
Natural Image Statistics and
Low-Complexity Feature Selection

Manuela Vasconcelos and Nuno Vasconcelos, Senior Member, IEEE

Abstract—Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order
dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized
formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and
sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that
the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature
selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic
methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low
decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling
feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1.
This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two
features, of observing any other feature is constant across image classes.

Index Terms—Feature extraction and construction, low complexity, natural image statistics, information theory, feature discrimination
versus dependence, image databases, object recognition, texture, perceptual reasoning.
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1 INTRODUCTION

NATURAL image statistics have been a subject of sub-
stantial recent research in computer and biological

vision [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14]. For computer vision, good models of image statistics
enable algorithms tuned to the scenes that matter the most.
Tuning to natural statistics can be accomplished through
priors that favor solutions consistent with them [15], [16], [17],
[18] or through optimal solutions derived from probability
models that enforce this consistency [19], [20], [21], [22], [23].
The idea of optimal tuning to natural statistics also has a long
history in biological vision [5], [24], [25], [26], where this
tuning is frequently used to justify neural computations. In
fact, various recent advances in computational modeling of
biological vision have followed from connections between
neural function and properties of natural stimulus statistics
[8], such as sparseness [12], [27], independence [13], [14],
compliance with certain probability models [28], or optimal
statistical estimation [29], [30].

Although natural images are quite diverse, their convolu-
tion with banks of bandpass functions gives rise to frequency
coefficients with remarkably stable statistical properties [1],
[2], [3], [4], [6], [7], [8], [10]. This is illustrated in Fig. 1a, which
presents three images, the histograms of one coefficient
of their wavelet decomposition, and the histograms of that
coefficient conditioned on its parent. The different visual

appearance of the images affects the scale (variance) of the
marginal distribution but not its shape or that of the conditional
distribution, which is a bow-tie for all classes. This canonical
pattern is simply rescaled to match the marginal statistics of
each class. These types of properties have been exploited in
various image processing domains, including compression
[1], [2], [6], [19], denoising [15], [16], [18], [22], retrieval [21],
saliency [31], extraction of intrinsic images [20], separation of
reflections [32], and inpainting [17], [18]. In fact, the study of
image statistics has a complementary relationship with the
development of vision algorithms. Typically, an hypothesis
is advanced for the statistics, an algorithm is derived under
that hypothesis, and applied to natural images. If the
algorithm performs well, the hypothesis is validated.

This indirect validation paradigm is useful in two ways. First,
it avoids the estimation of complex statistical quantities. For
example, hypotheses on high-order statistics are difficult to
verify experimentally due to the well-known difficulties of
estimating such statistics [33]. Instead, it is usually easier to
1) derive an algorithm that is optimal if the hypothesis holds
and 2) apply it to a specific vision problem such as object
recognition [34], where performance can be easily quantified. If
the algorithm performs poorly, there is reason to question
the hypothesis; otherwise, there is concrete evidence in its
support. The second advantage of indirect validation is that it
produces new vision algorithms which, under the hypothesis,
are optimally tuned to the image statistics. If the hypothesis
holds, these algorithms can outperform the state of the art.

In this work, we adopt the indirect validation paradigm to
study the discriminant power of the statistical dependencies of
frequency coefficients extracted from natural images. While
simple inspection of the histograms in Fig. 1a shows that
these dependences exist, their constancy across image
classes suggests the hypothesis that high-order dependences
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contain little information for image discrimination. This hypoth-
esis is supported by what is known about biological vision,
where it has long been argued that the early visual system
dismisses feature dependences in the solution of discrimi-
nant tasks such as visual search [35], [36]. This is illustrated
in Fig. 1b, which presents a classical example of the inability
of preattentive vision to process feature conjunctions. When,
as shown in Fig. 1b.1, an object (colored bar) differs from a
background of distractors (other colored bars) in terms of a
single feature (color), it can be easily discriminated (it pops
out). However if, as shown in Fig. 1b.2, the object differs from
the distractors by a conjunction of two features (color and
orientation, the bar on the third row and third column), there
is no percept of popout. Current explanations attribute this
phenomena to independent feature processing [35], [36],
[37], [38], [39], [40].

For computer vision, where models of feature depen-
dences require the estimation of high-dimensional densities,
such dependences are a dominant source of complexity. A
formal characterization of their role in image discrimination
is therefore a prerequisite for optimal image classification with
reduced complexity. Since optimal classification requires
discriminant features, we study dependences in the context
of feature selection. In the spirit of indirect validation, we
1) develop optimal feature selection algorithms under the
hypothesis that high-order dependences are uninformative
for discrimination and 2) evaluate their image classification
performance.

