
Cost-Sensitive Boosting
Hamed Masnadi-Shirazi and Nuno Vasconcelos, Senior Member, IEEE

Abstract—A novel framework is proposed for the design of cost-sensitive boosting algorithms. The framework is based on the

identification of two necessary conditions for optimal cost-sensitive learning that 1) expected losses must be minimized by optimal

cost-sensitive decision rules and 2) empirical loss minimization must emphasize the neighborhood of the target cost-sensitive

boundary. It is shown that these conditions enable the derivation of cost-sensitive losses that can be minimized by gradient descent, in

the functional space of convex combinations of weak learners, to produce novel boosting algorithms. The proposed framework is

applied to the derivation of cost-sensitive extensions of AdaBoost, RealBoost, and LogitBoost. Experimental evidence, with a synthetic

problem, standard data sets, and the computer vision problems of face and car detection, is presented in support of the cost-sensitive

optimality of the new algorithms. Their performance is also compared to those of various previous cost-sensitive boosting proposals,

as well as the popular combination of large-margin classifiers and probability calibration. Cost-sensitive boosting is shown to

consistently outperform all other methods.

Index Terms—Boosting, AdaBoost, cost-sensitive learning, asymmetric boosting.

Ç

1 INTRODUCTION

CLASSIFICATION problems such as fraud detection [1],
medical diagnosis [2], or object detection in computer

vision [3], [4], [5], [6], [7], [8], [9], [10] are naturally cost
sensitive [11]. In these problems, the cost of missing a target
is much higher than that of a false positive, and classifiers
that are optimal under symmetric costs (such as the popular
zero-one loss) tend to underperform. The design of optimal
classifiers with respect to losses that weigh certain types of
errors more heavily than others is denoted by cost-sensitive
learning [11]. Current research in this area falls into two
main categories. The first category aims for generic
procedures that can make arbitrary classifiers cost sensitive
by resorting to Bayes risk theory or some other cost
minimization strategy [12], [13]. The second attempts to
extend particular algorithms so as to produce cost-sensitive
generalizations. Of interest to this work are classifiers
obtained by thresholding a continuous function, here
denoted by a predictor, and therefore similar to the Bayes
decision rule (BDR) [14], [15], which is well known to be
optimal for both cost-insensitive and cost-sensitive classifi-
cation. In particular, we consider learning algorithms in the
boosting family [16], [17], [18]. These are the algorithms that
1) learn a predictor by combining weak classification rules
(weak learners) and 2) use a sample reweighting mechan-
ism to emphasize points that are difficult to classify.

In this work, we consider the problem of how to extend
boosting algorithms so as to achieve optimal cost-sensitive
decision rules. The starting point is the observation, by
Friedman et al. [18], that in the (asymptotic) limit of infinite
training data, the predictor which minimizes the exponential

loss used by AdaBoost (and many other boosting algo-
rithms) is the ratio of posterior distributions that also
appears in the BDR. Convergence to this optimal predictor
is, however, not guaranteed everywhere for finite training
samples. It is, in fact, well known that, in this case, boosting
does not produce calibrated estimates of class posterior
probabilities [19], [20], [21], [18], [22]. This is due to the
emphasis of sample reweighing on the classification
boundary: While the boosted predictor converges to the
optimal predictor in a small neighborhood of this boundary,
it does not approximate the latter well away from it. This
does not compromise cost-insensitive classification perfor-
mance, which only requires the two predictors to have the
same sign, but impairs cost-sensitive performance, which
requires a good approximation of the optimal predictor
throughout the feature space.

Two conditions are identified as necessary for optimal
cost-sensitive boosting: 1) The expected boosting loss is
minimized by the optimal cost-sensitive decision rule and
2) empirical loss minimization emphasizes a neighborhood
of the target cost-sensitive boundary, rather than that
optimal in the cost-insensitive sense. We propose that this
is best accomplished by modifying boosting’s loss function
so that boosting-style gradient descent can satisfy the two
necessary conditions above. This leads to a general frame-
work for the cost-sensitive extension of boosting algorithms.
We introduce cost-sensitive versions of the exponential and
binomial losses which underlie AdaBoost [16], RealBoost
[18], [23], and LogitBoost [18]. Cost-sensitive extensions of
the algorithms are derived and shown to satisfy the
necessary conditions for cost-sensitive optimality. The
new algorithms are compared with various cost-sensitive
extensions of boosting available in the literature, including
AdaCost [24], CSB0, CSB1, CSB2 [25], asymmetric-AdaBoost
[3], and AdaC1, AdaC2, AdaC3 [26]. All of these extensions
are heuristic, achieving cost sensitivity by manipulation of
AdaBoost’s weights and confidence parameters. In most
cases, it is not clear if, or how, these manipulations modify
boosting’s loss. This is unlike the framework now proposed
which inherits all properties of cost-insensitive boosting,

294 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

. The authors are with the Statistical Visual Computing Lab, University of
California, San Diego, 9500 Gilman Drive, Mail code 0407, EBU 1,
Room 5512, La Jolla, CA 92093-0407.
E-mail: {hmasnadi, nuno}@ucsd.edu.

Manuscript received 21 Apr. 2009; revised 10 Aug 2009; accepted 11 Nov.
2009; published online 2 Mar. 2010.
Recommended for acceptance by J. Matas.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2009-04-0249.
Digital Object Identifier no. 10.1109/TPAMI.2010.71.

0162-8828/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

simply shifting boosting’s emphasis from the neighborhood
of the cost-insensitive boundary to the neighborhood of the
target cost-sensitive boundary.

The performance of the proposed cost-sensitive boosting
algorithms is also evaluated through experiments on
synthetic problems and data sets from the UCI repository
[27] and computer vision face [28] and car [29] detection
problems. These experiments show that the proposed
algorithms do indeed possess cost-sensitive optimality
and can meet target detection rates without (suboptimal)
weight manipulation. They are also shown to outperform
the previously available cost-sensitive boosting methods,
consistently achieving the best results in all experiments.
The remainder of the paper is organized as follows: In
Section 2, we review the main principles of cost-sensitive
classification. Section 3 then presents a brief review of the
standard boosting algorithms and previous attempts at
cost-sensitive extensions, discussing their limitations for
optimal cost-sensitive classification. The new framework for
cost-sensitive boosting is introduced in Section 4, where the
extensions of AdaBoost, RealBoost, and LogitBoost are also
derived. Finally, empirical evaluation is discussed in
Section 5 and some conclusions are drawn in Section 6.

2 COST-SENSITIVE CLASSIFICATION

We start with the fundamentals of cost-sensitive classifica-
tion. Most concepts apply to multiway classification, but
here, we only consider the problem of binary classification,
or detection.

2.1 Detection

A detector, or binary classifier, is a function h : X ! f�1; 1g
that maps a feature vector x ¼ ðx1; . . . ; xNÞT 2 X � IRN into
a class label y 2 f�1; 1g. This mapping is implemented as

hðxÞ ¼ sgn½fðxÞ�; ð1Þ

where f : X ! IR is a predictor and sgn½x� ¼ 1 if x � 0 and
sgn½x� ¼ �1 otherwise. Feature vectors are samples from a
random process X that is described by a probability
distribution PXðxÞ on X , and labels are samples from a
random variable Y of probability distribution PY ðyÞ,
y 2 f�1; 1g. The detector is optimal if it minimizes the risk
R ¼ EX;Y ½Lðx; yÞ�, where Lðx; yÞ is a loss function. We
consider losses of the form

Lðx; yÞ ¼
0; if hðxÞ ¼ y;
C2; if y ¼ �1 and hðxÞ ¼ 1;
C1; if y ¼ 1 and hðxÞ ¼ �1;

8<
: ð2Þ

with Ci > 0. When C1 ¼ C2, the detector is cost insensitive;
otherwise, it is cost sensitive. The three scenarios accounted
by Lðx; yÞ are denoted by correct decisions (hðxÞ ¼ y), false
positives (y ¼ �1 and hðxÞ ¼ 1), and false negatives or
misses (y ¼ 1 and hðxÞ ¼ �1).

For many cost-sensitive problems, the costs C1 and C2

are specified from domain knowledge. For example, in a
fraud detection application, prior experience dictates that
there is an average cost of C2 dollars per false positive,
while a false negative (miss) will cost C1 > C2 dollars, on
average. In this case, the costs are simply C2 and C1. There
are, nevertheless, problems in which it is more natural to
specify target detection or false positive rates than costs.

The two types of problems can be addressed within a
common optimal detection framework.

2.2 Optimal Detection

When C1 and C2 are specified, the optimal predictor is
given by the BDR [14], [15], i.e.,

f� ¼ arg min
f
EX;Y ½Lðx; yÞ�

with

f�ðxÞ ¼ log
PY jXð1 j xÞC1

PY jXð�1 j xÞC2
: ð3Þ

An alternative specification is in terms of error rates, where
the goal is to minimize the false positive rate of the classifier
given a target detection rate. The optimal solution can be
obtained with recourse to the Neyman-Pearson Lemma
[30]: For any detection rate �, the optimal predictor is still
(3). However, for a given �, the constants (C1; C2) must be
such that the specified detection rate is met, i.e.,Z

H
P ðx j y ¼ 1Þdx ¼ � ð4Þ

with

H ¼ x
P ðy ¼ 1 j xÞ
P ðy ¼ �1 j xÞ >

C2

C1

����
� �

:

The only difference is that, rather than specifying costs, one
has to search for the costs that satisfy (4). This can be done
by cross validation. Since all that matters is C1=C2, C2 can
be set to 1 and the search is one-dimensional. In any case,
the optimal detector can be written as

h�T ðxÞ ¼ sgn ½f�0 ðxÞ � T �; ð5Þ

where

f�0 ðxÞ ¼ log
PY jXð1 j xÞ
PY jXð�1 j xÞ ð6Þ

is the optimal cost-insensitive predictor and

T ¼ log
C2

C1
: ð7Þ

Hence, for any cost structure ðC1; C2Þ, cost-sensitive
optimality differs from cost-insensitive optimality only
through the threshold T : All optimal cost-sensitive rules
can be obtained from f�0 ðxÞ by threshold manipulation.
Furthermore, from (4), different thresholds correspond to
different detection rates, and threshold manipulation can
produce the optimal decision rule at any detection (or false
positive) rate. This is the motivation for the widespread use
of receiver operating curves (ROCs) [31], [32], [33] and the
tuning of error rates by threshold manipulation.

