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A decision-theoretic formulation of visual saliency, first proposed for
top-down processing (object recognition) (Gao & Vasconcelos, 2005a), is
extended to the problem of bottom-up saliency. Under this formulation,
optimality is defined in the minimum probability of error sense, under a
constraint of computational parsimony. The saliency of the visual features
at a given location of the visual field is defined as the power of those
features to discriminate between the stimulus at the location and a null
hypothesis. For bottom-up saliency, this is the set of visual features that
surround the location under consideration. Discrimination is defined in
an information-theoretic sense and the optimal saliency detector derived
for a class of stimuli that complies with known statistical properties of
natural images. It is shown that under the assumption that saliency is
driven by linear filtering, the optimal detector consists of what is usually
referred to as the standard architecture of V1: a cascade of linear filtering,
divisive normalization, rectification, and spatial pooling. The optimal
detector is also shown to replicate the fundamental properties of the
psychophysics of saliency: stimulus pop-out, saliency asymmetries for
stimulus presence versus absence, disregard of feature conjunctions, and
Weber’s law. Finally, it is shown that the optimal saliency architecture can
be applied to the solution of generic inference problems. In particular, for
the class of stimuli studied, it performs the three fundamental operations
of statistical inference: assessment of probabilities, implementation of
Bayes decision rule, and feature selection.

1 Introduction

The deployment of visual attention has long been believed to be driven by
the interaction of two complementary components (James, 1981): a bottom-
up, fast, stimulus-driven mechanism, and a top-down, slower, goal-driven
mechanism. While many bottom-up (Koch & Ullman, 1985; Itti, Koch, &
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Niebur, 1998; Li, 2002; Privitera & Stark, 2000; Malik & Perona, 1990; Kadir
& Brady, 2001; Bruce & Tsotsos, 2006; Lowe, 1999; Sha’ashua & Ullman,
1988; Harris & Stephens, 1988; Heidemann, 2004; Förstner, 1994) and top-
down (Gao & Vasconcelos, 2005a; Schiele & Crowley, 1996; Walker, Cootes,
& Taylor, 1998; Wolfe, 1994; Fergus, Perona, & Zisserman, 2003; Borenstein
& Ullman, 2004; Agarwal & Roth, 2002; Navalpakkam & Itti, 2007) saliency
algorithms have been proposed in the computer and biological vision lit-
erature, there has been much less progress toward the development of a
unified computational theory for the two saliency modes. In fact, little is
known in terms of generic principles that could drive the design of both
bottom-up and top-down saliency.

One hypothesis that we have been pursuing is that saliency is a dis-
criminant process: salient visual attributes are those that best allow visual
systems to decide between different hypotheses regarding the nature of the
visual stimuli. We refer to this principle as that of discriminant saliency
and proposed a top-down discriminant saliency algorithm for visual recog-
nition problems (Gao & Vasconcelos, 2005a). In the recognition context,
salient visual attributes were defined as the features whose response best
distinguishes the visual concept (e.g., object) to recognize from all others
that may be of possible interest (e.g., the set of all other object classes that
compose the recognition problem). The importance of saliency for recog-
nition stems from the fact that it enables learning from highly cluttered
imagery, a task easily accomplished by biological vision, but quite difficult
for classical computer vision algorithms. Discriminant saliency has so far
been successfully applied to the design of object recognition systems, and
the resulting saliency detector performs well in the presence of clutter (Gao
& Vasconcelos, 2005a, 2005b; Hillel, Hertz, & Weinshall, 2005).

The application domain of the discriminant saliency principle is, how-
ever, not restricted to visual recognition or even top-down mechanisms.
While top-down problems have the greatest practical interest for computer
vision and enable a very objective comparison of different saliency detec-
tors (through the measurement of recognition rates), they are less useful in
what concerns determining the biological plausibility of a given saliency
principle. This follows from the fact that much more is known about the
bottom-up component of biological saliency in terms of both the neural cir-
cuits involved and the resulting subject behavior than its top-down coun-
terpart. Saliency has, for example, been thoroughly studied in the visual
search literature, where, while there appears to be little disagreement with
respect to the bottom-up (or preattentive) component of subject behavior,
most theories differ in the explanation of the top-down, or attentive, compo-
nent (Treisman & Gelade, 1980; Treisman & Sato, 1990; Julesz, 1981; Wolfe,
1994; Verghese, 2001; Navalpakkam & Itti, 2007).

Bottom-up saliency is tightly connected to the the ubiquity of center-
surround mechanisms in the early stages of biological vision (Kuffler, 1953;
Enroth-Cugell & Robson, 1966; Hubel & Wiesel, 1965; Allman, Miezin,
& McGuinness, 1985; Julesz, 1986; Cavanaugh, Bair, & Movshon, 2002;
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Knierim & Van Essen, 1992; Nothdurft, 2000). A significant body of psy-
chophysical evidence suggests that an important role of these mechanisms
is to detect stimuli that are distinct from the surrounding background. In
fact, it has long been established that the simplest visual concepts (e.g., bars)
can be highly salient when viewed against a background of similar visual
concepts (e.g., other bars) that differ from them only in terms of low-level
properties such as color or orientation (Treisman & Gelade, 1980; Wolfe,
1998; Wolfe & Horowitz, 2004; Bravo & Nakayama, 1992; Found & Muller,
1995; Muller, Heller, & Ziegler, 1995; Nothdurft, 1993) (see the displays
in Figure 5 for an example). This observation has been widely exploited
for the design of saliency models (e.g., Itti et al., 1998) and is plausible
under a decision-theoretic formulation of bottom-up saliency, where the
background stimulus defines a null hypothesis, and salient visual features
are those that best discriminate a foreground stimulus from that null hy-
pothesis. This has motivated us to study the effectiveness of discriminant
saliency as a driving principle for bottom-up saliency.

