dynamic textures [21].
In this work, a dynamic texture model is used to determine
the motion-based feature response.

Dynamic texture data is obtained by determining an Autore-
gressive Moving Average (ARMA) model for a small piece of
spatiotemporal data. This data is a three-dimensional volume
with two spatial dimensions and one time dimension. The
volume of data represents an observed sequence {y (t)} seen
as the output of a dynamic texture {I (t)} with added noise
n (t). Using this notation, the dynamic texture coefficients can
be determined using the following process:{

x (t) =
∑k

i=1 Aix (t− i) +Bv (t)
y (t) = ϕ (x (t)) + n (t)

(2)

where ϕ is a spatial filter, I (t) = ϕ (x (t)), v (t) is selected
IID from an unknown distribution, and n (t) is selected IID
from a given distribution pn (·).

Discriminant saliency is defined with respect to two classes
of stimuli and a feature Y: the class of visual stimuli in the
center (with label C = 1), and class of visual stimuli in the
background or surround (with label C = 0). The saliency of
location l of the video, denoted S(l), is the extent to which the
feature Y can discriminate between center and surround at l.
This is quantified by the mutual information between features,
Y, and class label, C,

S(l) = Il(Y;C) =

1∑
c=0

∫
pY,C(l)(y, c) log

pY,C(l)(y, c)

pY(y)pC(l)(c)
dy. (3)

A large S(l) implies that center and surround have a
large disparity of feature responses, i.e. large local feature
contrast indicating that the location is salient. By selecting an
appropriate feature Y that encodes both spatial and temporal
characteristics of the video (e.g. dynamic textures, optical
flow) we can obtain regions that are spatiotemporally salient.
Figure 1 shows the saliency map for the “Speedway” sequence
obtained by using dynamic textures. The map shows that the
regions predicted to have high saliency (e.g the car) are indeed
the regions that appear visually salient to a human observer.

IV. SEGMENTATION

The goal of a segmentation algorithm is to partition each
frame into distinct objects. Significant progress has been made
on this research topic, although the problem itself is fundamen-
tally ill-posed. For the scope of this paper, the segmentation
algorithm presented in [22] is employed. This algorithm is
based on Normalized Cuts [23] as well as Probability of

TABLE I
NORMALIZED-CUTS PARAMETERS FOR VARYING FRAME SIZE

Frame Size nev nspc nspf

CIF (352x288) 50 100 200

HD720 (1280x720) 100 200 400

HD1080 (1920x1080) 200 400 800

Boundary (pB) [24] for detection of edges using color and
texture information.

The method of [22] is performed using several steps. First,
a contour detector is engaged in order to detect changes in
brightness. The contour detector may take texture information
into account, as is the case in pB. Next, a texture map is
computed of the frame using textons [25]. A weight matrix
Wij is formed between each pair of pixels using these two
cues to measure pixel similarity. Finally, N-Cuts is used to
partition the image using information from the weight matrix.
Further details can be explored in [22].

As is common in the literature, this segmentation scheme
is used to oversegment the image. Each frame is segmented
into a predetermined number of regions based on the image
size. These settings are presented in Table I. The parameter nev

specifies the number of eigenvectors which will be used for the
Normalized Cuts algorithm. These are the eigenvectors with
smallest eigenvalue and determine the initial segmentation
of the frame. After Normalized Cuts, the image is further
segmented into a coarse oversegmentation of nspc regions by
using K-means on the initial segmentation. The use of K-
means is discussed in [26], and is chosen as it offers robust
segmentation when initialized by N-cuts. This step is repeated
once more to produce a fine oversegmentation with nspf

regions.
One concern with frame segmentation is the presence of

motion blur in video sequences [1]. Motion blur is caused by
large object motions occurring during the open shutter period
of the video camera. Motion blur of sufficient magnitude
may cause object boundaries to be falsely determined, thereby
decreasing the performance of the proposed algorithm. In
practice, this has not proven to be a concern for two reasons.
First, any object with extreme motion blur will be travelling
rapidly and will be difficult for the HVS to track. In addition,
blurred pixels have similar luminance to the associated moving
object, because the blur is caused by object regions moving
along multiple pixels in the camera sensor. Therefore the
proposed algorithm is capable of including proper blurred
pixels into the region segmentation.