2.3 Practical Detection

In practice, the probabilities of (6) are unknown, and a
learning algorithm is used to estimate the predictor
f̂ðxÞ � f�0 ðxÞ, producing an approximately optimal cost-
sensitive rule

ĥT ðxÞ ¼ sgn½f̂ðxÞ � T �: ð8Þ

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 295

This, however, does not guarantee good cost-sensitive

performance for the particular cost structure ðC1; C2Þ
associated with T . In fact, there are no guarantees of the

latter even when the cost-insensitive detector is optimal, i.e.,

when ĥ0ðxÞ ¼ sgn½f�0 ðxÞ�. While the necessary and sufficient

conditions for cost-insensitive optimality are that

f̂ðxÞ ¼ f�0 ðxÞ ¼ 0; 8x 2 C ð9Þ

sgn½f̂ðxÞ� ¼ sgn½f�0 ðxÞ�; 8x 62 C; ð10Þ

where

C ¼ x log
PY jXð1 j xÞ
PY jXð�1 j xÞ ¼ 0

����
� �

is the optimal cost-insensitive classification boundary, the

optimality of (8) requires that

f̂ðxÞ ¼ f�0 ðxÞ ¼ T; 8x 2 CT ð11Þ

sgn½f̂ðxÞ � T � ¼ sgn ½f�0 ðxÞ � T �; 8x 62 CT ð12Þ

with

CT ¼ x log
PY jXð1 j xÞ
PY jXð�1 j xÞ

���� ¼ T
� �

:

Hence, the necessary condition for cost-sensitive optimality

of f̂ at any point x in the boundary CT , f̂ðxÞ ¼ f�0 ðxÞ, is

much tighter than the sufficient condition for cost-insensi-

tive optimality of f̂ at that point, sgn½f̂ðxÞ� ¼ sgn½f�0 ðxÞ�.
It follows that threshold manipulation can only

produce optimal cost-sensitive detectors for all values of

T if f̂ðxÞ ¼ f�0 ðxÞ; 8x 2 X . Since this is a much more

restrictive constraint than the necessary and sufficient

conditions, (9) and (10), of cost-insensitive optimality,

there is, in general, no reason for a cost-insensitive

learning algorithm to enforce it. This is, in fact, Vapnik’s

argument against generative solutions to the classification

problem that there is no point in attempting to learn the

optimal predictor everywhere, when it is sufficient to do

so on the classification boundary [34].

3 BOOSTING

This work addresses the cost-sensitive extension of boost-
ing algorithms. Such algorithms learn a predictor fðxÞ by
linear combination of simple decision rules, or weak learners
[35], GmðxÞ:

fðxÞ ¼
XM
m¼1

GmðxÞ: ð13Þ

Optimality is defined with respect to some risk, such as the

expected exponential loss

EX;Y ½expð�yfðxÞÞ�; ð14Þ

or the expected negative binomial log-likelihood

�EX;Y ½y0 logðpðxÞÞ þ ð1� y0Þ logð1� pðxÞÞ�; ð15Þ

where y0 ¼ ðyþ 1Þ=2 2 f0; 1g is a reparameterization of y and

pðxÞ ¼ efðxÞ

efðxÞ þ e�fðxÞ : ð16Þ

Learning is based on a finite sample D ¼ fðxi; yiÞgni¼1,
empirical loss estimates, and iterative selection of weak
learners. At iteration m, a weight w

ðmÞ
i is assigned to

example ðxi; yiÞ, reweighing D to amplify the importance of
points that are poorly classified with the current predictor.
We next review some popular algorithms in this family
whose cost-sensitive extensions will be introduced later. All
of these can be interpreted as gradient descent on a
functional space of linear combinations of weak learners,
with respect to one of the losses above [36], [37], [38].

3.1 AdaBoost

AdaBoost [16], [39] learns combinations of scaled binary
classifiers

GAda
m ðxÞ ¼ �mgmðxÞ; ð17Þ

where f�mgMm¼1 is a weight sequence and fgmðxÞgMm¼1 a
sequence of binary rules, gmðxÞ : X ! f�1; 1g, usually
implemented with a decision stump gmðxÞ ¼ sgn½�mðxÞ �
tm�, where �mðxÞ is a feature response (projection of x along
a basis function �m) and tm a threshold. The ensemble
predictor of (13) is learned by gradient descent with respect
to the exponential loss. The direction of largest descent at
the mth iteration is [40], [36]

gmðxÞ ¼ arg min
g
ðerrðmÞÞ; ð18Þ

where

errðmÞ ¼
Xn
i¼1

w
ðmÞ
i ½1� Iðyi ¼ gmðxiÞÞ� ð19Þ

is the total error of gmðxÞ and Ið�Þ the indicator function

Iðy ¼ xÞ ¼ 1; y ¼ x;
0; y 6¼ x:

�
ð20Þ

The optimal step size in the descent direction has closed-form

�m ¼
1

2
log

1� errðmÞ
errðmÞ

� �
; ð21Þ

and the weights are updated according to

w
ðmþ1Þ
i ¼ wðmÞi e�yiG

Ada
m ðxiÞ: ð22Þ

3.2 RealBoost

RealBoost [18], [23] is an extension of AdaBoost that
produces better estimates of f�0 ðxÞ by using real-valued
weak learners in (13) (in contrast to binary-valued weak
learners.) In this case, the direction of the greatest descent of
the exponential loss is a (reweighted) log-odds ratio

Greal
m ðxÞ ¼

1

2
log

P
ðwÞ
Y jXð1 j �mðxÞÞ

P
ðwÞ
Y jXð�1 j �mðxÞÞ

; ð23Þ

where, as before, �mðxÞ is a feature response to x, and the
superscript w indicates that the probability distribution is

296 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

that of the reweighted sample. Weights are updated
according to

w
ðmþ1Þ
i ¼ wðmÞi e�yiG

real
m ðxiÞ: ð24Þ

3.3 LogitBoost

LogitBoost is motivated by the following observation,
initially made by Friedman et al. [18]:

Lemma 1 (Statistical interpretation of boosting). The loss
E½expð�yfðxÞÞ� is minimized by the symmetric logistic
transform of PY jXð1 j xÞ,

f�0 ðxÞ ¼
1

2
log

PY jXð1 j xÞ
PY jXð�1 j xÞ : ð25Þ

Proof. See [18]. tu

This implies that both Ada and RealBoost are stage-
wise procedures for fitting an additive logistic regression
model. Friedman et al. argued that this is more naturally
accomplished by stagewise minimization of (15). At the
mth boosting iteration, the optimal step is given by a
weighted least squares regression for the weak
learner Glogit

m ðxÞ that best fits a set of working responses

z
ðmÞ
i ¼ y0i � pðmÞðxiÞ

pðmÞðxiÞð1� pðmÞðxiÞÞ
;

where pðmÞðxÞ is the probability of (16) based on the
predictor of (13) after m� 1 iterations. The weights are

w
ðmÞ
i ¼ pðmÞðxiÞð1� pðmÞðxiÞÞ: ð26Þ

3.4 Limitations for Cost-Sensitive Learning

We have already seen that the optimal cost-insensitive
detector does not require the optimal predictor of (25): It
suffices that (13) converges to any function satisfying (9)
and (10). While Lemma 1 guarantees that the minimization
of the exponential or binomial losses is sufficient to obtain
(25), these guarantees are asymptotic and do not necessarily
hold for finite samples. In fact, the large-margin classifica-
tion theory suggests that good out-of-sample generalization
requires a greater accuracy of the approximation inside a
neighborhood of the optimal cost-insensitive boundary C
than outside of it. For boosting, the emphasis on the
boundary is accomplished through the example reweight-
ing of (22), (24), or (26). This, however, usually implies that
(13) does not converge to the optimal predictor everywhere,
and is not necessarily a good predictor for cost-sensitive
detection.

To obtain some intuition, we consider a detection problem
with a bounded optimal predictor f�0 ðxÞ. Assume a finite
training sampleD and that, as is common in the large-margin
literature, sample points from the two classes are separable,
i.e., the detector sgn ½f�0 ðxÞ� has zero classification error on
D.1 Define the neighborhood NðCÞ ¼ fx; jf�0 ðxÞj < �g, where
� > 0 is such thatNðCÞ contains at least one positive and one
negative example. Let f̂ ðmÞðxÞ be the predictor learned by
m iterations of boosting, and assume that

f̂ ðmÞðxÞ ¼
f�0 ðxÞ; 8x 2 NðCÞ;
þ1; if f�0 ðxÞ > 0 and x 62 N ðCÞ;
�1; if f�0 ðxÞ < 0 and x 62 N ðCÞ:

8<
: ð27Þ

For both Ada and RealBoost, a simple recursion shows that

w
ðmÞ
i

w
ð0Þ
i

¼ e�yi
Pm

k¼1
GkðxiÞ ¼ e�yif̂ðmÞðxiÞ; ð28Þ

where we have also used (13). Let the initial weight
distribution be uniform, w

ð0Þ
i ¼ 1=n, as is customary in

boosting practice. Since yif̂
ðmÞðxiÞ � 0, 8i 2 D, it follows that

nw
ðmÞ
i ¼ e�jf̂ ðmÞðxiÞj: ð29Þ

Similarly, for LogitBoost,

w
ðmÞ
i ðxiÞ ¼

�
ef̂
ðmÞðxiÞ þ e�f̂ðmÞðxiÞ

��2

� e�2sgn½f̂ ðmÞðxiÞ�f̂ ðmÞðxiÞ ¼ e�2jf̂ðmÞðxiÞj:
ð30Þ

In either case, nw
ðmÞ
i or w

ðmÞ
i can be seen as a measure of the

importance of training point i (relative to the remainder of
D). Inside the neighborhoodNðCÞ, this importance is one for
points along the cost-insensitive boundary C (where
f̂ðmÞðxÞ ¼ 0), and decreases exponentially with the distance
to it. OutsideNðCÞ, all points have zero importance (because
jf̂ðmÞðxÞj ¼ 1). Hence, despite the facts that 1) the predictor
is already perfect in NðCÞ but 2) approximates f�0 ðxÞ very
poorly outside this neighborhood, all points outside NðCÞ
are disregarded by subsequent boosting iterations. This
implies that the predictor will not get any better in the sense
of cost-sensitive classification.