In this work, we report four contributions that resulted from this study.
First, we show that the discriminant principle proposed by Gao and
Vasconcelos (2005a) can be equally applied to bottom-up saliency, based
on center-surround mechanisms. In particular, we propose a bottom-up
saliency detector that, like its top-down counterpart (Gao & Vasconcelos,
2005a), is optimal in a decision-theoretic sense. This establishes a unified
computational framework for bottom-up and top-down saliency. The sec-
ond contribution, in the spirit of Attneave, Barlow, and others (Attneave,
1954; Barlow, 1961, 2001), is to show that by exploiting the regularities of the
visual world, it is possible to implement the optimal solution in a computa-
tionally efficient manner. In particular, we show that under a widely used
model of the statistics of natural image features, the generalized gaussian
distribution, the optimal detector can be implemented with extreme com-
putational simplicity. The third contribution is to show that discriminant
saliency, under the constraint of computational parsimony, is biologically
plausible. This is done in two ways. First, with respect to neurophysiology,
it is shown that under the assumption that saliency is driven by linear
filtering, there exists a one-to-one mapping between the optimal detector, in
the decision-theoretic sense, and what is usually referred to as the standard
architecture of V1: a cascade of linear filtering, divisive normalization, a
quadratic nonlinearity, and spatial pooling (Carandini et al., 2005). Second,
with respect to psychophysics, it is shown that the optimal solution,
in the decision-theoretic sense, replicates the fundamental properties of
preattentive saliency in visual search experiments: stimulus pop-out,
saliency asymmetries, disregard of feature conjunctions, and Weber’s law.

The combination of these three contributions provides a holistic func-
tional justification for the standard architecture of V1: that it has the capabil-
ity to optimally detect salient locations in the visual field, when optimality
is defined in a decision-theoretic sense and sensible simplifications are
allowed for the sake of computational parsimony. It is obviously not
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proposed that the whole of V1 is devoted to bottom-up saliency. The fourth
contribution is to show that a minor extension of this architecture is capable
of solving generic inference problems. More precisely, it is shown that un-
der a minor extension of the currently prevalent simple cell model, V1 cells
compute the fundamental operations of statistical inference (assessment
of probabilities, implementation of decision rules, and feature selection)
for visual processes that comply with the statistics of natural images. The
specific computations are determined by the topology of the lateral con-
nections of divisive normalization, and the architecture could, in principle,
implement optimal decisions for many perceptual tasks other than saliency.

The letter is organized as follows. Section 2 introduces the decision-
theoretic formulation of center-surround saliency and derives the optimal
solution under the constraints of computational parsimony and tuning to
natural image feature statistics. The biological plausibility of the optimal
saliency detector is then discussed in section 3 in terms of both neuro-
physiology and psychophysics. Section 4 generalizes the decision-theoretic
interpretation of V1 to the solution of arbitrary inference problems involv-
ing observations that comply with the statistics of natural images. Finally,
section 5 provides some historical context for the work and discusses sev-
eral possibilities for future research. The details of the implementation of
the saliency detector used to produce all saliency results presented are pro-
vided in the appendix.

2 Discriminant Saliency

Discriminant saliency is rooted on a decision-theoretic interpretation of per-
ception. Under this interpretation, perceptual systems evolve with the goal
of producing decisions about the state of the surrounding environment that
are optimal in a decision-theoretic sense (e.g., that have minimum probabil-
ity of error). This goal is complemented by one of computational parsimony:
that the perceptual mechanisms should be as efficient as possible.

2.1 The Discriminant Hypothesis. Compatibility with decision-
theoretic perception is possible if saliency is defined with respect to a null
hypothesis, composed of stimuli that are not salient. Once this null hy-
pothesis is available, the locations of the visual field that can be classified,
with lowest expected probability of error, as not belonging to it are de-
noted salient. Mathematically, this is accomplished by (1) defining a binary
classification problem that opposes the stimulus at the location to the null
hypothesis, (2) finding the visual features that are most discriminating for
this problem, and (3) equating the saliency of the location to the discrimi-
nant power of these features.

This definition has at least two interesting properties. First, it is
applicable to a broad range of saliency problems. For example, different
specifications of the null hypothesis enable its specialization to both
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top-down and bottom-up saliency. Second, the search for discriminant
features is a well-defined and computationally tractable, problem that
has been widely studied in the decision-theory literature. In previous
work (Gao & Vasconcelos, 2005a), we have exploited these properties
to derive an optimal top-down discriminant saliency detector for object
recognition. In that case, the null hypothesis was the set of all objects
other than that to recognize, and the salient features are those that best
discriminate between the object of interest and this null set. In this work,
we consider the problem of bottom-up, or preattentive, saliency.