The contributions of this effort are in three areas. The
first is a rigorous characterization of the role of image
statistics in optimal feature selection with low complexity.
We equate complexity with the dimensionality of the
probability densities to be estimated, and adopt an

information-theoretic definition of optimality widely used
in the literature [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61],
[62], [63], [64], [65]. We then derive, for each level of
complexity, the necessary and sufficient condition (on the
statistics) for optimal feature selection with that complexity.
This condition depends exclusively on a quantity denoted
as the conjunctive interference within the set of features X,
which roughly measures how, on average, the dependence
between two disjoint feature subsets A; B � X is affected
by the remaining features in X. It is shown (see Theorem 1)
that if this conjunctive interference is constant across
classes, the complexity of the optimal solution is deter-
mined by the dimension of the subsets A, B rather than that
of X. Hence, the smaller the set size for which conjunctive
interference is nondiscriminant, the smaller the intrinsic complex-
ity of feature selection.

The second contribution, which follows from the theore-
tical analysis, is a new family of feature selection algorithms.
These algorithms optimize simplified costs at all levels of
complexity and are (locally) optimal when conjunctive
interference is nondiscriminant at their complexity level.
This family generalizes a number of low-complexity in-
formation-theoretic methods [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58],
[59], [60], [61], [62], [63], [64] previously shown to outper-
form many state-of-the-art feature selection techniques [48],
[58]. The impressive empirical performance of the previous
methods is explained by the fact that they approximate the
algorithms now derived. Nevertheless, there is a gain in
replacing the approximations with the optimal algorithms:
experiments on various data sets show that the latter
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Fig. 1. (a) Constancy of natural image statistics. (a.1) Three images. (a.2) Each plot presents the histogram of the same coefficient from a wavelet
decomposition of the image on the left. (a.3) Conditional histogram of the coefficient conditioned on the value of the colocated coefficient of an
immediately coarser scale (its parent). (b) Biological vision frequently disregards feature dependences. (b.1) A Stimulus that differs from it surrounds
by a single feature (color) is salient. (b.2) Differences in feature conjunctions (color and orientation) are not.
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consistently outperform the previous methods, sometimes by a
significant margin.

The final contribution, in the spirit of indirect validation,
is the use of the feature selection algorithms for indirectly
characterizing the image statistics. Given that the different
algorithms are optimal only when conjunctive interference is
nondiscriminant at their complexity level, a comparison of
feature selection performance identifies the complexity
at which conjunctive interference ceases to affect image
discrimination. Algorithms with less than this complexity
are suboptimal, and performance levels off once it is
reached. We present evidence for the hypothesis that this
“leveling off” effect occurs at very low complexity levels.
While simply modeling marginal densities is, in general, not
enough to guarantee optimal feature selection, there appears
to be a little gain in estimating more than the densities of pairs of
coefficients.

This paper is organized as follows: Section 2 reviews
information-theoretic feature selection. Section 3 introduces a
basic decomposition of the information-theoretic cost and
shows that independent feature selection can be optimal,
even for highly dependent feature sets. The decomposition is
refined in Section 4, which formally defines conjunctive
interference, and introduces a measure of the intrinsic
complexity of a feature set (decomposability order). Section 5
introduces the new family of (locally) optimal algorithms and
discusses connections to prior methods. Finally, the experi-
mental protocol for indirect validation of the decomposa-
bility hypothesis is introduced in Section 6, and experimental
results are discussed in Section 7. A very preliminary version
of the work, focusing mostly on the theoretical connections
between conjunctive interference and low complexity feature
selection, has appeared in [64].

2 INFOMAX FEATURE SELECTION

We start by introducing the information-theoretic optimality
criterion adopted in this work and reviewing its previous
uses in the feature selection literature.