The example above turns out not to be a mathematical
curiosity. Extensive empirical studies show that when the
span of the space of weak learners is rich enough to separate
the training set into the two classes and boosting is run for
enough iterations, all boosting algorithms produce a dis-
tribution of posterior probabilities PY jXðyjxÞ highly concen-
trated around 0 or 1, independently of the true distribution
[19], [20]. Note that this does not compromise cost-insensitive
optimality: f̂ ðmÞðxiÞ simply grows to 1 for positive and to
�1 for negative examples. But the boosted predictor has
very poor cost-sensitive performance. This problem cannot be
addressed by early stopping. In the iterations before class
separation, boosting assigns exponentially decaying weight
to points correctly classified by previous iterations, in the
cost-insensitive sense. Hence, points far from C are exponen-
tially discounted as boosting progresses, creating a soft
neighborhood NðCÞ of nearby points that dominate the
optimization. As a result, boosting does not produce accurate
posterior estimates, even in this regime [21], [19], [20]. This is,
in fact, the reason for the popularity of postprocessing
boosting’s predictions with probability calibration techni-
ques, such as the method of Platt [41], or isotonic regression
[42], when posterior accuracy is important [21].

The lack of everywhere convergence to the optimal

predictor is illustrated in Fig. 1, which depicts f�0 ðxÞ and

f̂ðmÞðxÞ. Because f�0 ðxÞ increases (decreases) monotonically to

the left (right) of C, any f̂ðmÞðxÞwith 1) C as a zero level set and

2) the same monotonicity satisfies (9) and (10). The emphasis

on NðCÞ guarantees that the zero level set of f̂ ðmÞðxÞ closely

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 297

1. Note that the classification error does not have to be zero, in general,
only for the particular sample D.

approximates C, assuring good cost-insensitive generaliza-

tion. But the level sets of f̂ ðmÞðxÞ and f�0 ðxÞ are not identical

beyond NðCÞ. In particular, the set f̂ ðmÞðxÞ ¼ T can differ

significantly from f�0 ðxÞ ¼ T , the optimal cost-sensitive

boundary CT for the cost structure of threshold T in (5).

Hence, threshold manipulation on f̂ ðmÞðxÞ does not produce

the optimal cost-sensitive rule of (5).

3.5 Prior Work on Cost-Sensitive Boosting

This limitation is well known in the boosting literature, and
motivated various cost-sensitive algorithms [24], [25], [3],
[26]. Since, for cost-sensitive learning, the main problem is
boosting’s reweighing emphasis on NðCÞ instead of NðCT Þ,
it has long been noted that good cost-sensitive performance
requires a different reweighing mechanism. This also
complies with the intuition that cost-sensitive detection
should weigh examples from different classes differently. A
naive implementation of this intuition would be to modify
the initial boosting weights so as to represent the cost
asymmetry. However, because boosting reupdates all
weights at each iteration, it quickly destroys the initial
asymmetry, and the predictor obtained after convergence is
usually not different from that produced with symmetric
initial conditions. A second natural heuristic is to modify
the weight update equation. For example, the updated
weight could be a mixture of (22), (24), or (26), and the
initial cost-sensitive weights. We refer to such heuristics as
“weight manipulation.” Previously proposed cost-sensitive
boosting algorithms, such as AdaCost [24], CSB0, CSB1,
CSB2 [25], Asymmetric-AdaBoost [3], and AdaC1, AdaC2,
or AdaC3 [26], fall in this class. For example, CSB2 [25]
modifies the weight update rule of AdaBoost to

w
ðmþ1Þ
i ¼ Ci � wðmÞi e�yiG

Ada
m ðxiÞ; ð31Þ

relying on (21) for the computation of �m. While various
justifications are available for the different heuristic

manipulations of the boosting equations, these manipula-
tions provide no guarantees of asymptotic convergence to a
good cost-sensitive decision rule. Furthermore, none of the
cost-sensitive extensions can be easily applied to algorithms
other than AdaBoost. We next introduce a framework for
cost-sensitive boosting that addresses these two limitations.

4 COST-SENSITIVE BOOSTING

The new framework is inspired by two observations. First,
the different boosting algorithms are gradient descent
methods [36], [37], [38] for empirical minimization of losses
that are asymptotically minimized by the cost-insensitive
predictor of (25). Second, the main limitation, for cost-
sensitive learning, is the emphasis of the empirical loss
minimization on a neighborhood NðCÞ of the cost-insensi-
tive boundary, as shown in Fig. 1. These two properties are
interconnected. While the limitation is due to the weight-
update mechanism, simply modifying this mechanism (as
discussed in the previous section) does not guarantee
acceptable cost-sensitive performance. Instead, boosting
involves a balance between weight updates and descent
steps, which must be components of the minimization of the
common loss. For cost-sensitive optimality, this balance
requires that the loss function satisfies two conditions,
which we denote as the necessary conditions for cost-
sensitive optimality.

1. The expected loss is minimized by the optimal cost-
sensitive predictor f�ðxÞ of (3).

2. Empirical loss minimization leads to a weight-
updating mechanism that emphasizes a neighbor-
hood of NðCT Þ.

This suggests an alternative strategy for cost-sensitive
boosting: to modify the loss functions so that these two
conditions are met. In what follows, we show how this can
be accomplished for Ada, Real, and LogitBoost. The
framework could be used to derive cost-sensitive extensions
of other boosting algorithms, e.g., GentleBoost [18] or
AnyBoost [36]. We limit our attention to the ones referred
to for reasons of brevity and their popularity.

4.1 Cost-Sensitive Losses

We start by noting that the optimal cost-sensitive detector of
(5) can be rewritten as h�T ¼ sgn½f�ðxÞ� with f�ðxÞ as in (3).
Since the zero level set of this predictor is the cost-sensitive
boundary CT , boosting-style gradient descent on loss
functions asymptotically minimized by f�ðxÞ should satisfy
the two necessary conditions for cost-sensitive optimality.
The first is indeed met by the following extensions of the
exponential and binomial losses:

Lemma 2. The expected losses

EX;Y

	
Iðy ¼ 1Þe�y:C1fðxÞ þ Iðy ¼ �1Þe�y:C2fðxÞ

; ð32Þ

�EX;Y ½y0 logðpcðxÞÞ þ ð1� y0Þ logð1� pcðxÞÞ�; ð33Þ

where Ið�Þ is the indicator function of (20) and

pcðxÞ ¼
e�fðxÞþ�

e�fðxÞþ� þ e��fðxÞ�� ;

with � ¼ C1 þ C2

2
; � ¼ 1

2
log

C2

C1

ð34Þ

298 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

Fig. 1. Example of a detection problem, where boosting produces the
optimal cost-insensitive detector but threshold manipulation does not
lead to optimal cost-sensitive detectors. The figure presents level sets of
both the optimal predictor f�0 ðxÞ (solid line) and the boosted predictor
f̂ ðmÞðxÞ (dashed line). While boosting emphasizes the approximation of
f�0 ðxÞ in NðCÞ, optimal cost-sensitive rules require a good approximation
in other regions, e.g., NðCT Þ.

are minimized by the asymmetric logistic transform of

PY jXð1 j xÞ,

fðxÞ ¼ 1

C1 þ C2
log

P ðy ¼ 1 j xÞC1

P ðy ¼ y00 j xÞC2
; ð35Þ

where y00 ¼ �1 for (32) and y00 ¼ 0 for (33).

Proof. See Appendix A. tu

We next derive cost-sensitive boosting extensions by
gradient descent on empirical loss estimates, and later show
that they shift the emphasis of boosting weights from NðCÞ
to NðCT Þ.

4.2 Cost-Sensitive AdaBoost

Result 3 (Cost-sensitive AdaBoost). Consider the minimiza-

tion of the empirical estimate of the expected loss of (32), based

on a training sample fðxi; yiÞgni¼1, by gradient descent on the

space S of functions of the form of (13) and (17), and define

two sets

Iþ ¼ fijyi ¼ 1g; I� ¼ fijyi ¼ �1g: ð36Þ

The weak learner selected at iteration m consists of an optimal

step �m along the direction gm of the largest descent of the

expected loss, and is given by

ð�m; gmÞ ¼ arg min
�;g

X
i2Iþ

w
ðmÞ
i expð�C1�gðxiÞÞ

þ
X
i2I�

w
ðmÞ
i expðC2�gðxiÞÞ

ð37Þ

with

w
ðmþ1Þ
i ¼ w

ðmÞ
i e�C1�mgmðxiÞ; i 2 Iþ
w
ðmÞ
i eC2�mgmðxiÞ; i 2 I�:

(
ð38Þ

The optimal step �ðgÞ along a direction g is the solution of

2C1 � b � coshðC1�Þ þ 2C2 � d � coshðC2�Þ
¼ C1 � T þ � e�C1� þ C2 � T � � e�C2�

ð39Þ

with

T þ ¼
X
i2Iþ

w
ðmÞ
i T � ¼

X
i2I�

w
ðmÞ;
i ð40Þ

b ¼
X
i2Iþ

w
ðmÞ
i ½1� Iðyi ¼ gðxiÞÞ�;

d ¼
X
i2I�

w
ðmÞ
i ½1� Iðyi ¼ gðxiÞÞ�; ð41Þ

and the descent direction is given by

gm ¼ arg min
g

	�
eC1�ðgÞ � e�C1�ðgÞ

�
� bþ e�C1�ðgÞT þ

þ
�
eC2�ðgÞ � e�C2�ðgÞ

�
� dþ e�C2�ðgÞT �

:

ð42Þ

Proof. See Appendix B. tu

For AdaBoost, possible descent directions are defined by
a set of binary classifiers fgkðxÞgKk¼1. The gradient descent
iteration cycles through these, for each solving (39). This can
be done efficiently with standard scalar search procedures.

In our experiments, the optimal �was found in an average of
six iterations of bisection search. Given �, the loss associated
with the binary classifier is computed and the best classifier
selected by (42). A summary of the cost-sensitive boosting
algorithm is presented in Algorithm 1. It is worth mention-
ing that it is fully compatible with AdaBoost in the sense that
it reduces to the latter when C1 ¼ C2 ¼ 1.