2.2 Discriminant Bottom-Up Saliency. As was the case for the top-
down pathway, we assume that bottom-up saliency is driven by linear
filtering. The visual stimulus is first linearly decomposed into a set of fea-
ture responses and the saliency of each location inferred from a sample
of these responses. We hypothesize that the goal of the preattentive visual
system is to optimally drive the deployment of attention and that, in the
absence of task-specific objectives, this reduces the saliency of each location
to how distinct it is from the surrounding background. In decision-theoretic
terms, it corresponds to (1) identifying the null hypothesis for the saliency
of a location with the set of feature responses that surround it and (2) defin-
ing bottom-up saliency as optimal discrimination between the responses
at location and surround. Optimality is defined in a minimum probability
of error sense: the most salient locations are those that, based on the ob-
served feature responses, can be discriminated from their surround with
minimum expected probability of error. These are the locations that can be
most confidently declared as different from surround by an ideal observer.1

The discriminant hypothesis can be seen as a rigorous mathematical
formulation for more informal hypotheses that are frequently used in the
literature. These include equating saliency to locations that are most differ-
ent from surround or for which it is easiest to decide that stimuli at location
and surround are different. The latter is, for example, subjacent to the visual
search paradigm widely used in the study of human saliency. Decision the-
ory offers a precise quantification of “easiest,” equating it to “with smallest
expected probability of error.”

Mathematically, discriminant power is measured by introducing two
windows, W0

l and W1
l , at each location l of the visual field. W1

l is an inner

1It is worth noting that this “ideal observer” is similar to the “ideal searcher” of
Najemnik and Geisler (2005), in the sense that both are optimal under Bayes decision
theory and use precise knowledge about the statistics of natural scenes. However, their
tasks are fundamentally different: while the ideal searcher seeks a specific target in the
visual field, which requires top-down guidance and an active search strategy to direct eye
movements, the ideal observer for saliency seeks to identify the locations of the visual
field that can be most confidently declared as different from surround. This is a strictly
bottom-up, stimulus-driven, process that does not require a search strategy.
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window that accounts for a center neighborhood and W0
l an outer annulus

that defines its surround. The responses of a predefined set of d features,
henceforth referred to as feature vectors,2 are measured at all image locations
within the two windows and interpreted as observations drawn from a
random process X(l) = (X1(l), . . . , Xd (l)), of dimension d , conditioned on
the state of a binary class label Y(l) ∈ {0, 1}. The feature vector observed
at location j is denoted by x( j) = (x1( j), . . . , xd ( j)), and feature vectors
are independently drawn from the class-conditional probability densities
PX(l)|Y(l)(x | i). Learning is supervised, in the sense that the assignment of
feature vectors to classes is known: x( j) is drawn from class Y(l) = 1 when
j ∈ W1

l and from class Y(l) = 0 when j ∈ W0
l . For this reason, class Y(l) = 1

is denoted as the center class and class Y(l) = 0 as the surround class.
The saliency at location l is quantified by the discriminant power of the
features for the classification of the observed feature vectors x( j),∀ j ∈ Wl =
W0

l ∪ W1
l , into center and surround. Discriminant power is measured by the

mutual information between features and class label:

Il (X; Y) =
∑

c

∫
pX(l),Y(l)(x, c) log

pX(l),Y(l)(x, c)
pX(l)(x)pY(l)(c)

dx. (2.1)

The overall computation is summarized by Figure 1. The l subscript
emphasizes the fact that the mutual information is defined locally, within
Wl , and saliency detection consists of identifying the locations where equa-
tion 2.1 is maximal. These are the most informative locations with respect
to the discrimination between center and surround. The overall process can
be seen as a discriminant extension of the infomax principle of perceptual
organization (Linsker, 1988) and draws on a long tradition of information-
theoretic formulations for various levels of perception (Attneave, 1954;
Watanabe, 1960; Barlow, 1961). From a purely information-theoretic
perspective, it can also be interpreted as modeling brains as noisy commu-
nication channels, with features X as inputs and decision Y as output and
the optimal neural representation as that which achieves channel capacity.

2.3 Computational Parsimony. The exact maximization of equation 2.1
is usually impractical, since it requires density estimates on a potentially
high-dimensional feature space. The discriminant hypothesis is comple-
mented by one of computational parsimony, which advises the search for

2We adopt the standard notation in machine learning, where a feature is one dimension
of the space where a classification problem is defined, and feature responses or feature vectors
are the observed sample points in that space. For example, the basis function associated
with a Gabor filter is a feature, the convolution of the image with that filter produces a
feature response at each image location, and the vector of responses of a set of features at
a given location is a feature vector. Note that this is different from notation frequently used
in psychophysics, where what we refer to a feature is denoted by dimension and what we
refer to as feature vector is denoted by feature.
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Figure 1: Decision-theoretic saliency. The visual field is projected into feature
maps that account for color, intensity, orientation, scale, and so forth. Center
and surround windows are then analyzed at each location to infer the discrim-
inant power of each feature at that location. Feature saliency is defined as the
power to discriminate between center and surround. Overall saliency is de-
fined as the discriminant power of the entire feature set and (for natural scenes)
can be approximated by the sum of all feature saliencies. (A color version of
this figure is available online at http://www.mitpressjournals.org/doi/suppl/
10.1162/neco.2008.11-06-391.)

approximations that enable efficient computation. This can be achieved by
exploiting a known property of the statistics of bandpass natural image
features (e.g., Gabor or wavelet coefficients): that features in this class
exhibit strongly consistent patterns of dependence across a wide range
of imagery (Buccigrossi & Simoncelli, 1999; Huang & Mumford, 1999;
Srivastava, Lee, Simoncelli, & Zhu, 2003; M. Vasconcelos & Vasconcelos,
in press). These regularities are illustrated by Figure 2, which presents
three images, the histograms of one coefficient of their wavelet decom-
position, and the histograms of that coefficient conditioned on its parent.
Although the drastically different visual appearance of the images affects
the scale (variance) of the marginal distributions, their shape, or that of
the conditional distributions between coefficients, is quite stable. The
observation that these distributions follow a canonical (bow-tie) pattern,
which is simply rescaled to match the marginal statistics of each image,
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Figure 2: Constancy of natural image statistics. (Left) Three images. (Center)
Each plot presents the histogram of the same coefficient from a wavelet decom-
position of the image on the left. (Right) Conditional histogram of the same
coefficient, conditioned on the value of its parent. Note the constancy of the
shape of both the marginal and conditional distributions across image classes.