2.1 Definitions
A classifier g : X ! L … f1; . . . ; Mg maps a feature vector
x … ðx1; . . . ; xNÞT 2 X � IRN into a class label i 2 L. Fea-
ture vectors result from a transformation T : Z ! X of
observation vectors z … ðz1; . . . ; zDÞ in measurement space
Z � IRD. Observations are samples from random process Z
of probability distribution PZðzÞ on Z, feature vectors
samples from process X of distribution PXðxÞ on X , and
label samples from random variable Y of distribution PY ðiÞ
in L. Given class i, observations have class-conditional
density PZjY ðzjiÞ and class-posterior probabilities deter-
mined by the Bayes rule PY jZðijzÞ … PZjY ðzjiÞPY ðiÞ=PZðzÞ.
The classification problem is uniquely defined by
C … fZ; PZjY ðzjiÞ; PY ðiÞ; i 2 Lg. T induces class-conditional
densities PXjY ðxjiÞ in X and defines a new classification
problem CX … fX ; PXjY ðxjiÞ; PY ðiÞ; i 2 Lg. We define as
optimal the spaces of maximum mutual information (MI)
between features and class labels.

Definition 1. Given a classification problem C and a set S of
range spaces for the feature transforms under consideration,
the infomax space is

X� … arg max
X2S

IðY ; XÞ; ð1Þ

where

IðX; Y Þ …
X

i

Z

X
pX;Y ðx; iÞ log

pX;Y ðx; iÞ
pXðxÞpY ðiÞ

dx ð2Þ

is the MI between X and Y .

Infomax is closely related to the minimization of Bayes
classification error and has a number of relevant properties
for low-complexity feature selection, some of which are
reviewed in Appendix A. In what follows, z is a vector of
image pixels, and x is the result of a bandpass transforma-
tion (e.g., a wavelet, Gabor, or windowed Fourier trans-
form), followed by the selection of N coefficients.

2.2 Previous Infomax Approaches to Feature
Selection

Information-theoretic feature selection has been used for
text categorization [41], [42], [43], [44], creation of semantic
ontologies [45], analysis of genomic microarrays [46], [47],
classification of electroencephalograms (EEGs) [49], [50]
and sonar pulses [53], [54], medical diagnosis [51], audio-
visual speech recognition [56], and visualization [57]. In
computer vision, it has been used for face detection [58],
object recognition [59], [61], and image retrieval [62], [63],
[64]. These approaches can be grouped into four classes.
Algorithms in the first class approximate (2) with

MðX; Y Þ …
XD

k…1
IðXk; Y Þ; ð3Þ

where IðXk; Y Þ is the MI between feature Xk and class label
Y . MðX; Y Þ is a measure of the discriminant information
conveyed by individual features. It is denoted as the
marginal MI (MMI), and its maximization is denoted as
marginal infomax. It is popular in text categorization [41],
[42], [43] mostly due to its computational simplicity. It has,
nevertheless, been shown to sometimes outperform meth-
ods that account for feature dependences [45], [51], [56].

Algorithms in the second class combine a heuristic
extension of marginal infomax, originally proposed in [53],
and the classical greedy strategy of sequential forward
feature selection [66], where one feature is selected at a
time. Denoting by X� … fX�

1 ; . . . ; X�
kg the set of previously

selected features and denoting by X a candidate feature,
the selected feature is

X�
kþ1 … arg max

X
fIðX; Y Þ � fðX; X�Þg; ð4Þ

where fð�Þ is a dependence measure, ranging from a hard
rejection of dependent features [53] to continuous penalties.
The most popular is [47], [48], [51], [52], [54], [55]

fðX; X�Þ … �
Xk

i…1
IðX; X�

i Þ; ð5Þ
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where � controls the strength of the dependence penalty.
Various information-theoretic costs are either special
cases of this [47], [48] or extensions that automatically
determine � [55].

Algorithms in the third class optimize costs closer to (1),
once again through sequential forward search. One propo-
sal is to select the feature X, which maximizes IðX; X�

i ; Y Þ,
i 2 f1; . . . ; kg [57]. This is a low-complexity approximation
to IðX; Y Þ, which only considers pairs of features. Because
it does not rely on a modular decomposition of the MI, it is
somewhat inefficient. An alternative, proposed in [58] and
[60], addresses this problem by relying on

X�
kþ1 … arg max

X
min

i
IðY ; XjX�

i Þ

… arg max
X

min
i

IðX; X�
i ; Y Þ � IðX�

i ; Y Þ
� �

; ð6Þ

where we have used (31). This is equivalent (see (34)) to

X�
kþ1 … arg max

X
fIðX; Y Þ þ min

i
IðX; X�

i jY Þ � IðX; X�
i Þ

� �
g:

ð7Þ

We will show that (4) and (7) are simplifications of (1),
which disregard important components for image discrimi-
nation. Nevertheless, extensive empirical studies have
shown that they can beat state-of-the-art methods [48], [58]
such as boosting [67], [68] and decision trees [69].