Algorithm 1. Cost-sensitive AdaBoost

Input: Training set D ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg, where y 2
f1;�1g is the class label of example x, costs C1; C2, set of

binary classifiers fgkðxÞgKk¼1, and number M of weak

learners in the final decision rule.

Initialization: Select uniformly distributed weights for each

class

wi ¼
1

2jIþj
; 8i 2 Iþ; wi ¼

1

2jI�j
; 8i 2 I�.

for m ¼ f1; . . . ;Mg do

for k ¼ f1; . . . ; Kg do

Compute (40)-(41) with gðxÞ ¼ gkðxÞ and solve (39)

with respect to �.

Use (42) to compute the loss of the weak learner

ðgkðxÞ;�kÞ.
end for

select the weak learner ðgmðxÞ; �mÞ of smallest loss.

update weights wi according to (38).

end for

Output: decision rule hðxÞ ¼ sgn ½
PM

m¼1 �mgmðxÞ�.

4.3 Cost-Sensitive RealBoost

Result 4 (Cost-sensitive RealBoost). Consider the minimiza-

tion of the empirical estimate of the expected loss of (32), based

on a training sample fðxi; yiÞgni¼1, by gradient descent on the

space Sr of predictors of the form of (13), where the weak

learners GmðxÞ are real functions. Given a dictionary of

features f�1ðxÞ; . . . ; �KðxÞg, the direction of the largest

descent at iteration m has the form

Greal
m ðxÞ ¼ G�k� ðxÞ; ð43Þ

where the optimal feature is determined by

k� ¼ arg min
k

X
i2Iþ

w
ðmÞ
i exp

�
�C1G�kðxiÞ

�
þ
X
i2I�

w
ðmÞ
i exp

�
C2G�kðxiÞ

� ð44Þ

with weights given by

w
ðmþ1Þ
i ¼ w

ðmÞ
i e�C1G

real
m ðxiÞ; i 2 Iþ;

w
ðmÞ
i eC2G

real
m ðxiÞ; i 2 I�;

(
ð45Þ

and where

G�ðxÞ ¼
1

C1 þ C2
log

P
ðwÞ
Y jXð1 j �ðxÞÞC1

P
ðwÞ
Y jXð�1 j �ðxÞÞC2

8<
:

9=
;: ð46Þ

P
ðwÞ
Y jXðy j �ðxÞÞ; y 2 f1;�1g are estimates of the posterior

probabilities for the two classes, after the application of the

feature transformation �ðxÞ to a sample reweighted accord-

ing to w
ðmÞ
i .

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 299

Proof. See Appendix C. tu

The posterior probabilities P
ðwÞ
Y jXðy j �mðxÞÞ; y 2 f1;�1g of

(46) can be estimated with standard techniques [15], for

example, using weighted histograms of feature responses if

the �kðxÞ are scalar features. Histogram regularization

should be used to avoid empty histogram bins. A summary

of cost-sensitive RealBoost is presented in Algorithm 2. This

is fully compatible with RealBoost, reducing to it when

C1 ¼ C2 ¼ 1, and has identical computational complexity.

Algorithm 2. Cost-sensitive RealBoost

Input: Training set D ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg, where y 2
f1;�1g is the class label of example x, costs C1; C2, and

number M of weak learners in the final decision rule.

Initialization: Select uniformly distributed weights for each

class

wi ¼
1

2jIþj
; 8i 2 Iþ; wi ¼

1

2jI�j
; 8i 2 I�.

for m ¼ f1; . . . ;Mg do

for k ¼ f1; . . . ; Kg do

compute the gradient step G�kðxÞ with (46).

end for

select the optimal direction according to (44) and set the

weak learner Greal
m ðxÞ according to (43).

update weights wi according to (45).
end for

Output: decision rule hðxÞ ¼ sgn ½
PM

m¼1 G
real
m ðxÞ�.

4.4 Cost-Sensitive LogitBoost

Finally, we consider LogitBoost.

Result 5 (Cost-sensitive LogitBoost). Consider the minimiza-

tion, by Newton’s method, of the empirical estimate of the

expected binomial loss of (33), based on a training sample

fðxi; yiÞgni¼1, on the space Sr of predictors of the form of (13)

with real-valued weak learners GmðxÞ. Given a dictionary of

features f�1ðxÞ; . . . ; �KðxÞg and a predictor f̂ ðmÞðxÞ, the

Newton step at iteration m has the form

Glogit
m ðxÞ ¼ 1

2�
G�k� ðxÞ; ð47Þ

where G�ðxÞ ¼ a��ðxÞ þ b� is the result of the weighted

regression

ða�; b�Þ ¼ arg min
a�;b�

X
i

w
ðmÞ
i ðzi � a��ðxiÞ � b�Þ

2 ð48Þ

with

zi ¼
y0i � pðmÞc ðxiÞ

p
ðmÞ
c ðxiÞð1� pðmÞc ðxiÞÞ

; ð49Þ

w
ðmÞ
i ¼ pðmÞðxiÞð1� pðmÞðxiÞÞ; ð50Þ

where pðmÞc ðxÞ is the link function of (34), and pðmÞðxÞ that of

(16), with fðxÞ ¼ f̂ ðmÞðxÞ. The optimal feature is determined by

k� ¼ arg min
k

X
i

w
ðmÞ
i ðzi � a�k�kðxiÞ � b�kÞ

2: ð51Þ

Proof. See Appendix D. tu

A summary of cost-sensitive LogitBoost is presented in
Algorithm 3. The algorithm is fully compatible with
LogitBoost in the sense that it reduces to the latter when
C1 ¼ C2 ¼ 1 and has identical computational complexity. It
is instructive to compare it with Platt’s method for posterior
probability calibration [41], [21], [43]. This procedure
attempts to map the prediction fðxÞ 2 ½�1;þ1� to a
posterior probability pðxÞ 2 ½0; 1�, using the link function
of (34). The � and � parameters are determined by gradient
descent with respect to the binomial loss of (33), also used in
cost-sensitive LogitBoost. The difference is that, in Platt’s
method, cost-insensitive boosting is first used to learn the
predictor fðxÞ and maximum likelihood is then used to
determine the parameters � and � that best fit a cross-
validation data set. On the other hand, cost-sensitive
LogitBoost uses the calibrated link function throughout
the boosting iterations. Note that besides requiring an
additional validation set, Platt’s method does not solve the
problem of Fig. 1 since the emphasis of boosting remains on
NðCÞ, not on NðCT Þ. We next show that all proposed cost-
sensitive boosting algorithms solve this problem.

Algorithm 3. Cost-sensitive LogitBoost

Input: Training set D ¼ fðx1; y
0
1Þ; . . . ; ðxn; y0nÞg, where y0 2

f0; 1g is the class label of example x, costs C1, C2, � ¼ C1þC2

2 ,

� ¼ 1
2 log C2

C1
, Iþ the set of examples with label 1, I� the set of

examples with label 0, and number M of weak learners in

the final decision rule.

Initialization: Set uniformly distributed probabilities

pð1Þc ðxiÞ ¼ pð1ÞðxiÞ ¼ 1
2 8xi and f̂ ð1ÞðxÞ ¼ 0.

for m ¼ f1; . . . ;Mg do

compute the working responses z
ðmÞ
i as in (49) and

weights w
ðmÞ
i as in (50).

for k ¼ f1; . . . ; Kg do

compute the solution to the least squares problem

of (48),

a�k ¼
h1iw � h�kðxiÞziiw � h�kðxiÞiw � hziiw
h1iw � h�2

kðxiÞiw � h�kðxiÞi
2
w

ð52Þ

b�k ¼
h�kðxiÞ2iw � hziiw � h�kðxiÞiw � h�kðxiÞziiw

h1iw � h�2
kðxiÞiw � h�kðxiÞi

2
w

ð53Þ

where we have defined

hqðxiÞiw ¼
: P

i w
ðmÞ
i qðxiÞ.

end for

select the optimal direction according to (51) and set the

weak learner Glogit
m ðxÞ according to (47).

set f̂ ðmþ1ÞðxÞ ¼ f̂ ðmÞðxÞ þGlogit
m ðxÞ.

end for

Output: decision rule hðxÞ ¼ sgn ½
PM

m¼1 G
logit
m ðxÞ�.

4.5 Cost-Sensitive Weights

We have mentioned above that cost-sensitive boosting
algorithms should

. converge asymptotically to the optimal predictor of
(3) and

. emphasize a neighborhood of the cost-sensitive
boundary NðCT Þ when learning from finite samples.

300 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

The first condition is guaranteed by the losses of (32) and
(33). To investigate the second, we consider the weight
mechanisms of the three algorithms. Let f̂ ðmÞ be the boosted
predictor after m iterations. For both cost-sensitive Ada and
RealBoost, a simple recursion shows that, for correctly
classified points,

w
ðmÞ
i

w
ð0Þ
i

¼ e�yiQif̂
ðmÞðxiÞ ¼ e�Qijf̂ ðmÞðxiÞj;

where Qi ¼ C1 if i 2 Iþ and Qi ¼ C2 otherwise. For

LogitBoost, the weight w
ðmÞ
i is a symmetric function of

pðmÞðxiÞ, with maximum at pðmÞðxiÞ ¼ 1=2 or, from (16), at

f̂ ðmÞðxiÞ ¼ 0. As in the cost-insensitive case,

w
ðmÞ
i ðxÞ ¼

�
ef̂
ðmÞðxiÞ þ e�f̂ ðmÞðxiÞ

��2 � e�2jf̂ðmÞðxiÞj:

These equations are qualitatively identical to (29) and (30).

The only difference is that, as f̂ ðmÞðxÞ converges to (35), its

zero level set is the cost-sensitive boundary CT . Hence,

points along CT have unitary importance, while the

importance of the remaining points decreases exponentially

with their distance to CT . This implies that all cost-sensitive

boosting algorithms shift the boosting emphasis from NðCÞ
to a soft neighborhood of the cost-sensitive boundaryNðCT Þ.