A. Merging Oversegmentation

With the frame oversegmented, the next step is to merge
regions with similar characteristics. Regions with similar color
and texture are merged on the assumption that they belong to
the same object. This process is repeated until a small number
of regions exist. The merge operation terminates when no two
nodes can be located with a sufficiently small dissimilarity.

Color information is obtained directly in the RGB color
space. It is important to use color rather than simply relying on
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Fig. 2. Example graph for superpixel merge operation: (a) partition of region
into six distinct superpixel regions, (b) superpixel neighbor graph G = (V,E)

luminance information, since a boundary between two objects
may be isoluminant while varying between color channels.

In order to compute the texture measure, the variance of
the AC coefficients of the Discrete Cosine Transform (DCT)
of each 8x8 block is computed. In Eqs. 4- 6, the matrix Bp,q

contains the DCT coefficients for the input block Ai,j with
parameters M = 8, N = 8. The matrix is then vectorized,
and the DC coefficient (the first entry) is removed because
the mean of block Ai,j says nothing about its texture. This
results in a vector of length 63 denoted as a The variance of
the resulting vector is given in Eq. 7 where N = 63.

Bp,q = αpαq

M−1∑
i=0

N−1∑
j=0

Ai,j cos

(
π (2i+ 1) p

2M

)
× cos

(
π (2j + 1) q

2N

)
(4)

αp =


√

1
M p = 0√
2
M 1 ≤ p ≤ M − 1

(5)

αq =


√

1
N q = 0√
2
N 1 ≤ q ≤ N − 1

(6)

var (a) =
1

N

∑
i

a2i −

(
1

N

∑
i

ai

)2

(7)

The superpixel merge procedure is posed as a problem over
the graph G = (V,E). Here, {v1, . . . , vn} ∈ V is the set of all
superpixel regions, and the edges {ei,j} ∈ E for i, j ∈ [1, n]
contain a dissimilarity measure between each pair of nodes.
Eij = 0 if nodes vi, vj ∈ V are non-adjacent. We use an
indicator function bi,j to represent node adjacency. bi,j = 1 if
vi, vj ∈ V are adjacent and bi,j = 0 otherwise.

Ei,j = bi,j

(
λmax

{
IRGB
i − IRGB

j

}
+ (1− λ) |Ti − Tj |) (8)

IRGB
i =

1

| {vi} |

∑
j∈vi

R (j) ,
∑
j∈vi

G (j) ,
∑
j∈vi

B (j)

T

(9)

where IRGB
i is the average intensity over the RGB color

planes and Ti is the average texture measure for superpixel
region vi. The tuning parameter λ allows the user to empha-
size either color or texture for the merging process. For all
experiments conducted in this paper, the parameter is set to

(a) (b)

Fig. 3. Superpixel merge process: (a) oversegmentation of frame from
“Speedway” sequence into n = 200 regions, (b) merge process after 175
iterations (n = 25 regions)

λ = 0.5. The merge procedure requires iteratively locating the
pair of nodes vi, vj ∈ V such that Ei,j is minimized. These
nodes are then merged, and the process continues. An example
is demonstrated in Fig. 3 for the Speedway sequence.

V. PROPOSED ALGORITHM

The proposed FRUC architecture improves MV accuracy for
salient regions while enforcing smoothness of the MV field for
non-salient regions. In this way, both objective and subjective
video quality will be increased. The proposed architecture is
detailed in Algorithm 1.

Algorithm 1 Proposed MV Consistency and Refinement
input: frame data, oversegmented and merged region map
R1, . . . , Rn, saliency map S, saliency threshold τ
for region Ri ∈ {R1, . . . , Rn} do

if 1
|j∈Ri|

∑
j∈Ri

S (j) < τ then
enforce region consistency for Ri as discussed in
Section V-B

else
for all blocks contained in region Ri do

perform MVR as described in Section V-C
end for

end if
end for
output: refined MV field

A. Saliency Map Generation

The saliency map is generated according to [20] with a
dynamic texture model used for the feature Y. A spatial
window size of 8x8 pixels, and a temporal window size of
11 frames is employed for the spatiotemporal volume. The
saliency map is normalized to have a maximum value of 1
pertaining to the most salient points, and a minimum value
of 0 for non-salient points. The average saliency value for
each region is calculated and compared with a threshold τ to
determine whether region consistency or MVR is employed.