The final class has a single member, i.e., the algorithm
in [65]. Unlike the other classes, it sequentially eliminates
features from X. This elimination is based on the concept of a
Markov blanket [70]: if there is a set of features M (called a
Markov blanket) such that X is conditionally independent of
ðX [ Y Þ � M � fXg, given M, the feature X can be removed
from X without any loss of information about Y . While
theoretically sound, this method has a number of practical
shortcomings that are acknowledged by its authors: the
Markov blanket condition is much stronger than what is
really needed (conditional independence of X from Y , given
M), there may not be a full Markov blanket for a feature, and
when there is one, it can be difficult to find. To overcome
these problems, Koller and Sahami [65] use various heur-
istics that only involve feature pairs. The assumptions, with
respect to the feature statistics, underlying these heuristics
are not clear.

3 OPTIMALITY OF MARGINAL INFOMAX

To gain some intuition on the feasibility of low-complexity
feature selection, we start by investigating the conditions
under which marginal infomax is identical to (1).

3.1 Features versus Conjunctions
For this, we note that the MI can be decoupled into
contributions from individual features and feature
conjunctions.

Lemma 1. Let X … ðX1; . . . ; XDÞ be any feature set and let
X1;k … ðX1; . . . ; XkÞ. Then

IðX; Y Þ … MðX; Y Þ þ CðX; Y Þ; ð8Þ

where MðX; Y Þ is the MMI of (3), and

CðX; Y Þ …
XD

k…2
‰IðXk; X1;k�1jY Þ � IðXk; X1;k�1Þ�: ð9Þ

Proof. See Appendix B. tu

The terms IðXk; X1;k�1jY Þ � IðXk; X1;k�1Þ measure how the
MI between features is affected by knowledge of the class
label. They quantify the discriminant information due to
feature dependences. CðX; Y Þ is referred to as the conjunctive
component of the MI (CCMI). A consequence of Lemma 1 is
that if CðX; Y Þ … 0, 8X 2 S, then (1) reduces to the marginal
infomax criterion

X� … arg max
X2S

X

k
IðXk; Y Þ: ð10Þ

Due to the nonnegativity of the MI, (10) has a simple solution:
order the Xk by decreasing IðXk; Y Þ and select the largest N .
While (1) involves combinatorial search and high-dimen-
sional density estimation, (10) only requires a linear search
based on marginal density estimates. Hence, a null CCMI is a
sufficient condition for low-complexity feature selection.

3.2 The Role of Natural Image Statistics
To obtain some intuition on how the CCMI is affected by
the dependency structure of X, we consider the classifica-
tion of two Gaussian features X … ðX1; X2Þ with

PXjY ðxjiÞ …
1

���������������
4�2j�ij

p e�1
2x

T ��1
i x; i 2 f1; 2g;

�i …
�i �i

�i �i

� �
; �1 6… �2:

Gaussianity reduces all class-conditional dependences to
two parameters, namely, the correlation coefficients
�i … �i=

���������i�i
p . It is relatively straightforward to measure

the relative strength

RðX; Y Þ …
CðX; Y Þ
MðX; Y Þ

ð11Þ

of the MI components as a function of these parameters. If
the variances �i and �i are held constant, fixing the marginal
distributions, then RðX; Y Þ is proportional to CðX; Y Þ,
allowing for the study of how the latter depends on the �i.
By repeating the experiment with different �i and �i, it is also
possible to infer how this dependence is affected by the MMI
MðX; Y Þ. The graph of RðX; Y Þ versus �i for fixed MMIs is
the CCMI surface associated with the latter. While natural
image statistics are not Gaussian, this procedure provides
intuition on how the MI is affected by feature dependences.
We consider two common scenarios for pairs of bandpass
coefficients:

. S1. Two features are active/inactive for the same
images (e.g., a wavelet coefficient and its parent). X1
and X2 have equal variance ð�i … �i … �iÞ and are
inactive for one class ð�2 … 1Þ but are active for the
other ð�1 > 1Þ. The CCMI surface is measured for
various activity levels (by controlling �1).
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. S2. Each feature is active for one class but not for the
other; for example, X1 ðX2Þ is horizontally (vertically)
tuned, and class 1 (2) is predominantly composed of
horizontal (vertical) lines. The variances are �1 … �2 …
� and �2 … �1 … 1. The CCMI surface is measured for
various �.