is remarkably consistent over the set of natural images. This consistency
indicates that even though the fine details of feature dependence may vary
from scene to scene, the coarse structure of such dependencies follows a
universal statistical law that appears to hold for all natural scenes. This
in turn suggests that feature dependencies are not greatly informative
about the image class or, in the particular case of saliency, about whether
observations originate in the center or surround. The following theorem
shows that, when this is the case, equation 2.1 can be drastically simplified.

Theorem 1. Let X = {X1, . . . , Xd} be a collection of features and Y the class label.
If

∑d
i=1 [I (Xi ; X1,i−1) − I (Xi ; X1,i−1 | Y)]∑d

i=1 I (Xi ; Y)
= 0, (2.2)



Decision-Theoretic Saliency 247

where X1,i = {X1, . . . , Xi }, then

I (X; Y) =
d∑

i=1

I (Xi ; Y). (2.3)

Proof. From the chain rule of mutual information (Cover & Thomas, 1991),

I (X, Y) =
d∑

i=1

I (Xi ; Y | X1,i−1).

Using the equality

I (X; Y | Z) = EX,Y,Z

[
log

PX,Y|Z(x, y | z)
PX|Z(x | z)PY|Z(y | z)

]

= EX,Y,Z

[
log

PX,Y(x, y)
PX(x)PY(y)

+ log
PX,Y|Z(x, y | z)PY(y)
PX,Y(x, y)PY|Z(y | z)

+ log
PX(x)

PX|Z(x | z)

]

= I (X; Y) + EX,Y,Z

[
log

PX|Y,Z(x | y, z)
PX|Y(x | y)

]
− I (X; Z)

= I (X; Y) + EX,Y,Z

[
log

PX,Z|Y(x, z | y)
PX|Y(x | y)PZ|Y(z | y)

]
− I (X; Z)

= I (X; Y) + I (X; Z | Y) − I (X; Z)

with X = Xi and Z = X1,i−1, leads to

I (X, Y) =
d∑

i=1

I (Xi ; Y) +
d∑

i=1

[I (Xi ; X1,i−1|Y) − I (Xi ; X1,i−1)]

=
(

d∑
i=1

I (Xi ; Y)

) (
1−

∑d
i=1 [I (Xi ; X1,i−1)− I (Xi ; X1,i−1 | Y)]∑d

i=1 I (Xi ; Y)

)
.

The theorem follows.

The left-hand side of equation 2.2 measures the ratio between the
information for discrimination contained in feature dependencies and that
contained in the features themselves. While this ratio is usually nonzero,
it is generally small for bandpass natural image features and smallest
in the locations where the features are most discriminant. Hence, the
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approximation of equation 2.3 is best at the most salient locations, and the
approximate definition of saliency,

S(l) =
d∑

i=1

Il (Xi ; Y), (2.4)

is a sensible compromise between decision-theoretic optimality and
computational parsimony. Note that this approximation does not assume
that the features are independently distributed, but simply that their
dependencies are not informative about the class. The function S(l) is
referred to as the saliency map, and salient locations are identified by
searching for its local maxima.

2.4 Exploiting the Marginal Statistics of Natural Images. The compu-
tation of equation 2.4 requires empirical estimates of the mutual information
Il (Xi ; Y). These in turn require estimates of both the marginal probability
densities of features Xi and their probability densities conditioned on the
class Y. Extensive research on the statistics of natural images has shown
that for bandpass features, all these densities are well approximated by
generalized gaussian distributions (GGD) (Modestino, 1977; Farvardin &
Modestino, 1984; Mallat, 1989; Clarke, 1985; Birney & Fisher, 1995; Do &
Vetterli, 2002), of the form

PX(x;α, β) = β

2α�(1/β)
exp

{
−

( |x|
α

)β }
, (2.5)

where �(z) = ∫ ∞
0 e−ttz−1dt, t > 0, is the gamma function, α a scale parame-

ter, and β a shape parameter. The parameter β controls the rate of decrease
from the peak value and defines a subfamily of the GGD (e.g., the Laplacian
family when β = 1 or the gaussian family when β = 2). As illustrated by
the center column of Figure 2, the hallmark of the GGD when β ≈ 1, an ap-
proximately linearly decreasing tail of the log-probability density function,
is consistently observed for bandpass filter responses to natural images,
independent of the image class itself. In this work, we assume that β is
known, and the density estimation problem consists of estimating α. When
the windows W0

l and W1
l are small, accurate estimates frequently require

some form of regularization, which can be implemented with recourse to
Bayesian procedures. The parameter α is considered a random variable and
a distribution Pα(α) introduced to account for prior beliefs in its config-
urations. Conjugate priors are a convenient choice that produces simple
estimators, which enforce intuitive regularization. It turns out that for the
GGD, it is easier to work with the inverse scale than the scale itself.
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Lemma 1. Let θ = 1
αβ be the inverse scale parameter of the GGD. The conjugate

prior for θ is a gamma distribution,

Pθ (θ ) = Gamma
(

θ, 1 + η

β
, ν

)
= ν1+η/β

�(1 + η/β)
θη/βe−νθ , (2.6)

whose shape and scale are controlled by hyperparameters η and ν, respectively.
Under this prior, the maximum a posteriori (MAP) probability estimate of α, with
respect to a sample D = {x(1), . . . , x(n)} of independent observations drawn from
equation 2.5, is

α̂MAP =
[

1
κ

(
n∑

j=1

|x( j)|β + ν

)]1/β

, (2.7)

with κ = n+η

β
.