5 EXPERIMENTAL EVALUATION

To evaluate the proposed algorithms, we started with a
synthetic problem of known BDR, which allows explicit
comparison to the optimal cost-sensitive detector. Compar-
isons against previous methods were then performed with
data from the UCI repository and a large face detection data
set. Finally, we compared cost-sensitive boosting and a
number of state-of-the-art solutions to the computer vision
problem of car detection. Unless otherwise noted, all
boosting algorithms used decision stumps as weak learners,
and all parameters were selected by cross validation. The
data were divided into train and test sets, and the training
set split into five folds, four of which were used for training
and one for validation. The latter served to tune parameters
(cost parameters and classifier threshold) so as to minimize
a classification cost. For car detection, this was the equal

error rate (EER), the quantity usually reported for the data
set adopted (UIUC). Elsewhere, it was the number of false
positives at a given detection rate. In this case, cross
validation was repeated for detection rates between 80 and
95 percent, with increments of 2.5 percent. Cross validation
was applied to all parameters of all methods. For example,
support vector machines (SVMs) required validation of
kernel bandwidth, margin/outliers trade-off parameter,
and threshold.

5.1 Synthetic Data Sets

We start with a synthetic binary scalar problem involving
Gaussian classes of equal variance �2 ¼ 1 and means 	� ¼
�1 (y ¼ �1) and 	þ ¼ 1 (y ¼ 1). Ten thousand examples
were sampled per class, simulating the scenario where the
class probabilities are uniform.

To test the accuracy of the cost-sensitive detectors, we
relied on the following observations: First, given a cost
structure ðC1; C2Þ, a necessary condition for the optimality
of the boosted detector is that the asymmetric logistic
transform of (35) holds along the cost-sensitive boundary,
i.e., x� ¼ f�1ð0Þ, where fðxÞ is the optimal predictor of (35)
and x� the zero-crossing of the boosted predictor. Second,
from (35), this is equivalent to

PY jXð1 j x�Þ ¼
C2

C1 þ C2
: ð54Þ

It follows that, given C1, C2 and x�, it is possible to infer the
true class posterior probabilities at x�. This is equally valid
for multivariate problems where x� becomes a level set.
Hence, if the boosting algorithm produces truly optimal
cost-sensitive detectors, the plots of C2

C1þC2
and PY jXð1jx�Þ, as

functions of x�, should be identical. For the Gaussian
problem considered,

PY jXð1 j xÞ ¼
1

1þ e�2x
; ð55Þ

and (54) implies that x� ¼ �T=2, with T as in (7). It is thus

possible to evaluate the accuracy of the cost-sensitive

detectors, for the entire range of ðC1; C2Þ, by either

measuring the similarity between the plots ðx�; C2

C1þC2
Þ and

ðx�; 1
1þe�2x� Þ or the plots ðx�;� T

2Þ and ðx�; x�Þ. These are

shown in Fig. 2 for detectors learned with five iterations of

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 301

Fig. 2. (a) True posterior class probability PY jXðy ¼ 1jxÞ as a function of x, and estimates by cost-sensitive Ada, Logit, and RealBoost. (b) Comparison
of the plots ðx�;� T

2Þ and ðx�; x�Þ.

cost-sensitive Ada, Real, and LogitBoost. In all cases, C2 ¼ 1

and C1 was varied over a range of values. Both Real and

LogitBoost produce near-optimal cost-sensitive detectors,

but the restriction of the predictor to a combination of

binary functions creates difficulties for AdaBoost.

5.2 Real Data Sets

To evaluate performance on real data, various algorithms
were compared on data sets from the UCI repository [27]
and the face detection problem [28].

5.2.1 UCI

Ten data sets were selected—Pima-diabetes, breast cancer

diagnostic, breast cancer prognostic, original Wisconsin
breast cancer, liver disorder, sonar, echocardiogram, Cleve-
land heart disease, tic-tac-toe, and Haberman’s survival. In
all cases, data points with missing values were ignored. The
multiclass Cleveland heart disease data were converted to
the problem of detecting presence (classes 1, 2, 3, 4) versus
absence (value 0) of disease. We compared the performance
of the proposed cost-sensitive boosting algorithms (CS-Ada,
CS-Real, and CS-Log), their previously available counter-
parts2 (CSB0, CSB1, CSB2, AdaC2, AdaC3, and AdaCost),
and the combination of standard AdaBoost, RealBoost, or
LogitBoost with Platt calibration [41]. For completeness, we
have also tested SVMs with linear and Gaussian kernels,
and Platt calibration. In all cases, one point was first
removed from the data set and reserved for testing. The
classifier was trained on the remaining data so as to meet a
target detection rate (all parameters cross-validated), and

used to classify this test point. The process was iterated,

each point taking a turn as the test set and the total number

of classification errors were recorded.
Table 1 presents the average number of errors for each

classifier and data set across the five detection rates
considered. To simplify the comparison, the table includes
two overall statistics. The first is the number of data sets in
which each cost-sensitive boosting algorithm achieved
lower error than all prior cost-sensitive boosting algorithms.
This is referred to as the number of wins. The second is the
classifier ranking of [44]: The algorithms were first ranked
on each data set (rank one for the lowest error) and the
average rank of each classifier, across data sets, is reported.
The three cost-sensitive boosting algorithms achieve the
three smallest average ranks. From this point of view, only
CSB2, AdaC2, and RealBoost with Platt calibration can be
seen as competitive with CS-Ada, CS-Real, and CS-Logit.
But the worst of the latter has an average rank 15 percent
smaller than the best of the former.

The average ranks, across data sets, for the five detection

rates considered, are presented in Table 2. While the overall

conclusions are the same, note that AdaBoost, RealBoost,

and LogitBoost tend to rank lower (relative to their cost-

sensitive counterparts) as the detection rate increases. This

follows from their cost insensitivity (despite Platt calibration

and threshold tuning). On the other hand, the ranks of CS-

AdaBoost, CS-LogitBoost, and CS-RealBoost improve rela-

tively. For example, while the difference in rank between

AdaBoost and CS-AdaBoost is 7:25� 6:1 ¼ 1:15 at 85 percent

detection rate, it grows to 9:5� 5:2 ¼ 4:3 at 95 percent. This

confirms our previous claim that threshold manipulation

produces inferior results as the distance between cost-

sensitive and insensitive boundaries increases.

302 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

2. Note that as Asymmetric-AdaBoost [3] and CSB2 [25] are identical, we
do not report results for the former.

TABLE 1
Average Number of Errors for Each Classifier and UCI Data Set, across Five Detection Rates

The lowest average error achieved on each data set is shown in boldface. Rank indicates the average ranking of the classifier across data sets, and
#wins is the number of data sets on which a cost-sensitive boosting algorithm achieved lower error than all of the previous boosting methods.

TABLE 2
Average Classifier Rank, across 10 UCI Data Sets, for Five Detection Rates

To investigate the impact of the choice of weak learners in
these conclusions, we performed the same experiments with
decision trees [45] as weak learners. Following [18], we used
four terminal node trees. To enable a comparison to the
results achieved with decision stump methods, we limited
the total number of features to 50. Since each tree contains
three features, this implies 50=3 � 17 weak learners per
classifier. The implementations of CS-AdaBoost and CS-
RealBoost relied on (42) and (44), respectively, as tree splitting
criteria. All other aspects were identical to [18]. CS-Logit was
not considered since it would require the implementation of
regression trees instead of the classification trees that we have
used. Tables 3 and 4 compare the results obtained for the
various cost-sensitive boosting algorithms, data sets, and
detection rates. For completeness, we also implemented a
detector based on Random Forests [46] of 17 four-terminal
node trees and Platt calibration, which did not prove
competitive with the proposed algorithms. There is no
significant qualitative difference between the results of
Tables 1, 2 and 3, 4, suggesting that the proposed cost-
sensitive boosting algorithms have superior performance
independently of the weak learner adopted. In summary,
with either decision stumps or trees, the proposed algorithms
outperform the state of the art in cost-sensitive boosting.

5.2.2 Face Detection

The UCI data sets are sometimes criticized as too small, or
low-dimensional, to allow meaningful conclusions. We
repeated the comparisons above on the real, large-scale,
large-dimensional problem of face detection. This problem
is also becoming an important area of application for cost-
sensitive boosting given the widespread use of boosting for
the design of detector cascades [28]. We emphasize,
however, that the goal here is not to compete with
algorithms for cascade design, but to simply compare
cost-sensitive boosting algorithms. While cost-sensitive
boosting can be used to design cascade nodes, the overall
cascade design requires the solution of additional problems,

such as determining the optimal cascade architecture
(number of nodes and computation per node), whose
solution is beyond the scope of this work. Furthermore,
cascade (or face detector) design frequently involves steps
such as bootstrapping (automated collection of negative
examples) or manual tuning of classifier parameters which
make objective comparisons of algorithms quite difficult.
Our goal is simply to exploit the high dimensionality of the
face detection data (50,000 features) and the availability of a
large data set to compare cost-sensitive boosting algorithms
in a realistic scenario.

These experiments were based on the experimental
protocol of [28]: a face database of 9,832 positive and
9,832 negative examples, and weak learners based on a
combination of decision stumps and Haar wavelet features.
Six thousand examples were used per class for training, and
the remaining 3,832 for testing, and all boosting algorithms
were trained for 100 iterations. Given the computational
complexity of these experiments, we restricted the compar-
ison to CS-Ada and the previously proposed cost-sensitive
boosting algorithms (CSB0, CSB1, CSB2, AdaC2, AdaC3).
All classifier parameters were tuned with the cross-
validation procedure described at the start of this section.
The detection rate and number of false positives of each
method are shown in Table 5 for each of the cross-validation
detection rates. The number above each pair of columns is
the target detection rate (used for cross validation), while
the detection rate and number of false positives measured
on the test set are shown in the columns themselves. Note
that all methods maintain a test detection rate very similar
to the target, CS-Ada achieves the best performance, and
only that of CSB2 is comparable. These results illustrate the
importance of choosing the confidence � optimally, at each
iteration. Methods that ignore � in the weight update rule
(CSB0 and CSB1) have extremely poor performance.
Methods that update � but are not asymptotically optimal
(AdaC2, AdaC3) perform worse than CSB2, which relies on
� updates of AdaBoost.

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 303

TABLE 3
Average Number of Errors for Each Classifier and UCI Data Set, across Five Detection Rates Using Decision Trees

The lowest average error achieved on each data set is shown in boldface. Rank indicates the average ranking of the classifier across data sets, and
#wins is the number of data sets on which a cost-sensitive boosting algorithm achieved lower error than all of the previous boosting methods.