Fig. 2 presents the corresponding CCMI surfaces, suggest-
ing three main conclusions. First, the CCMI can be close to zero,
even when the features are very strongly dependent. Note that all
surfaces are approximately zero along the line �1 … �2 … �,
independent of either � (dependence strength) or the MMI.
Second, the importance of the CCMI in (8) increases with the
diversity of the dependence across classes, i.e., with j�1 � �2j.
Third, this increase is inversely proportional to the MMI. While,
for small MMIs, a significant difference between the �i makes
RðX; Y Þ large, this is not the case for large MMIs. Overall, (8)
(and Fig. 2) shows that 1) the relevance of feature depen-
dences to the solution of (1) increases with their interclass
variability but 2) this variability only boosts the importance of
features that are not discriminant per se.

In summary, CðX; Y Þ … 0 is a sufficient condition for
optimal feature selection with low complexity. It does not
require feature independence but simply that the discriminant
power of feature dependences is small. As shown in Fig. 1a,
this hypothesis is not unreasonable for natural images. We
will evaluate it in Section 7. For now, we consider a series of
extensions that bridge the gap between (1) and (10).

4 DECOMPOSITIONS OF THE CONJUNCTIVE
COMPONENT

If feature conjunctions are discriminant, it is unlikely that
this will hold for all conjunctions. For example, wavelet
coefficients are dependent on their immediate neighbors (in
space, scale, or orientation), but the dependence decays
quickly [71]. Hence, CðX; Y Þ should not require modeling
dependences between all coefficients. We next derive conditions
for the optimality of infomax costs that only account for
dependences within low-dimensional feature subsets.

4.1 Decompositions of the MI
We start by considering the decomposition of IðX; Y Þ for a
given feature set X. We group the D features into a collection
of disjoint subsets of cardinality l:

Cl … fC1; . . . ; CdD=leg; ð12Þ

where1

Ci …
fXði�1Þlþ1; . . . ; Xilg; if i < dD=le;
fXði�1Þlþ1; . . . ; XDg; if i … dD=le;

�
ð13Þ

and dxe … inffm 2 ZZjx � mg, and we derive the conditions
under which the CCMI is totally determined by the
dependencies within each Ci. This is based on the following
decomposition.

Lemma 2. Consider the decomposition of X into a subset
collection Cl, as in (12). Then

CðX; Y Þ …
XD

k…2

Xdk�1=le

i…1
IðXk; ~Ci;kjCi�1

1 ; Y Þ � IðXk; ~Ci;kjCi�1
1 Þ

� �
;

ð14Þ

where Ci are as in (13), ~Ci;k is the subset of features in Ci

whose index is smaller than k, and Ci�1
1 … ðC1; . . . ; Ci�1Þ.

Proof. See Appendix C. tu

This decomposition offers an explanation for why, in the
absence of statistical regularities, low complexity feature
selection is impossible [72]. Note that although Ci�1

1 shares
no elements with fXkg or ~Ci;k, the state of the features of the
former affects the dependences between those in the latter.
Hence, the discriminant information due to the dependences
between Xk and ~Ci;k depends on the state of Ci�1

1 and is impossible
to compute with low complexity. We refer to these indirect
dependence relationships, i.e., that the state of a subset of
features interferes with the dependence between two other
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Fig. 2. RðX; Y Þ as a function of the class-conditional correlations �i for a binary Gaussian problem. The inserts show the one standard deviation
contour of the two Gaussian classes for various values of ð�1; �2Þ. The plots report to (a) scenario S1 and (b) scenario S2. In both cases, different
surfaces report to different values of �, the variable that controls the marginal discrimination. All MIs were evaluated by replacing expectations with
sample means, obtained from a sample of 10,000 points per class.

1. What follows could be extended to subsets Ci of different cardinality,
but this would complicate the notation and is omitted.
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nonoverlapping subsets, as second-order components of depen-
dence. This is opposed to direct dependences between
subsets, which are referred to as first-order components or
dependences within subsets, which we denote as zeroth order.
The conjunctive interference within a feature set is the overall
difference between the first- and second-order dependences
of its subsets.