Proof. The likelihood of the sample D = {x(1), . . . , x(n)} given θ is

PX|θ (D | θ )=�n
j=1 PX|θ (x( j) | θ )=

(
βθ1/β

2�(1/β)

)n

exp


−θ

n∑
j=1

| x( j) |β

 .

For the gamma prior, application of Bayes rule leads to the posterior

Pθ |X(θ | D) = PX|θ (D | θ )Pθ (θ )∫
θ

PX|θ (D | θ )Pθ (θ )dθ

= 1
Z

θ (n+η)/β exp


−


 n∑

j=1

| x( j) |β + ν


 θ


 ,

where Z is a normalization constant that does not depend on θ . Since this
is a gamma distribution, equation 2.6 is a conjugate prior for θ . Setting the
derivative of log Pθ |X(θ | D) with respect to θ to zero,3 it follows that the
MAP estimate is

θ̂MAP = n + η

β


 n∑

j=1

|x( j)|β + ν




−1

.

3It can also be shown that the second-order derivative is nonnegative and strictly
positive for θ > 0.
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Applying the change of variable from θ to α leads to the MAP estimate of α,

α̂MAP =

 1

κ


 n∑

j=1

|x( j)|β + ν







1/β

.

Note that the MAP estimate α̂MAP is equivalent to the maximum
likelihood estimate of α, which would be obtained from an augmented
sample with η additional observations of value (ν/η)1/β . Given this esti-
mate, for each of the classes, estimates of the posterior class probabilities
PY|X(i | x), i ∈ {0, 1} can be computed as follows:

Lemma 2. For a binary classification problem, with generalized gaussian class-
conditional distributions PX|Y(x|c) of parameters (αc, βc), c ∈ {0, 1}, the posterior
distribution for class c = 0 is

PY|X(0|x) = s
[( |x|

α1

)β1

−
( |x|

α0

)β0

− K
]
, (2.8)

where

K = log a + T, (2.9)

a = α0/α1, (2.10)

T = log(
β1π1�( 1

β0
)

β0π0�( 1
β1

)
), πc = PY(c), c ∈ {0, 1}, are the prior probabilities for the two

classes, and s(x) = (1 + e−x)−1 is a sigmoid.

Proof. Using Bayes rule and equation 2.5,

PY|X(0 | x) = PX|Y(x | 0)PY(0)
PX|Y(x | 0)PY(0) + PX|Y(x | 1)PY(1)

= 1

1 + PX|Y(x|1)PY(1)
PX|Y(x|0)PY(0)

= 1

1 + β1π1α0�

(
1

β0

)
β0π0α1�

(
1

β1

) exp
{

−
(

|x|
α1

)β1}
exp

{
−
(

|x|
α0

)β0}
= 1

1 + exp
(( |x|

α0

)β0 − ( |x|
α1

)β1 + K
) , (2.11)



Decision-Theoretic Saliency 251

where K = log a + T , a = α0/α1, T = log(
β1π1�( 1

β0
)

β0π0�( 1
β1

)
). The lemma follows

from the definition of the sigmoid, s(x) = (1 + e−x)−1.

The combination of these two lemmas and some information-theoretic
manipulation leads to the desired empirical estimate of the mutual infor-
mation of equation 2.4:

Theorem 2. For the binary classification problem with generalized gaussian class-
conditional distributions PX|Y(x|c) of parameters (αc, βc), c ∈ {0, 1}, where βc is
known and αc estimated, according to equation 2.7, from the center (c = 1) and
surround (c = 0) windows Wc

l centered at l,

Il (X; Y) = H(Y) + 1
|Wl |

∑
j∈Wl

φ{g[x( j)]}, (2.12)

with H(Y) = −∑1
c=0 PY(c)logPY(c) the entropy of the class label, and Wl =

W0
l ∪ W1

l ,

φ(x) = s(x) log s(x) + s(−x) log s(−x), (2.13)

s(x) = (1 + e−x)−1 a sigmoid, and

g[x( j)] = ψ[x( j);�0] − ψ[x( j);�1] + Kl , (2.14)

where

ψ[x( j);�c] = |x( j)|βc

ξc
, (2.15)

ξc = 1
κc

(
νc +

∑
k∈Wc

l

|x(k)|βc

)
, (2.16)

�c = (κc, νc)T is the vector of prior hyperparameters of class c, as defined in
lemma 1, and Kl is given by equation 2.9.

Proof. We start by using some well-known results from information the-
ory (Cover & Thomas, 1991) to rewrite

I (X; Y) = H(Y) − H(Y | X)

= EX
[
H(Y) + EY|X

[
log PY|X(c | x)

]]
= EX

[
H(Y) +

1∑
c=0

PY|X(c | x) log PY|X(c | x)

]
, (2.17)
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where H(Y) = −∑1
c=0 PY(c) log PY(c) is the entropy of Y and H(Y|X) =

−EX,Y
[
log PY|X(c|x)

]
the conditional entropy of Y given X. Given a loca-

tion l, the corresponding center W1
l and surround W0

l windows, and the set
of associated feature responses x( j), j ∈ Wl = W0

l ∪ W1
l , equation 2.17 can

be estimated by replacing expectations with sample means,

Il (X; Y)= 1
|Wl |

∑
j∈Wl

[
H(Y)+

1∑
c=0

PY|X(c |x( j)) log PY|X(c |x( j))

]
, (2.18)

where the outer summation pools all locations in the center and surround
windows. Combining with equation 2.8 and using MAP estimates for α0

and α1 in equation 2.7 leads, after some algebra, to equations 2.12 to 2.16.