B. Region Consistency

The result of the frame oversegmentation and merging pro-
cess is a segmentation with n distinct regions {R1, . . . , Rn}
where R1 ∪ . . . ∪ Rn = I . In order to promote natural
motion, we restrict the candidate set of available motions to
those which are statistically most likely. A MV histogram
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Fig. 4. Toy example for region consistency algorithm. The upper left portion
demonstrates a frame which has been segmented into n = 6 regions. We
create a MV histogram for region R3 and select the m = 4 most commonly
occurring motions for the candidate set CS (R3)

is computed for each region Ri consisting of the motions
assigned to all blocks B ∈ Ri. From this histogram, the
m most commonly occurring motions are promoted as a
candidate set. This process is demonstrated in Fig. 4. Selection
of the parameter m is discussed in Section V-E. Denote the
candidate set for region Ri as CS (Ri) = {mv1, . . . ,mvm}.

For each candidate mvj in the candidate set, the Total
Error TE (mvj , Ri) is calculated over region Ri to determine
which candidate best explains the total motion of the region.
Denote the x and y-components of candidate mvj as vjx and
vjy , respectively. For reference frame ft−1 and current frame
ft, TE is computed as:

TE (mvj , Ri) =
∑

M∈Ri

∑
x,y∈M

|ft−1

(
x+

vjx
2

, y +
vjy
2

)
−ft

(
x− vjx

2
, y − vjy

2

)
| (10)

where M is a block contained in region Ri with upper-
left pixel index (i, j). Block ownership is determined by
which region owns a majority of the block’s pixels. Ties are
broken arbitrarily. Penalties are applied to these candidates
based on the total distortion produced by the candidate for
the region Ri. In case of non-integer offsets (vjx2 ,

vjy
2 /∈ Z),

bilinear interpolation is used to determine TE.For candidate
mvj ∈ CS (Ri):

p (mvj) =
TE (mvj , Ri)∑
k ̸=j TE (mvk, Ri)

(11)

With the penalties determined over the candidate set, we are
now able to promote MV consistency for each superpixel re-
gion. The Region Consistent MV (mvrc) for a block B ∈ Ri

is computed as:

mvrc = min
j:mvj∈CS(Ri)

∑
x,y∈M

|ft−1

(
x+

vjx
2

, y +
vjy
2

)
−ft

(
x− vjx

2
, y − vjy

2

)
|p (mvj) (12)

C. Motion Vector Refinement

For scene regions which exceed the saliency threshold τ ,
Motion Vector Refinement (MVR) is applied to increase the
accuracy of the motion field. The refinement is computed with-
out motion re-estimation in an approach similar to [27]. MVR

Fig. 5. Proposed candidate selection method for the center block (gray) with
parameter m = 3. Here, the top three most commonly occurring motions in
the neighborhood are considered as the first three motion vector candidates.
The original motion vector for the center block is the fourth candidate.

is computed in three stages of decreasing local neighborhood,
which is particularly important at object boundaries, where
the MV field is difficult to determine. The method is based
on the idea of natural motion, this is the assumption that,
for any given area, there are a limited number of motions
which need to be considered. The candidate selection process
is demonstrated in Fig. 5. MVR is computed in multiple stages
in order to improve the accuracy of the motion field around
object boundaries. At each stage, the local neighborhood of
consideration is decreased in order to consider more relevant
MV candidates. In the first stage, enlarged block matching is
considered with a 24x24 pixel measurement window for each
8x8 block. A MV histogram is created containing the original
block motion and all spatial neighbors within a neighborhood
of ±2 blocks. These 25 MVs are analyzed, and the m = 3
most commonly occurring motions, as well as the original
block motion, are promoted as a candidate set. As before, the
candidate which produces the smallest error is chosen as the
MV. For stage one, the error is calculated as:

SAD1 (vx, vy) =
∑

x,y∈M1

|ft−1

(
x+

vx
2
, y +

vy
2

)
−ft

(
x− vx

2
, y − vy

2

)
| (13)

using the Sum of Absolute Differences (SAD) error measure
where M1 is defined as in Eq. ( 14 ) for a 24x24 pixel
enlarged measurement window with upper-left pixel located
at (i, j). The second stage proceeds in a similar fashion. The
candidate set is increased to four motion histogram candidates
and the original block motion. An 8x8 block is selected with
no enlarged matching to improve the motion accuracy around
object boundaries. The error for stage 2 is computed using
block M2.