Definiton 2. Consider the decomposition of X into a subset
collection Cl, as in Lemma 2. The conjunctive interference
within X with respect to Cl is

CIðX; ClÞ …
XD

k…2

Xdk�1=le

i…1
IðXk; ~Ci;kjCi�1

1 Þ � IðXk; ~Ci;kÞ
� �

: ð15Þ

Conjunctive interference is a differential measure of depen-
dence. It measures how, across the feature set, the depen-
dence between two sets of features (e.g., ðXk; ~Ci;kÞ) changes
with the observation of a third nonoverlapping set ðCi�1

1 Þ.
Since, if ðA; BÞ is independent of C, IðA; BjCÞ … IðA; BÞ, it
follows that conjunctive interference within X (with respect
to decomposition Cl) is null when ðXk; ~Ci;kÞ is independent of
Ci�1

1 for all valid i and k. We next show that this is not a
necessary condition for low-complexity evaluation of the MI.
It suffices that the conjunctive interference does not depend
on the class.

Theorem 1. Consider the decomposition of X into Cl, as in (12).
Then,

IðX; Y Þ … MðX; Y Þ þ CCl ðX; Y Þ; ð16Þ

with MðX; Y Þ as in (3), and

CCl ðX; Y Þ …
XD

k…2

Xdk�1=le

i…1
‰IðXk; ~Ci;kjY Þ � IðXk; ~Ci;kÞ�; ð17Þ

if and only if

CIðX; ClÞ …
XD

k…2

Xdk�1=le

i…1
IðXk; ~Ci;kjCi�1

1 ; Y Þ � IðXk; ~Ci;kjY Þ
� �

:

ð18Þ

Proof. See Appendix D. tu

When (18) holds, (16) is equivalent to (8), with CClðX; Y Þ
playing the role of CðX; Y Þ. In particular, (16) replaces each
of the terms

IðXk; X1;k�1jY Þ � IðXk; X1;k�1Þ ð19Þ

of (9) by a sum, over i, of terms of the form

IðXk; ~Ci;kjY Þ � IðXk; ~Ci;kÞ: ð20Þ

While (19) quantifies the discriminant information due to
dependences between Xk and the entire set of Xj, j < k,
(20) restricts this measure to dependences between Xk and
subset ~Ci;k. Hence, (20) requires density estimates of
dimension of at most l þ 1. Since density estimation has
exponential complexity on feature space dimension, the
complexity difference between (16) and (8) can be very
significant if l � D. To illustrate this, we analyze a simple
example.

Example 1. Let D … 6 and l … 2. Then, C1 … fX1; X2g;
C2 … fX3; X4g, C3 … fX5; X6g, and CCl ðX; Y Þ is the sum
of the terms in the third column in Table 1. These terms
measure discriminant information due to dependences
within C1, C2, and C3, (zeroth-order components) and
between X3 and C1, X4 and C1, X5 and C1, X5 and C2,
X6 and C1, and X6 and C2 (first order). Hence, (16)
requires joint density estimates of up to three features.
On the other hand, (8) requires densities of up to six
features and is three orders of magnitude more complex.

4.2 Decompositions for Low-Complexity Feature
Selection

Theorem 1 only holds for the decomposition of X according
to (12) and (13). This is not sufficient for feature selection
algorithms, which usually evaluate the MI of various subsets
of X. For this, the theorem must be expanded to all possible
feature subsets of X. The extension of the necessary and
sufficient condition of (18) to all such subsets is denoted as
l-decomposability.

Definition 3. A feature set X is l-decomposable or is
decomposable at order l if and only if

CIðW; ClÞ …
XjWj

k…2

Xdk�1=le

i…1
IðWk; ~Ci;kjCi�1

1 ; Y Þ � IðWk; ~Ci;kjY Þ
� �

;

8W 2 SðXÞ;
ð21Þ

where Cl and ~Ci;k are built from W, as in (12) and (13), and
SðXÞ is the set of all subsets of X.

Since (18) holds for any feature subset W of an l-decomposable
set X, simple application of Theorem 1 shows that the same is
true for (16).

Corollary 1. Let X be an l-decomposable feature set, W a subset
of X, and Cl be a collection of disjoint subsets Ci of cardinality
l built from W, as in (12) and (13). Then

IðW; Y Þ … MðW; Y Þ þ CCl ðW; Y Þ; ð22Þ

with

MðW; Y Þ …
XjWj

k…1
IðWk; Y Þ; ð23Þ
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CCl ðW; Y Þ …
XjWj

k…2

Xdk�1=le

i…1
IðWk; ~Ci;kjY Þ � IðWk; ~Ci;kÞ

� �
; ð24Þ

where ~Ci;k is the subset of features in Ci whose index is
smaller than k, and Ci�1

1 … ðC1; . . . ; Ci�1Þ.