3 Plausibility of Discriminant Saliency

For the values of al typical of natural image patches (al ≈ 1), the computa-
tions of theorem 2 can be implemented with the network of Figure 3. In this
section, we show that this is consistent with a number of well-known prop-
erties of the neurophysiology and psychophysics of preattentive vision.

3.1 Neurophysiological Plausibility. Early vision occurs mostly in the
primary visual cortex (V1), where cells are usually classified as simple
and complex (Hubel & Wiesel, 1962; Skottun et al., 1991; Carandini et al.,
2005). Classical studies focused on stimuli incident on the cell’s receptive
field, and simple cells were modeled as cascades of a linear filter and a
rectifying nonlinearity (Movshon, Thompson, & Tolhurst, 1978; Jones &
Palmer, 1987). More recently, it has been noted that important properties
of simple cell behavior, such as gain control, require an additional stage
of divisive normalization of the cell response by that of others (Heeger,
1992; Carandini, Heeger, & Movshon, 1997). Complex cells are frequently
modeled as units that pool squared and half-rectified outputs of linear units
with similar orientation, the energy model proposed by Adelson & Bergen
(1985). We refer to the combination of complex and, divisively normalized,
simple cells as the standard V1 architecture (Carandini et al., 2005).

It follows from theorem 2 that the optimal solution of discriminant
saliency is fully compatible with this architecture. The theorem decom-
poses the computation of saliency, into three basic operations: equation
2.15 divisively normalizes each feature response by the responses of the
feature in the neighborhood Wc

l , equation 2.14 computes the differential
between the responses divisively normalized by the center and surround
neighborhoods, and equation 2.12 pools this differential response across
the window Wl , after application of the nonlinearity of equation 2.13. As
shown in Figure 4, this nonlinearity is very close to a hard-limited version
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Figure 3: Three-layer saliency network. Layer 1: Simple (Gabor) cells. Cell at
location l is rectified and laterally connected to cells in center W1

l and surround
W0

l windows. Lateral connections implement differential divisive normaliza-
tion. Layer 2: Complex cells. Cell at l pools simple cells in Wl after rectification
by φ(x). Complex cells maintain the scale and orientation tuning of the pooled
simple cells but are location invariant. Layer 3: Pools complex cells associated
with each l so as to compute its saliency (see equation 2.4). Suggests organi-
zation of complex cells by feature type in cortical columns. Note that the j
subscript refers to any location within Wl , and the pooling of layer 2 is across
all such locations.

of the quadratic function,

φ̃(x) = 0.07x2 − log(2). (3.1)

This quadratic form conforms to the quadratic nonlinearity advocated by
the energy model of complex cells4 (Adelson & Bergen, 1985).

If the step of equation 2.14 is omitted, these are really just the computa-
tions of the standard V1 architecture. This is probably best understood by
considering the first two layers of the network of Figure 3 and momentarily

4Note that φ(x) is negative simply because we have elected to leave H(Y) as a free
parameter, which is added to the pooling stage of layer 2. The sum H(Y) + φ{g[x( j)]} is
always in the range [0, log(2)], because φ{g[x( j)]} = −H(Y|X( j)). It follows that H(Y) +
φ{g[x( j)]} is well approximated by the hard-limited version of 0.07g2[x( j)]; that is, it is
always nonnegative and compliant with the energy model of complex cells. In Figure 4,
we have assumed that PY(0) = PY(1), which justifies the − log(2) factor in equation 3.1.



254 D. Gao and N. Vasconcelos

0 5 10

0

x

φ(x)

φ(x)

φ̃(x)

Figure 4: Complex cell nonlinearity. φ(x) and its approximation by a quadratic
function φ̃(x).

disregarding the top branch (dashed box), which accounts for the contri-
bution of the surround window W0

l . The first two layers of the remaining
network are exactly the standard V1 architecture: a stage of Gabor simple
cells, divisively normalized by the outputs of their peers, subject to rectifi-
cation by φ(·) and pooled, in a manner akin to the classical energy model
of complex cells. The implementation of the complete network simply re-
quires the replacement of the divisively normalized simple cell by a cell
that is differentially divisively normalized by the outputs of the cells in
the center and surround. The addition of a third layer, which pools across
features, produces the saliency measure of equation 2.4.

3.2 Consistency with Psychophysics. While biological plausibility is
interesting, the ultimate test for a saliency model is whether it can explain
the psychophysics data available in the saliency literature. To address this
question, we start by recalling that there is extensive psychophysical ev-
idence in support of a functional decomposition of vision in two stages:
a preattentive (or bottom-up) stage, totally stimulus driven and very effi-
cient, and an attentive stage that requires (top-down) feedback from higher
cortical areas. While various, sometimes conflicting, theories have been pro-
posed to explain both stages (Treisman & Gelade, 1980; Julesz, 1981; Wolfe,
1994), there is wide agreement on the fundamental properties of bottom-up
processing.