TABLE 4
Average Classifier Rank, across 10 UCI Data Sets, for Five Detection Rates Using Decision Trees

5.3 Car Detection

We finish by investigating how the simple application of the
proposed cost-sensitive boosting algorithms fares against
the state-of-the-art object detection algorithms in computer
vision. For this, we selected the problem of car detection on
the popular UIUC Car data set [29]. This is a data set that
precisely defines all variables of the experimental evalua-
tion, e.g., a rigorous procedure for counting detections and
false positives (which is not the case in [28]), and allows
rigorous comparisons to a large literature. It is also a
challenging data set, in the sense that only 500 positive and
500 negative examples are available for training. Unfortu-
nately, not all of the results in the literature comply with the
original protocol. For example, classifiers are sometimes
trained with much larger data sets, and significant varia-
tions in error rate can be achieved by optimizing the
postprocessing procedure (nonmaximum suppression) to
eliminate the false positives that always occur in the
neighborhood of a correct detection. Hence, even for this
thoroughly standardized data set, assessments of detector
performance based on comparison of published results
have to be taken with caution. We will discuss these
problems in detail below.

We compared CS-Ada to both regular AdaBoost and a
number of methods previously proposed in the literature.
All images were rescaled to 20	 50 pixels, and detection
based on a pool of 162,000 Haar features [28]. CS-Ada was
used to learn 300 feature detectors, with the cross-validation
procedure described at the start of this section. As is
advised for this data set, the resulting detectors were tested
with the neighborhood suppression algorithm proposed in
[29] and performance quantified by the EER. For complete-
ness, we also indicate the maximum F-measure and
corresponding detection and false-positive rates, although
these statistics are not always reported in the literature. The
F-measure is the weighted harmonic mean of precision and
recall, summarizing the trade-off between these two

statistics at each point of the ROC curve. The maximum
F-measure and the reported detection and false positive
rates are those observed at the point where this trade-off is
optimal. We limited the comparison to the single-scale test
set, with the results of Table 6.

The left side of the table presents results of methods that
rigorously follow the experimental setup of [29]. Agarwal
and AdaBoost classify rectangular image patches and can
be seen as template classifiers. However, because they rely
on highly localized features, they can also be seen as either
learning a rough object segmentation (object outline within
the patch) or a representation of the object as a spatial
configuration of features. Both ideas have been explored in
detail in the literature, with classifiers that explicitly segment
the object to detect [51], [48], [55], [49], [56], learn
configurations of its parts [53], [50], or both [48], [49].
Training such representations is manually intensive (e.g.,
requires precisely segmented examples) and the resulting
decision rules have far more computation than those of the
AdaBoost/Haar combination. Yet, at least when the proto-
col of [29] is followed precisely (left half of the table), there
is little evidence that they have benefits. On the contrary,
simply replacing AdaBoost by CS-AdaBoost produces the
best overall performance.

There are a number of ways in which performance can be
improved by relaxing the experimental protocol. One
popular modification is to improve the postprocessing of
the detector output so as to eliminate spatially adjacent
detections (nonmaximum suppression). Methods that use
variations of postprocessing are identified on the right side
of the table with y. These variations can lead to a dramatic
performance increase. For example, Leibe et al. report an
improvement from 91 to 97 percent EER by introducing
their MDL procedure [51]. For the classifiers that we
implemented, the simple extension of the suppression
window from 71 to 140 pixels (similar to [47] that used
111 pixels for their detector) led to an improvement from 90

304 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

TABLE 5
Face Detection Rate and Number of False Positives at various Cross-Validation Detection Rates

TABLE 6
Performance on UIUC Car Data Set, Single-Scale Test Set

The left side of the table presents methods that rigorously follow the experimental setup of [29]. y: Use variations of postprocessing.
: Use extended
training set. N.R: Not reported.

to 92.5 percent for Adaboost and from 93.5 to 95.5 percent
for CS-Adaboost. We have not attempted to optimize the
performance any further in this way. Another popular
performance enhancement strategy is to rely on an
extended training set. Variations range from adopting
completely different sets of positive and negative training
examples [51] to extended sets of positives and negatives
(the data set of [29] plus additional data) [49] to the same set
of positives but an extended set of negatives [54], [52].
Methods that rely on such extensions are identified by
 in
the table. Given the reduced size of the UIUC car data set,
any of these extensions is likely to improve performance
significantly. Unfortunately, they also make it virtually
impossible to compare the underlying classification algo-
rithms in an objective manner.

We emphasize that our claim here is not that the
combination of CS-AdaBoost and Haar features is the
ultimate solution for object detection. In fact, two of the
top performing algorithms in each of the sides of Table 6—
Bar-Hillel [50] and Wu [49]—rely on the combination of
boosting and other image representations (weak learners). It
is likely that they could also benefit from the cost-sensitive
extensions proposed in this work. What our results show is
that 1) for object detection, CS-AdaBoost can lead to
substantial performance improvements over AdaBoost
and 2) the combination of CS-AdaBoost and Haar wavelets
is at least competitive with the state-of-the-art methods in
the literature. This is not insignificant since most of these
competitors involve special purpose features, segmentation,
or other vision operations, which cost-sensitive boosting
does not have access to, and are expensive. On the other
hand, the architecture used with cost-sensitive boosting is
completely generic, e.g., identical to that used by the
authors of [28] for face detection.

6 CONCLUSION

We have presented a novel framework for the design of cost-
sensitive boosting algorithms. The framework is based on
the identification of two necessary conditions for the design
of optimal cost-sensitive learning algorithms: 1) Expected
losses must be minimized by optimal cost-sensitive decision
rules and 2) empirical loss minimization must emphasize
the neighborhood of the target cost-sensitive boundary.
These enable the derivation of cost-sensitive boosting losses,
which (similarly to the original cost-insensitive ones) can be
minimized by gradient descent, in the functional space of
convex combinations of weak learners, to produce boosting
algorithms. The proposed framework was used to derive
cost-sensitive extensions of AdaBoost, RealBoost, and
LogitBoost. Experimental evidence derived from a synthetic
problem, standard data sets, and the computer vision
problems of face and car detection was presented in support
of the cost-sensitive optimality of the new algorithms. The
performance of the latter was also compared to those of
various previous cost-sensitive boosting proposals (CSB0,
CSB1, CSB2, AdaC1, AdaC2, AdaC3, and AdaCost) as well
as the popular combination of large-margin classifiers and
probability calibration. Cost-sensitive boosting was shown
to consistently outperform all other methods tested. In the
future, we plan to investigate the application of the cost-
sensitive boosting algorithms now introduced to the fully
automated design of optimal object detection cascades.

APPENDIX A

PROOF OF LEMMA 2

To find the minimum of the cost-sensitive extension of the
exponential loss of (32), it suffices to search for the function
fðxÞ of minimum expected loss conditioned on x:

leðxÞ ¼ EY jX
	
Iðy ¼ 1Þe�y:C1fðxÞ þIðy ¼ �1Þe�y:C2fðxÞ

�� x

¼ PY jXð1 j xÞe�C1fðxÞ þ PY jXð�1 j xÞeC2fðxÞ:

Setting derivatives to zero,

@leðxÞ
@fðxÞ ¼ �C1PY jXð1 j xÞe�C1fðxÞ þ C2PY jXð�1 j xÞeC2fðxÞ

¼ 0;

ð56Þ

it follows that

C1PY jXð1 j xÞ
C2PY jXð�1 j xÞ ¼ e

ðC1þC2ÞfðxÞ ð57Þ

and

fðxÞ ¼ 1

C1 þ C2
log

PY jXð1 j xÞC1

PY jXð�1 j xÞC2
: ð58Þ

It is straightforward to show that the second derivative is
nonnegative, from which the loss is minimized by fðxÞ.

To find the minimum of the cost-sensitive extension of
the binomial loss of (33), it suffices to search for the function
fðxÞ of minimum expected loss conditioned on x:

lbðxÞ ¼ �EY jX½y0 logðpcðxÞÞ þ ð1� y0Þ logð1� pcðxÞÞ j x�
¼ �PY jXð1 j xÞ logðpcðxÞÞ � PY jXð0 j xÞ logð1� pcðxÞÞ

with pcðxÞ given by (34). For this, we first compute the
minimum with respect to pcðxÞ, which is given by

@lbðxÞ
@pcðxÞ

¼ �PY jXð1 j xÞ
1

pcðxÞ
þ PY jXð0 j xÞ

1

1� pcðxÞ
¼ 0

ð59Þ

or

log
pcðxÞ

1� pcðxÞ
¼ log

PY jXð1 j xÞ
PY jXð0 j xÞ

:

Using (34), this is equivalent to

2ð�fðxÞ þ �Þ ¼ log
PY jXð1 j xÞ
PY jXð0 j xÞ

;

or

fðxÞ ¼ 1

C1 þ C2
log

PY jXð1 j xÞC1

PY jXð0 j xÞC2
:

Since @2lbðxÞ
@pcðxÞ2

� 0 and pcðxÞ is monotonically increasing on

fðxÞ, this is a minimum.