Hence, for an l-decomposable set, it is equivalent to adopt
(2) or (16) as feature selection cost.

Corollary 2. If X is l-decomposable, then the solution of (1) is
identical to that of

X� … arg max
X2S

� X

k
IðXk; Y Þ

þ
XD

k…2

Xdk�1=le

i…1

�
IðXk; ~Ci;kjY Þ � IðXk; ~Ci;kÞ

��
:

ð25Þ

In summary, the infomax subset of an l-decomposable X can
be computed with density estimates of dimension l þ 1. When
l … D, there is only one possibility for Cl, namely, Cl … fXg,
and (16) is equal to (8). Hence, all feature sets are at least
D-decomposable, and in the worst case, feature selection has
exponential complexity in the cardinality of X. However,
depending on the decomposability order of X, this bound
may be very loose. The intrinsic complexity of feature selection
is determined by the decomposability order l of the feature set and
not its cardinality.

5 LOW-COMPLEXITY INFOMAX FEATURE
SELECTION ALGORITHMS

In this section, we derive a family of infomax feature selection
algorithms based on the theoretical characterization above.

5.1 A New Family of Algorithms
When X is l-decomposable, the infomax space is given by
(25). When l-decomposability does not hold, (25) provides a
low-complexity approximation to the optimal solution. In this
case, l is denoted as the order of the approximation, and we
refer to the true decomposability order as l�. Since all feature
sets are (at least) D-decomposable, the optimal solution can
always be attained if (25) is solved for all values of l. This
suggests 1) developing a family of algorithms parameter-
ized by l, 2) solving the feature selection problem for all l,
and 3) retaining the best solution. Note that, given l, (25) can
be solved by existing feature selection strategies. In our
implementation, we use the popular (greedy) strategy of
sequential forward feature selection [66], which leads2 to
Algorithm 1. The MIs of (26) are computed with histograms.
When b histogram bins are used per feature, the algorithm
can be implemented in O‰Dðbl=lÞN2� time. Since N is usually
small, the complexity is dominated by b and l, increasing
exponentially with the latter.

Algorithm 1 (approximate infomax of order l).
Input: feature set X … fX1; . . . ; XDg, order l, and target
number of features N .
set X� … C1 … fX�

1g, where X�
1 … arg maxXk2X IðXk; Y Þ,

k … 2, and i … 1.
repeat

for Xr 62 X� do
	r …IðXr; Y Þþ

Pdk�1=le
p…1 IðXr; ~Cp;kjY Þ�IðXr; ~Cp;kÞ

� �
;
ð26Þ

end for
let r� … arg maxr 	r.
if k � 1 is not a multiple of l then

let Ci … Ci [ Xr� ,
else

set i … i þ 1, Ci … Xr� .
end if
set X� … [iCi, k … k þ 1,

until k … N
Output: X�.

5.2 Comparison to Other Infomax Methods
The main novelty of Algorithm 1 is the use of (26) as a
sequential feature selection rule. In addition to the theore-
tical motivation above, this rule is interesting in two ways.
First, it has an intuitive interpretation: it favors features of
1) large MIs with the class label, 2) low MIs with previously
selected features, and 3) large MIs with those features given
image class. This enforces three principles that are always at
play in feature selection:

1. Discrimination. Each selected feature must be as
discriminant as possible.

2. Diversity. The selected features must not be redun-
dant.

3. Reinforcement. Unless, this redundancy is itself
discriminant.

Second, it unifies many algorithms previously proposed for
information-theoretic feature selection.

In fact, the first three classes in Section 2 are special cases of
the family now proposed. Methods in the first class, namely,
marginal infomax, only use the first term of (26). Slightly
abusing the notation, we refer to this as the approximate
infomax algorithm of order 0. It enforces the principle of
discrimination but not diversity or reinforcement and does
not guarantee a compact representation: exactly identical
features are selected in consecutive steps, wasting some of
the available dimensions. The second and third classes are
approximations to (26), with l … 1, in which case (26) can be
written as

IðX; Y Þ þ
Xk�1

i…1
I X; X�

i jY
	 


� I X; X�
i

	 
� �
: ð27Þ

Algorithms in the second class, based on (4), simply discard
the terms that account for the discriminant power of feature
dependencies ðIðX; X�

i jY ÞÞ, failing to enforce the principle
of reinforcement. This can be an overkill, since discriminant
dependences can be crucial for fine discrimination between
otherwise similar classes. On the other hand, by relying on
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2. It is worth stressing that the algorithm does not guarantee the best
approximation for any l, since the greedy selection of a feature limits the
feature groupings of subsequent steps. This is a known limitation of
sequential forward selection, e.g., shared by all algorithms in Section 2. It
can sometimes be circumvented with heuristics such as floating search [66],
[73], [74].
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(7), the algorithms in the third class approximate the
summation of (27) by its smallest term.