In the third stage, the resolution of the motion field is
increased by a factor of two in each direction. Each block is
partitioned into four 4x4 subblocks (quadrants), and refinement
proceeds as in previous stages. The four subblocks are defined
by M3i, i = 1, . . . , 4

M1 = {x, y : x ∈ [i− 8, i+ 15] , y ∈ [j − 8, j + 15]}
M2 = {x, y : x ∈ [i, i+ 7] , y ∈ [j, j + 7]}
M31 = {x, y : x ∈ [i, i+ 3] , y ∈ [j, j + 3]}
M32 = {x, y : x ∈ [i, i+ 3] , y ∈ [j + 4, j + 7]}
M33 = {x, y : x ∈ [i+ 4, i+ 7] , y ∈ [j, j + 3]}
M34 = {x, y : x ∈ [i+ 4, i+ 7] , y ∈ [j + 4, j + 7]} (14)
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Fig. 6. PSNR of the proposed algorithm as a function of the parameter λ.
performance is very nearly constant for λ > 0.2, with a peak at λ = 0.5.

D. Inconsistency between boundaries

It is common for the object boundaries determined by the
segmentation algorithm to disagree with motion-based saliency
boundaries. This is no cause for concern as the decision to
perform MVR is based on the average saliency value of a
region as determined by the segmentation algorithm. Therefore
the processing method will be consistent within each region.
This is the case because the segmentation boundaries are based
on color and texture information, while saliency boundaries
are based on differences in motion models. A broken color or
texture edge would be disruptive to the HVS, and therefore is
avoided by the proposed algorithm.

E. Parameter Selection

The proposed algorithm depends on several parameters
which must be tuned for optimal performance. These include
the saliency threshold τ , the candidate set size m, the bal-
ance between intensity and texture (λ in Eq. ( 8 )), and
the temporal window size for dynamic texture computation.
The saliency threshold is heuristically set to 0.75. Recall
from algorithm 1 that each region is processed based on
the average saliency value. Therefore, any region with an
average saliency value in the top 25% of the frame will be
subjected to MVR. τ is fixed across all sequences. Next,
m for region consistency is determined through testing. In
Fig. 7 we measure the objective algorithmic performance as
a function of the candidate set size. The planes sequence is
used, with error averaged over all frames. Notice that PSNR
achieves its maximum at m = 2. This is because with m = 1
candidate, the algorithm must blindly accept the majority vote.
On the other hand, when m > 3, the regularizing effect of m
disappears, thereby decreasing performance. SSIM decreases
almost monotonically with increasing m. SSIM achieves its
maximum at m = 1 because this forces large uniform motion
fields. A good compromise on PSNR and SSIM performance
is attained by selecting m = 2. Similar methods are employed
to determine suitable parameters for the MVR candidate sets.
We arrive at m = 3 for the first stage, and m = 4
for stages two and three. The parameter λ is chosen such
that luminance and texture contribute equally to the region
merging algorithm. This equal weighting was selected due
to experimental results as demonstrated in Fig. 6. Here, the
foreman sequence is interpolated with all parameters other
than λ held fixed. The given PSNR results are an average
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Fig. 7. Algorithm performance decays as the region consistency candidate
set size (m) increases.

over the entire frame sequence. It is observed that performance
is degraded when only texture information is used for the
merging algorithm. However, for λ > 0.2, performance is
nearly constant with the highest value attributed to λ = 0.5.
It is concluded that color information is the most important
for the region merging procedure, however the addition of
texture information improves performance. From these results,
we conclude that λ can be fixed to 0.5 for all experiments.

Finally, the dimensions of the spatiotemporal volume for
dynamic texture computation are selected as discussed in [28].
In this work, the authors investigate the sensitivity of Discrim-
inant Saliency with respect to the temporal window size τ
and the spatial window size. It is concluded that performance
remains nearly constant over a large gamut of spatiotemporal
sizes. Because the range τ ∈ [5, 21] provides for roughly
uniform performance, τ = 11 is selected. While the authors
believe that performance can be fine-tuned using an optimiza-
tion over τ , it would not boost performance commensurate
with the complexity of finding the optimal τ for each frame.