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 305

APPENDIX B

PROOF OF RESULT 3

From (32), the cost function can be written as

J ½f � ¼ EX;Y ½Iðy ¼ 1Þ expð�C1fðxÞÞ
þ Iðy ¼ �1Þ expðC2fðxÞÞ�

and the addition of the weak learner GðxÞ ¼ �gðxÞ to the
predictor fðxÞ results in

J ½f þ �g� ¼ EX;Y ½Iðy ¼ 1Þwðx; 1Þ expð�C1�gðxÞÞ
þ Iðy ¼ �1Þwðx;�1Þ expðC2�gðxÞÞ�

with

wðx; 1Þ ¼ expð�C1fðxÞÞ; wðx;�1Þ ¼ expðC2fðxÞÞ:

Since J ½f þ �g� is minimized if and only if the argument of
the expectation is minimized for all x, the direction of the
largest descent and optimal step size are the solution of

ð�m; gmðxÞÞ ¼ arg min
�;gðxÞ

EY jX
	
Iðy ¼ 1Þwðx; 1Þe�C1�gðxÞ

þ Iðy ¼ �1Þwðx;�1ÞeC2�gðxÞ j x

:

Noting that

EY jX
	
Iðy ¼ 1Þwðx; 1Þe�C1�gðxÞ

þ Iðy ¼ �1Þwðx;�1ÞeC2�gðxÞ
��x

¼ EY jX
	
Iðy ¼ 1ÞIðgðxÞ ¼ 1Þwðx; 1Þe�C1�

þ Iðy ¼ 1ÞIðgðxÞ ¼ �1Þwðx; 1ÞeC1�

þ Iðy ¼ �1ÞIðgðxÞ ¼ 1Þwðx;�1ÞeC2�

þ Iðy ¼ �1ÞIðgðxÞ ¼ �1Þwðx;�1Þe�C2�
��x

¼ EY jX
	
Iðy ¼ 1ÞIðgðxÞ ¼ �1Þwðx; 1ÞðeC1� � e�C1�Þ

þ Iðy ¼ 1Þwðx; 1Þe�C1�

þ Iðy ¼ �1ÞIðgðxÞ ¼ 1Þwðx;�1ÞðeC2� � e�C2�Þ
þ Iðy ¼ �1Þwðx;�1Þe�C2�

��x

¼ PY jXð1jxÞwðx; 1ÞIðgðxÞ ¼ �1ÞðeC1� � e�C1�Þ
þ PY jXð1jxÞwðx; 1Þe�C1�

þ PY jXð�1jxÞwðx;�1ÞIðgðxÞ ¼ 1ÞðeC2� � e�C2�Þ
þ PY jXð�1jxÞwðx;�1Þe�C2�;

it follows that

ð�m; gmðxÞÞ
¼ arg min

�;gðxÞ

�
P
ðwÞ
Y jXð1 j xÞIðgðxÞ ¼ �1Þ

�
eC1� � e�C1�

�
þ P ðwÞY jXð1 j xÞe

�C1�

þ P ðwÞY jXð�1 j xÞIðgðxÞ ¼ 1Þ
�
eC2� � e�C2�

�
þ P ðwÞY jXð�1 j xÞe�C2�

�
;

where

P
ðwÞ
Y jXðy j xÞ ¼

PY jXðy j xÞwðx; yÞP
y2f1;�1g PY jXðy j xÞwðx; yÞ

are the posterior estimates associated with a sample
reweighed according to wðx; yÞ. Hence, the weak learner
of minimum cost is

ð�m; gmÞ

¼ arg min
�;g

EX

�
P
ðwÞ
Y jXð1 j xÞIðgðxÞ ¼ �1Þ

�
eC1� � e�C1�

�
þ P ðwÞY jXð1 j xÞe

�C1�

þ P ðwÞY jXð�1 j xÞIðgðxÞ ¼ 1Þ
�
eC2� � e�C2�

�
þ P ðwÞY jXð�1 j xÞe�C2�

�
;

and, replacing expectations by sample averages,

ð�m; gmÞ ¼ arg min
�;g

	�
eC1� � e�C1�

�
� bþ e�C1� � T þ

þ
�
eC2� � e�C2�

�
� dþ e�C2� � T �

;

with the empirical estimates T þ, T �, b, and d of (40) and
(41). Given gðxÞ, and setting the derivative with respect to �
to zero,

@

@�
¼ C1

�
eC1� þ e�C1�

�
� b� C1e

�C1� � T þ

þ C2

�
eC2� þ e�C2�

�
� d� C2e

�C2� � T � ¼ 0;

the optimal step size � is the solution of

2C1 � b � coshðC1�Þ þ 2C2 � d � coshðC2�Þ
¼ C1 � T þ � e�C1� þ C2 � T � � e�C2�:

APPENDIX C

PROOF OF RESULT 4

From (32), the cost function can be written as

J ½f � ¼ EX;Y ½Iðy ¼ 1Þ expð�C1fðxÞÞ
þ Iðy ¼ �1Þ expðC2fðxÞÞ�

and the addition of the weak learner GðxÞ to the predictor
fðxÞ results in

J ½f þG� ¼ EX;Y ½Iðy ¼ 1Þwðx; 1Þ expð�C1GðxÞÞ
þ Iðy ¼ �1Þwðx;�1Þ expðC2GðxÞÞ�

with

wðx; 1Þ ¼ expð�C1fðxÞÞ ð60Þ

and

wðx;�1Þ ¼ expðC2fðxÞÞ: ð61Þ

Since J½f þG� is minimized if and only if the argument of
the expectation is minimized for all x, and assuming that
the weak learners depend on x only through some feature
�ðxÞ, the optimal weak learner is the solution of

306 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

G�ðxÞ ¼ arg min
G
EY jX½Iðy ¼ 1Þwðx; 1Þ expð�C1GðxÞÞ

þ Iðy ¼ �1Þwðx;�1Þ expðC2GðxÞÞ j x�
¼ arg min

G
PY jXð1 j �ðxÞÞwðx; 1Þ expð�C1GðxÞÞ

þ PY jXð�1 j �ðxÞÞwðx;�1Þ expðC2GðxÞÞ
¼ arg min

G
P
ðwÞ
Y jXð1 j �ðxÞÞ expð�C1GðxÞÞ

þ P ðwÞY jXð�1 j �ðxÞÞ expðC2GðxÞÞ;

where

P
ðwÞ
Y jXðy j �ðxÞÞ ¼

PY jXðy j �ðxÞÞwðx; yÞP
y2f1;�1g PY jXðy j �ðxÞÞwðx; yÞ

are the posterior estimates associated with a sample
reweighed according to wðx; yÞ. Setting the derivatives of
the cost to zero, it follows that

G�ðxÞ ¼
1

C1 þ C2
log

P
ðwÞ
Y jXð1 j �ðxÞÞC1

P
ðwÞ
Y jXð�1 j �ðxÞÞC2

:

The optimal feature �� is one of the smallest minimum costs

�� ¼ arg min
�
J½f þG��

¼ arg min
�
EX;Y ½Iðy ¼ 1Þwðx; 1Þ expð�C1G�ðxÞÞ

þ Iðy ¼ �1Þwðx;�1Þ expðC2G�ðxÞÞ�

¼ arg min
�

X
i2Iþ

wðxi; 1Þ expð�C1G�ðxiÞÞ
"

þ
X
i2I�

wðxi;�1Þ expðC2G�ðxiÞÞ
#
:

Once Greal
m ðxÞ is found, the weights are updated so as to

comply with (60) and (61), i.e.,

wðx; 1Þ wðx; 1Þ expð�C1G�� ðxÞÞ

and

wðx;�1Þ wðx;�1Þ expðC2G�� ðxÞÞ:

APPENDIX D

PROOF OF RESULT 5

Rewriting the negative log-likelihood as

lb
	
y0; f̂ ðmÞðxÞ� ¼ �EX;Y y0 log

pcðxÞ
1� pcðxÞ

þ logð1� pcðxÞÞ

 �

and using (34), it follows that

lb½y0; f̂ ðmÞðxÞ� ¼ �EX;Y

	
2y0
�
�f̂ ðmÞðxÞ þ �

�
� log

	
1þ e2ð�f̂ ðmÞðxÞþ�Þ

:

This loss is minimized by maximizing the conditional
expectation

� lb
	
y0; f̂ ðmÞðxÞ

�� x

¼ EY jX
	
2y0ð�f̂ ðmÞðxÞ þ �Þ � log

	
1þ e2ð�f̂ ðmÞðxÞþ�Þ

¼ 2EY jX½y0 j x�
�
�f̂ðmÞðxÞ þ �

�
� log

	
1þ e2ð�f̂ ðmÞðxÞþ�Þ

for all x, i.e., by searching for the weak learner GðxÞ that
maximizes the cost

J
	
f̂ðmÞðxÞ þGðxÞ

¼ �lb

	
y0; f̂ ðmÞðxÞ þGðxÞ

�� x

:

The maximization is done by Newton’s method, which
requires the computation of the gradient

@J ½f̂ ðmÞðxÞ þGðxÞ�
@GðxÞ

�����
GðxÞ¼0

¼ 2�ðEY jX½y0 j x� � pcðxÞÞ

and Hessian

@2J½f̂ðmÞðxÞ þGðxÞ�
@GðxÞ2

�����
GðxÞ¼0

¼ �4�2pcðxÞð1� pcðxÞÞ;

leading to a Newton update

GðxÞ ¼ 1

2�
EY jX

y0 � pcðxÞ
pcðxÞð1� pcðxÞÞ

 �
:

This is equivalent to solving the least squares problem

min
GðxÞ

EY ;X
1

2�

y0 � pcðxÞ
pcðxÞð1� pcðxÞÞ

�GðxÞ
� �2
" #

;

and the optimal weak learner can therefore be computed
with

G� ¼ min
G

Z
PXðxÞ

X1

y0¼0

PY jXðy0 j xÞ

1

2�

y0 � pcðxÞ
pcðxÞð1� pcðxÞÞ

�GðxÞ
� �2

dx

¼ min
G

Z
PXðxÞ

X1

y0¼0

PY jXðy0 j xÞwðxÞP1
j¼0 PY jXðj j xÞwðxÞ

1

2�

y0 � pcðxÞ
pcðxÞð1� pcðxÞÞ

�GðxÞ
� �2

dx

¼ min
G

Z
PXðxÞ

X1

y0¼0

P
ðwÞ
Y jXðy

0 j xÞ

1

2�

y0 � pcðxÞ
pcðxÞð1� pcðxÞÞ

�GðxÞ
� �2

dx

¼ min
G
E
ðwÞ
Y ;X

1

2�

y0 � pcðxÞ
pcðxÞð1� pcðxÞÞ

�GðxÞ
� �2
" #

;

which is the weighted least squares regression of zi to xi
using weights wi, as given by (49) and (50). The optimal
feature is one of the smallest regression errors.

REFERENCES

[1] S. Viaene, R.A. Derrig, and G. Dedene, “Cost-Sensitive Learning
and Decision Making for Massachusetts Pip Claim Fraud Data,”
Int’l J. Intelligent Systems, vol. 19, pp. 1197-1215, 2004.

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 307

[2] A. Vlahou, J.O. Schorge, B.W. Gregory, and R.L. Coleman,
“Diagnosis of Ovarian Cancer Using Decision Tree Classification
of Mass Spectral Data,” J. Biomedicine and Biotechnology, vol. 2003,
no. 5, pp. 308-314, 2003.