Most can be traced to Treisman’s influential feature integration theory
(FIT) (Treisman & Gelade, 1980) and the study of visual search (Wolfe,
1998), where subjects are asked to detect target objects embedded in dis-
tractor fields. By measuring response time versus display size, it is possible
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to infer which tasks are solved preattentively. Most theories predict that the
visual stimulus is projected into feature maps that encode properties like
color, orientation, or motion (Wolfe, 1998; Wolfe & Horowitz, 2004). Feature
maps are then combined into a master, or saliency (Koch & Ullman, 1985),
map that drives attention, allowing top-down processing to concentrate on
a small region of the visual field. The saliency map is scalar and registers
only the degree of relevance of each location to the search, not which fea-
tures are responsible for it. Hence, only target features that are absent in the
distractors can be found preattentively, in which case the target pops out
(see Figure 5). When target-distractor differences are due to a conjunction
of features, the search cannot be resolved, at least without top-down pro-
cessing (Treisman & Sato, 1990; Wolfe, 1994, 1998). An extensive history of
search experiments has produced a thorough quantitative characterization
of preattentive vision. In particular, Treisman and colleagues documented
the importance of search asymmetries (Treisman & Souther, 1985; Treis-
man & Gormican, 1988): while the presence in the target of a feature absent
from the distractors produces pop-out, the reverse (pop-out due to absence,
in the target, of a distractor feature) does not hold. In fact, Treisman and
Gormican (1988) showed that in addition to presence or absence, there are
asymmetries between weaker and stronger responses, and they presented
evidence for the hypothesis that these asymmetries satisfy Weber’s law.

All these properties are consistent with discriminant saliency. This is
illustrated by Figure 5, which presents the output of an implementation
of the network of Figure 3 (whose details are described in the appendix)
to classical visual search displays. In particular, the figure shows that the
network replicates the human percept of pop-out when target-distractors
differ by a single feature, inability to detect target-distractor differences that
involve feature conjunctions, and asymmetry of response to permutations
of feature presence or absence. In addition to this qualitative evidence, it
is also possible to replicate quantitative predictions from psychophysics,
such as the compliance of asymmetries with Weber’s law. This compliance
follows from the fact that up to pooling and rectification, saliency is de-
termined by g[x( j)], in equation 2.14. For sensible sizes of the center and
surround windows, this function is dominated by ψ[x( j);�0], which, from
equation 2.15, is (up to the regularization by ν0, which simply prevents un-
bounded responses) exactly Treisman’s proposal: the normalization of the
feature response at j by the distractor response from the surround window.
Figure 6 demonstrates Weber’s law for the saliency network of Figure 3 by
replicating the classic experiment conceived by Treisman to demonstrate
the law in the context of visual search (Treisman & Gormican, 1988).

3.3 Implications. We have seen so far that discriminant saliency is bio-
logically plausible and consistent with the psychophysics of saliency. How-
ever, the discussion is also interesting in the sense of providing a unified
justification for a number of disjoint observations from neurophysiology
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Figure 5: Classical visual search displays and associated output of the
network of Figure 3. (a) Left: Example where target differs from distractors
by a single feature (intensity). Right: Saliency map has strong peak at target
location, justifying the percept of pop-out. (b) Left: Example where target
(bar in third row and third column) differs from distractors by a conjunction
of two features (intensity and orientation). Right: Target saliency is small,
justifying the absence of pop-out. (c, d) Examples of pop-out asymmetry.
(c) A target that differs from distractors by the presence of a feature (vertical
bar) is very salient. (d) A target that differs from distractors by absence of
the same feature has much smaller saliency. Note that the contrast of each
saliency map has been adjusted to facilitate its visualization. This implies
that absolute saliency values are not comparable across displays, but only
within each saliency map. (A color version of this figure is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.11-06-391.)
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Figure 6: Performance of the saliency network of Figure 3 on the experiment
devised by Treisman to show that visual search follows Weber’s law (experiment
1a in Treisman & Gormican, 1988). In this experiment subjects were presented
displays, such as the one shown in a, where target and distractors differed
in terms of a single continuous variable: the target length (distractor length
constant within each display). The output of the saliency network, at the target
location, to a collection of displays of this type is shown in b, as a function
of the ratio between the difference in target or distractor lengths (�x) and the
distractor length (x). The dashed line is the least-squares fit of Weber’s law (a
line) to the saliency data.

and psychophysics. In this context, we start by noting that the parallel be-
tween the network of Figure 3 and the standard architecture of V1 provides
an interesting interpretation of V1 itself. It shows that V1 has the capability
to optimally detect salient locations in the visual field, when optimality is
defined in a decision-theoretic sense and certain (sensible) approximations
are allowed for the sake of computational parsimony. The most significant
among these approximations, that of the mutual information by a sum of
marginal mutual information in equation 2.4, results from the assumption
that feature dependencies are not informative for discrimination of natural
image classes. It is interesting that, at least in the context of visual search (see
Figure 5), preattentive vision is equally aggressive at disregarding feature
dependencies (conjunctions).

While this disregard is widely acknowledged in the literature, we are
aware of no previous computational explanation of why the preattentive
visual system would choose to do so. The combined goals of decision-
theoretic optimality and computational parsimony provide such an expla-
nation: to the degree that equation 2.2 holds under natural scene statistics,
restricting parallel search to the analysis of individual features has no loss of
optimality. We have tested the importance of feature dependencies to image
classification and found that accounting for dependencies between feature
pairs can be beneficial, but there appears to be little gain in considering
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larger conjunctions (N. Vasconcelos & Vasconcelos, 2004; M. Vasconcelos
& Vasconcelos, in press). While noticeable, the gains of pair-wise conjunc-
tions over single features are not overwhelming, even for full-blown image
classification. In the case of preattentive vision, by definition subject to
tighter timing constraints, evolution could have simply deemed the gains
of processing conjunctions unworthy of the inherent complexity.