VI. EXPERIMENTAL SETUP

Objective results are calculated using the following exper-
imental procedure. Each 24 frame per second (fps) video
sequence is temporally reduced by a factor of two to 12fps.
The 12fps sequence is then up-converted using MCFI via
one of the FRUC algorithms discussed in this paper. The
resulting interpolated frames are compared with the originals
to determine the error.

A. Objective Results

The proposed algorithm is tested against several competing
methods for FRUC. Among these are: Full Search (FS) with
bidirectional MCFI [29], 3D Recursive Search (3DRS) [2],
MSEA method with bidirectional MCFI [30] and a Multistage
Motion Vector Processing method (MMVP) [31]. The metrics
for comparison are Peak Signal to Noise Ratio (PSNR), which
is calculated as the average Mean-Squared Error (MSE) of
the predicted frame; and Structural Similarity Index (SSIM),
which models error as perceived by a Human observer [32].
Eight sequences have been selected for comparison. Among
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these are four CIF sequences (352x288) and four HD720p
sequences (1280x720). The CIF sequences are: coastguard,
football, foreman and tennis. These sequences are prevalent
in the video processing literature. The HD sequences are:
dolphins, limit, planes and speedway. All objective results
for these sequences are tabulated in Table II. Additional results
including video sequences, saliency information, and all error
plots are located on our web site 1. In addition to objective
results for full-frame comparison, performance results for the
salient regions are included. We consider the top 25% of each
saliency map as the mask for calculation of objective results in
the salient region. This is consistent with our goal of improving
the performance of FRUC most in visually salient regions.

First, the football sequence is examined. This is a difficult
task for any FRUC engine, as there are many different motions,
occlusions, and therefore numerous object boundaries. An
example interpolated frame is demonstrated in Fig. 8 using
the five FRUC methods. The most noticeable distortion occurs
around the object boundary of player #41 in the middle of the
frame. This is most evident in the 3DRS interpolation shown
in Fig. 8(b). Here, significant blocking artifacts can be seen on
the arms of player #41, as well as the leg of the player on the
right side of the frame. Interpolation performance increases
for the FS and MSEA methods in Figs. 8(c,d), which can
be seen in the improved boundary of player #41. However,
there are still errors in the leg of the player on the right of
the frame. Because no constraints are imposed to promote
consistent motion of objects, the previous methods all fail to
properly assign motion in this region. The MMVP method in
Fig. 8(e) combines block motions with high residuals, thus
changing the appearance of the leg of the player on the right.
The merging of motion vectors creates a consistent motion
in this region, however the motion is too large. The result is
duplication of the leg appearing as a ghosted copy. Finally,
the proposed interpolation in Fig. 8(f) demonstrates consistent
motion of the player on the right side of the frame. In
addition, the saliency map determined for this frame sequence
allows for motion vector refinement to player #41, resulting
in further improvement over Full Search and MSEA. The
error for football sequence is plotted as a function of frame
number in Fig. 9(a,c). It becomes evident that the proposed
method consistently improves interpolation quality for this
scene. The average PSNR and SSIM values for this sequence
are considerably higher than the four competing methods. The
difference between the proposed method and the competing
methods is plotted in Fig. 9(b,d) as a function of frame number.
Here a positive value indicates that the proposed method
outperforms the competing method. Notice that for all but a
few frames, the PSNR and SSIM differences are positive when
compared with 3DRS, FS, MSEA and MMVP.

The foreman sequence is examined in Fig. 10. In this
sequence, 3DRS produces poor results. Notice distortion to
the facial structure in Fig. 10(b). This is caused by the way
in which 3DRS chooses motion vector candidates spatially
and temporally. The facial motion is complex and proper

1Additional results including video files may be found online at http://
videoprocessing.ucsd.edu/∼NatanHaim/TIP 2009/.

(a) (b) 26.54dB, 0.7677

(c) 27.22dB, 0.7284 (d) 27.16dB, 0.7527

(e) 26.03dB, 0.7004 (f) 27.67dB, 0.7779

Fig. 8. Objective FRUC results for football sequence frame 74: (a) Original
CIF frame, (b) 3DRS, (c) FS, (d) MSEA, (e) MMVP, (f) Proposed. PSNR,
SSIM results shown for each frame.
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Fig. 9. Objective performance of Proposed FRUC algorithm for interpolated
frames 12 through 114 of football sequence: (a) PSNR, (b) relative PSNR,
(c) SSIM, (d) relative SSIM. Relative graphs compare the performance of
methods 1-4 to that of the proposed method. A positive score denotes higher
performance from the proposed method.