The excellent empirical performance [48], [58] of algo-
rithms in the second and third classes suggests two
hypotheses. The first is that the infomax approximation of
first order ðl … 1Þ is sufficient for many problems of practical
interest. The second is that, even for this approximation,
many terms of (27) are neglectable. It is, nevertheless,
puzzling that excellent results have been achieved with two
very different approximations: the average MI between
features (the max-relevance min-redundancy (mRMR) meth-
od [48]) and the minimum of the differential MI terms [58].
It is also unclear why these would be the only sensible
simplifications. Given that both the minimum differential
term and the average of the negative terms perform well, why
not consider the smallest among the negative terms, their sum
(as proposed in [47], [48], [51], [52], [54], and [55]), or the
median of the differential terms? Table 2 presents a number of
such alternatives to (27), as well as their empirical perfor-
mance on a set of experiments to be discussed in Section 7.

6 IMAGE STATISTICS AND LOW-DECOMPOSABILITY
ORDER

In this section, we develop an indirect procedure for
validating the hypothesis that bandpass features extracted
from natural images have low decomposability order.

6.1 l-Decomposability and Image Statistics
From Definition 3, X is l-decomposable if the conjunctive
interference (with respect to subsets of cardinality l) within
any of its subsets W � X is nondiscriminant. This can be
illustrated by returning to Example 1, for which the terms of
(15) are the entries in the fourth column in Table 1. Note that
the nontrivially zero entries (identified by boldface k and i)
measure how the dependences in C2 are affected by C1
ðk … 4; i … 2Þ, how the dependences in X5 [ C2 are affected
by C1 ðk … 5; i … 2Þ, how the dependences in X6 [ C2 are
affected by C1 ðk … 6; i … 2Þ, and how the dependences in
C3 are affected by C1 [ C2 ðk … 6; i … 3Þ. CIðX; ClÞ is the

sum of these measures and, for l-decomposability to hold,
must not be affected by knowledge of the class Y .

In addition to this, l-decomposability requires (18) to hold
for any subset W � X. For example, W … ðX1; X3; X5; X6Þ
produces a table similar to Table 1, with a single nontrivially
zero entry IðX6; X5jX1; X3Þ � IðX6; X5Þ. l-decomposability
requires that the interference of ðX1; X3Þ on the dependence
between X5 and X6 be nondiscriminant. Other subsets of
the four features give rise to similar constraints on the
interference between feature pairs. Hence, in this example,
l-decomposability requires all pairwise interferences to be
nondiscriminant.

In general, l-decomposability holds if and only if the
conjunctive interference (with respect to subsets of cardin-
ality l) within any subset W of X is not affected by
knowledge of the class label Y . As in Fig. 2, this does not
mean that conjunctive interference is nonexistent but simply that it
does not change across classes. Overall, the sufficient condition
for l-decomposability is similar to the sufficient condition for
the optimality of marginal infomax. While, in that case,
image statistics must satisfy CðX; Y Þ … 0, i.e., that no
dependences in X are discriminant, in this case, the
constraints only affect second-order subset dependences:
l-decomposability does not impose constraints on subset depen-
dencies of zeroth or first order, nor does it impose that there are no
second-order subset dependences. It only requires these depen-
dences to be such that the conjunctive interference CIðX; ClÞ is
nondiscriminant. This is much less restrictive than what is
required for the optimality of marginal infomax. As in that
case, the consistency of the statistics in Fig. 1a suggests that
for natural images, the hypothesis that l-decomposability
holds for small l is not unreasonable. We next turn to the
problem of determining this value.

6.2 Indirect Validation of the Low-Order
Decomposability Hypothesis

If X is l�-decomposable, the infomax feature set can be found
with (25) by using l … l�. For approximation orders l 6… l�, the
problems of (25) make looser assumptions about feature
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Possible Alternatives to the Cost of (27), Their Relation to the Literature, and Performance

(Average and Standard Deviation of Precision-Recall Area (PRA)) on Experiments in Section 7
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