[3] P. Viola and M. Jones, “Fast and Robust Classification Using
Asymmetric Adaboost and a Detector Cascade,” Advances in
Neural Information Processing System, vol. 2, pp. 1311-1318, MIT
Press, 2002.

[4] M. Turk and A. Pentland, “Eigenfaces for Recognition,”
J. Cognitive Neuroscience, vol. 3, pp. 71-86, 1991.

[5] K. Sung and T. Poggio, “Example Based Learning for View-Based
Human Face Detection,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998.

[6] H.A. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based
Face Detection,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, no. 1, pp. 23-38, Jan. 1998.

[7] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio,
“Pedestrian Detection Using Wavelet Templates,” Proc. IEEE Conf.
Pattern Recognition and Computer Vision, 1997.

[8] H. Schneiderman and T. Kanade, “Object Detection Using the
Statistics of Parts,” Int’l J. Computer Vision, vol. 56, no. 3, pp. 151-
177, 2004.

[9] Y. Amit and D. Geman, “Shape Quantization and Recognition
with Randomized Trees,” Neural Computation, vol. 9, pp. 1545-
1588, 1997.

[10] D. Roth, M. Yang, and N. Ahuja, “Learning to Recognize Three-
Dimensional Objects,” Neural Computation, vol. 14, pp. 1071-1103,
2002.

[11] C. Elkan, “The Foundations of Cost-Sensitive Learning,” Proc. 17th
Int’l Joint Conf. Artificial Intelligence, pp. 973-978, 2001.

[12] B. Zadrozny and C. Elkan, “Learning and Making Decisions When
Costs and Probabilities Are Both Unknown,” Proc. Seventh Int’l
Conf. Knowledge Discovery and Data Mining, pp. 203-213, 2001.

[13] P. Domingos, “Metacost: A General Method for Making Classi-
fiers Cost-Sensitive,” Proc. Int’l Conf. Knowledge Discovery and Data
Mining, pp. 155-164, 1999.

[14] A. Wald, “Contributions to the Theory of Statistical Estimation
and Testing Hypotheses,” The Annals of Math. Statistics, vol. 10,
pp. 299-326, 1939.

[15] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. John
Wiley & Sons, Inc., 2001.

[16] Y. Freund and R. Schapire, “A Decision-Theoretic Generalization
of Online Learning and an Application to Boosting,” J. Computer
and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.

[17] L. Breiman, “Arcing Classifiers,” The Annals of Statistics, vol. 26,
no. 3, pp. 801-849, 1998.

[18] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic
Regression: A Statistical View of Boosting,” The Annals of Statistics,
vol. 38, pp. 337-374, 2000.

[19] D. Mease, A.J. Wyner, and A. Buja, “Boosted Classification Trees
and Class Probability/Quantile Estimation,” J. Machine Learning
Research, vol. 8, pp. 409-439, 2007.

[20] D. Mease and A.J. Wyner, “Evidence Contrary to the Statistical
View of Boosting,” J. Machine Learning Research, vol. 9, pp. 131-156,
2008.

[21] A. Niculescu-Mizil and R. Caruana, “Obtaining Calibrated
Probabilities from Boosting,” Proc. 21st Conf. Uncertainty in
Artificial Intelligence, pp. 413-420, 2005.

[22] W. Jiang, “Process Consistency for Adaboost,” The Annals of
Statistics, vol. 32, pp. 13-29, 2004.

[23] R.E. Schapire and Y. Singer, “Improved Boosting Using
Confidence-Rated Predictions,” Machine Learning, vol. 37, no. 3,
pp. 297-336, 1999.

[24] W. Fan, S. Stolfo, J. Zhang, and P. Chan, “Adacost: Misclassifica-
tion Cost-Sensitive Boosting,” Proc. Sixth Int’l Conf. Machine
Learning, pp. 97-105, 1999.

[25] K.M. Ting, “A Comparative Study of Cost-Sensitive Boosting
Algorithms,” Proc. 17th Int’l Conf. Machine Learning, pp. 983-990,
2000.

[26] Y. Sun, A.K.C. Wong, and Y. Wang, “Parameter Inference of Cost-
Sensitive Boosting Algorithms,” Proc. Fourth Int’l Conf. Machine
Learning and Data Mining in Pattern Recognition, pp. 21-30, 2005.

[27] D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI Repository of
Machine Learning Databases,” http://www.ics.uci.edu/
~mlearn/MLRepository.html, 1998.

[28] P.A. Viola and M.J. Jones, “Robust Real-Time Face Detection,”
Int’l J. Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

[29] S. Agarwal, A. Awan, and D. Roth, “Learning to Detect Objects in
Images via a Sparse, Part-Based Representation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475-
1490, Nov. 2004.

[30] J. Neyman and E.S. Pearson, “On the Problem of the Most Efficient
Tests of Statistical Hypotheses,” Philosophical Trans. Royal Soc.
London, vol. 231, pp. 289-337, 1933.

[31] H.L.V. Tree, Detection, Estimation and Modulation Theory. John
Wiley & Sons, Inc., 1968.

[32] D. Green and J. Swets, Signal Detection Theory and Psychophysics.
John Wiley & Sons, Inc., 1966.

[33] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth,
“Generalization Bounds for the Area under the ROC Curve,”
J. Machine Learning Research, vol. 6, pp. 393-425, 2005.

[34] V.N. Vapnik, Statistical Learning Theory. John Wiley & Sons, Inc.,
1998.

[35] R.E. Schapire, “The Strength of Weak Learnability,” Machine
Learning, vol. 5, pp. 197-227, 1990.

[36] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting
Algorithms as Gradient Descent,” Advances in Neural Information
Processing Systems, pp. 512-518, MIT Press, 2000.

[37] J.H. Friedman, “Greedy Function Approximation: A Gradient
Boosting Machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189-
1232, 2001.

[38] R.S. Zemel and T. Pitassi, “A Gradient-Based Boosting Algorithm
for Regression Problems,” Advances in Neural Information Proces-
sing Systems, pp. 696-702, MIT Press, 2000.

[39] Y. Freund and R.E. Schapire, “Experiments with a New Boosting
Algorithm,” Proc. Int’l Conf. Machine Learning, pp. 148-156, 1996.

[40] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer-Verlag, Inc., 2001.

[41] J. Platt, “Probabilistic Outputs for Support Vector Machines and
Comparison to Regularized Likelihood Methods,” Advances in
Large Margin Classifiers, pp. 61-74, MIT Press, 2000.

[42] B. Zadrozny and C. Elkan, “Obtaining Calibrated Probability
Estimates from Decision Trees and Naive Bayesian Classifiers,”
Proc. 18th Int’l Conf. Machine Learning, pp. 609-616, 2001.

[43] H.-T. Lin, C.-J. Lin, and R.C. Weng, “A Note on Platt’s
Probabilistic Outputs for Support Vector Machines,” Machine
Learning, vol. 68, no. 3, pp. 267-276, 2007.

[44] J. Dem�sar, “Statistical Comparisons of Classifiers over Multiple
Data Sets,” J. Machine Learning Research, vol. 7, pp. 1-30, 2006.

[45] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Wadsworth, 1984.

[46] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 2001.

[47] J. Mutch and D.G. Lowe, “Object Class Recognition and
Localization Using Sparse Features with Limited Receptive
Fields,” Int’l J. Computer Vision, vol. 80, no. 1, pp. 45-57, 2008.

[48] J. Shotton, A. Blake, and R. Cipolla, “Contour-Based Learning for
Object Detection,” Proc. IEEE Int’l Conf. Computer Vision, vol. 1,
pp. 503-510, 2005.

[49] B. Wu and R. Nevatia, “Simultaneous Object Detection and
Segmentation by Boosting Local Shape Feature Based Classifier,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8,
2007.

[50] A. Bar-Hillel and D. Weinshall, “Efficient Learning of Relational
Object Class Models,” Int’l J. Computer Vision, vol. 77, nos. 1-3,
pp. 175-198, 2008.

[51] B. Leibe, A. Leonardis, and B. Schiele, “Combined Object
Categorization and Segmentation with an Implicit Shape Model,”
Proc. European Conf. Computer Vision Workshop Statistical Learning
in Computer Vision, pp. 17-32, May 2004.

[52] H. Schneiderman, “Feature-Centric Evaluation for Efficient
Cascaded Object Detection,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2004.

[53] R. Fergus, P. Perona, and A. Zisserman, “Object Class Recognition
by Unsupervised Scale-Invariant Learning,” Proc. IEEE CS Conf.
Computer Vision and Pattern Recognition, vol. 2, p. 264, 2003.

[54] H. Grabner, C. Beleznai, and H. Bischof, “Improving Adaboost
Detection Rate by Wobble and Mean Shift,” Proc. Computer Vision
Winter Workshop, pp. 23-32, 2005.

[55] E. Seemann, B. Leibe, and B. Schiele, “Multi-Aspect Detection of
Articulated Objects,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 1582-1588, 2006.

308 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

[56] J. Winn and J. Shotton, “The Layout Consistent Random Field for
Recognizing and Segmenting Partially Occluded Objects,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pp. 37-44, 2006.

Hamed Masnadi-Shirazi received the BS
degree in electrical engineering from Shiraz
University, Iran, and the University of Texas at
Arlington in 2003. He is currently working
toward the PhD degree in the Statistical Visual
Computing Laboratory in the Department of
Electrical and Computer Engineering at the
University of California, San Diego. He was the
recipient of the US National Science Founda-
tion (NSF) IGERT Fellowship from 2007 to

2009. His research interests include machine learning and computer
vision.

Nuno Vasconcelos received the licenciatura in
electrical engineering and computer science
from the Universidade do Porto, Portugal, in
1988, and the MS and PhD degrees from the
Massachusetts Institute of Technology in 1993
and 2000, respectively. From 2000 to 2002, he
was a member of the Research Staff at the
Compaq Cambridge Research Laboratory,
which in 2002 became the HP Cambridge
Research Laboratory. In 2003, he joined the

Electrical and Computer Engineering Department at the University of
California, San Diego, where he heads the Statistical Visual Computing
Laboratory. He is the recipient of a US National Science Foundation
CAREER Award, a Hellman Fellowship, and has authored more than
50 peer-reviewed publications. His research interests include computer
vision, machine learning, signal processing and compression, and
multimedia systems. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MASNADI-SHIRAZI AND VASCONCELOS: COST-SENSITIVE BOOSTING 309