motion vectors may not exist in the above spatial and below
temporal candidates. Fig. 10(c) demonstrates the advantage of
FS over 3DRS. Here, the facial structure is mostly maintained,
aside from an incorrect patch on the left side of the face.
MSEA also results in noticeable distortion to the face in Fig.
10(d). The MMVP algorithm in Fig. 10(e) merges the face
region and its immediate surround to a single motion. While
this noticeably improves interpolation of the nose, it causes
blurring at the edges of the face. The proposed algorithm
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TABLE II
OBJECTIVE RESULTS FOR CIF AND HD720P TEST SEQUENCES. EACH CELL PROVIDES RESULTS IN PSNR (TOP ROW) AND SSIM (BOTTOM ROW)

Sequence 3DRS [2] FS [29] MSEA [30] MMVP [31] Proposed 3DRS FS MSEA MMVP Proposed
CIF Entire frame Salient frame region

coastguard 34.4422 36.9724 37.0120 36.0431 37.5361 32.4071 33.8265 33.8948 33.7229 34.8572
0.8973 0.9444 0.9448 0.9401 0.9505 0.9833 0.9866 0.9868 0.9858 0.9893

football 24.9455 25.7013 25.7035 24.5524 26.0087 23.0517 23.8816 23.9127 22.5563 24.2448
0.7422 0.7602 0.7616 0.6847 0.7885 0.9441 0.9511 0.9513 0.9334 0.9571

foreman 37.6367 38.5156 38.5159 34.6369 38.4558 36.1712 37.5657 37.6198 36.4874 37.6827
0.9413 0.9499 0.9502 0.9416 0.9530 0.9869 0.9904 0.9905 0.9883 0.9911

tennis 31.3513 31.6365 31.5762 28.7834 31.8027 29.7027 30.7389 30.6444 27.3591 31.3106
0.8689 0.8559 0.8575 0.7393 0.8737 0.9667 0.9664 0.9666 0.9430 0.9733

HD720p Entire frame Salient frame region
dolphins 34.0322 35.1030 35.0952 35.1120 34.9936 30.6850 31.8903 31.8539 31.6042 31.9006

0.8585 0.8790 0.8814 0.8835 0.8832 0.9417 0.9504 0.9511 0.9497 0.9537
limit 39.3535 39.2591 39.2382 39.4234 39.5608 37.5492 38.2784 38.5500 38.2704 38.6604

0.9151 0.9156 0.9150 0.9159 0.9209 0.9855 0.9866 0.9871 0.9866 0.9876
planes 34.2114 36.3117 36.2967 36.3942 36.8768 36.6685 37.1436 37.2119 37.1292 38.2912

0.9258 0.9517 0.9510 0.9469 0.9516 0.9940 0.9950 0.9950 0.9944 0.9952
speedway 28.9685 29.3508 29.3658 29.3960 29.3729 25.7847 26.6485 26.6092 26.6632 26.6846

0.8517 0.8673 0.8670 0.8638 0.8687 0.9335 0.9407 0.9404 0.9408 0.9411

(a) (b) 35.33dB, 0.9094

(c) 36.56dB, 0.9282 (d) 36.34dB, 0.9249

(e) 33.03dB, 0.9275 (f) 37.11dB, 0.9360

Fig. 10. Objective FRUC results for foreman sequence frame 78: (a) Original
CIF frame, (b) 3DRS, (c) FS, (d) MSEA, (e) MMVP, (f) Proposed. PSNR,
SSIM results shown for each frame.

addresses the shortcomings of competing methods by refining
the motion field for the salient nose region while enforcing
consistency in the background. This can be observed by in
the interpolated frame in Fig. 10(f).

Objective results for the tennis sequence are demonstrated
in Fig. 11. This is a complicated scene involving a moving
ping-pong ball and paddle against a textured background.
There are significant errors at the boundary of both the arm

and paddle caused by the 3DRS method. This can be seen in
Fig. 11(b). Similar errors at the boundary of the paddle can
be observed with methods 11(c,d). The MMVP method in
Fig. 11(e) aims to resolve this problem, however is unable to
do so properly without segmentation information. The result is
a ghosted copy of the paddle. The advantage of the proposed
method in this instance comes from the use of segmentation
information. Because the paddle is determined to be a single
object, the proposed method advances motion vectors which
treat the paddle as a rigid object. The benefit of this feature
can be observed in Fig. 11(f). In addition, the saliency detector
ensures that motion vector candidates are refined for the region
including the paddle and arm.

B. Subjective Results

In addition to objective results, it is crucial to determine
the perceptual quality of the proposed algorithm. This is ac-
complished by performing double-blind subjective testing on a
group of Human observers. Subjective results are obtained us-
ing the stimulus comparison non-categorical judgment method
as described in [33]. A selected group of 20 observers were
shown video clips which had been processed by the proposed
method, in addition to 3DRS, FS and MSEA methods. In each
instance, two video clips are shown side-by-side with each
processed via a different method. The observer is presented
with a rating scale on the range [−3, 3], where a score of
−3 corresponds with the left side appearing “much better”
than the right side, and 3 corresponding with the right side
“much better” than the left side. Any score between these
two values is acceptable with 0 representing “no difference”
between the two sequences. Findings are tabulated in Table III
for the sequences: football, planes, speedway and tennis
across all 20 observers. In this table, the mean (µ) and standard
deviation (σ) are calculated for each sequence where a positive
score on the mean corresponds to a perceptual improvement
of the proposed method over the competing method. The
rejection region (γ) is calculated using the Student’s T-Test,
where a decision is made between the null hypothesis (the
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(a) (b) 33.86dB, 0.9432

(c) 33.97dB, 0.9280 (d) 33.69dB, 0.9255

(e) 31.82dB, 0.8877 (f) 34.72dB, 0.9515

Fig. 11. Objective FRUC results for tennis sequence frame 20: (a) Original
CIF frame, (b) 3DRS, (c) FS, (d) MSEA, (e) MMVP, (f) Proposed. PSNR,
SSIM results shown for each frame.

TABLE III
SUBJECTIVE RESULTS FOR TWO CIF SEQUENCES AND TWO 720P

SEQUENCES ACROSS 20 HUMAN OBSERVERS. A POSITIVE SCORE ON THE
AVERAGE CORRESPONDS WITH A PERCEPTUAL IMPROVEMENT OF THE

PROPOSED METHOD WHEN COMPARED WITH EACH COMPETING METHOD.

Sequence Comp. Method Std. Dev Rej. Region Average
Football 3DRS 0.50 0.19 2.34

FULL 1.02 0.39 0.21
MSEA 0.74 0.29 −0.15

Planes 3DRS 0.55 0.21 2.24
FULL 1.26 0.49 1.11
MSEA 0.77 0.30 1.48

Speedway 3DRS 0.30 0.12 2.81
FULL 0.99 0.38 0.78
MSEA 1.15 0.44 0.85

Tennis 3DRS 1.22 0.47 1.51
FULL 0.51 0.20 0.21
MSEA 0.86 0.33 0.26

proposed algorithm has no positive affect over the competing
method) and the alternative hypothesis. Therefore, a mean
score exceeding the calculated rejection region (τ ) corresponds
to a statistical improvement of the proposed method.

According to the subjective results, the proposed algorithm
demonstrates a significant improvement over the competing
methods for both HD sequences. However, no telling results
are obtained for the CIF sequences. While the objective results
are positive for the CIF sequences, the video size is too small
for a significant perceptual improvement.

C. Computational Complexity

Complexity of the proposed algorithm is dependent on the
methods used for saliency and segmentation calculation. For
saliency, the method of [20] is used which can calculate

the saliency for a 720p frame in roughly 15 seconds. This
assumes that the frame is downsampled by a factor of four to
320×180. Segmentation of the same downsampled frame size
is computed using an implementation of [34] which completes
in 60 seconds. The remainder of the algorithm, including
the region merging procedure, requires 10 seconds. In order
to realize real-time performance, certain tradeoffs may be
considered. For example, the saliency and segmentation maps
may be computed every n frames and propagated using the
refined/consistent motion vector field.

VII. CONCLUSION

Over the past decades, there has been significant research
in methods to improve the performance of FRUC algorithms.
This research has been fuelled by the high adoption rates
of LCD televisions and the developing demand for mobile
video. In this paper, we have proposed a novel method for
FRUC which incorporates the ideas of frame segmentation
and discriminant saliency. By exploiting these methods, we
are able to increase the performance of interpolated image
quality, especially in visually salient regions.
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