Another interesting connection is between divisive normalization and
saliency asymmetries. These are, in some sense, the central components of
the neurophysiology of V1 and the psychophysics of visual search. Divi-
sive normalization explains a rich set of neural behaviors that cannot be
accommodated by the classic model of linear filtering plus nonlinearity,
search asymmetries are one of the most heavily studied properties of visual
search. Discriminant saliency provides a unified functional justification to
these observations: optimal decision making, which exploits the statisti-
cal structure of natural images to achieve computational efficiency and is
possible with biological hardware.

4 Statistical Inference in V1

So far we have shown that the decision-theoretic formulation of saliency,
when combined with the constraint of computational parsimony, offers a
holistic functional justification for V1. Obviously it is not likely that the
whole of V1 would be uniquely devoted to saliency, let alone bottom-up
saliency. This raises the question of whether the computational architec-
ture discussed so far could be applied to the solution of generic inference
problems. Answering this question, in the most general form, requires the
derivation of a functional justification for the building blocks (cells) that
compose V1. In what follows, we show that such a justification is indeed
possible but requires a minor extension of the current simple cell model.
We show, however, that under this extension, the cells of the standard V1
architecture perform the fundamental operations of statistical inference for
processes that conform to the statistics of natural images. We then discuss
some interesting consequences of this finding and relate it to previous pro-
posals for the organization of perceptual systems.

4.1 Extended Simple Cell Model. In the discussion above, the opti-
mality of the standard V1 architecture for the maximization of equation 2.4
requires al ≈ 1 in equation 2.10. While this approximation is acceptable for
the saliency problem, it is possible to make the statistical interpretation of
the saliency network of Figure 3 exact. In fact, this requires only absorb-
ing the two components of log al into ψ[x( j);�0] and ψ[x( j);�1], that is,
redefining these quantities as

ψ̃[x( j);�c] = |x( j)|βc

ξc
+ log αc . (4.1)
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Figure 7: Extension of the standard simple cell model that makes the proba-
bilistic interpretation of the standard V1 architecture, summarized by Table 1,
exact. (a) The log of the contrast α that (divisively) normalizes the cell response
is added to it. (b) The cell’s curve of response has slope proportional to 1/α and
a shift to the right that is approximately linear in α.

Combining equations 2.5, 2.7, and 2.15, it is straightforward to show
that for generalized gaussian stimuli, equation 4.1 is, up to a normalization
constant, the estimate of

− log PX|Y[x( j) | c] (4.2)

resulting from the MAP estimation of the scale parameter αc . Physiologi-
cally, the implementation of equation 4.1 requires a slight extension of the
current standard simple cell model, which is depicted in Figure 7. This
extension consists of adding the log of the normalizing contrast αc to the
output of the cell, complementing the gain modulation of divisive nor-
malization with a rightward shift of the response curve by αc(log 1/αc)1/βc .
For the (small) values of αc typically found in natural scenes, this shift
is approximately linear in αc . This extension is compatible with existing
cell recording data (Holt & Koch, 1997; Chance, Abbott, & Reyes, 2002;
Doiron, Longtin, Berman, & Maler, 2000), and there is even evidence that
when adaptation is considered, a shift occurs and is indeed proportional to
the normalizing contrast (constant shifts of log contrast for multiplicative
contrast increases) (Ohzawa, Sclar, & Freeman, 1985).

4.2 Fundamental Operations of Statistical Inference. The existence of a
one-to-one mapping between equations 4.1 and 4.2 is significant in the sense
of showing that simple cells can be interpreted as probabilistic inference
units, tailored to the statistics of natural stimuli. In fact, revisiting equation
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Table 1: V1 Cells Implement the Atomic Computations of Statistical Inference
Under the Assumption of GGD Statistics.

Cell type Computation Function Description

Simple ψ̃[x( j); �c ] − log PX|Y[x( j)|c] Negative log likelihood

Simple differential ψ̃[x( j);�0] − ψ̃[x( j); �1] log PX|Y [x( j)|1]
PX|Y [x( j)|0] Log likelihood ratio

Complex H(Y) − 〈
φ{g[x( j)]}〉Wl

I (X; Y) Mutual information

Notes: All operations are based on empirical probability estimates derived from the
regions used for divisive normalization. The computations are exact for the extended
simple cell model of Figure 7.

2.12 after this modification reveals that all components of the standard V1 ar-
chitecture have a statistical interpretation, and this interpretation covers the
three fundamental operations of statistical inference: probability inference,
decision rules, and feature selection. The fundamental operation of statis-
tical learning, parameter estimation, is also performed within the architec-
ture, through the divisive normalization subjacent to all computations.

The statistical role of the different cell types is summarized in Table 1,
which suggests a clear functional distinction between simple and complex
cells. While simple cells assess probabilities, differential simple cells
implement decision rules, and complex cells are feature detectors. Phys-
iologically, this is consistent with most aspects of the existing simple or
complex cell dichotomy (e.g., the lack of location and polarity sensitivity
of complex cells) but suggests a novel refinement of simple cells into two
subclasses: simple cells and differential simple cells. Simple cells conform
to the currently accepted model, which is well known to explain most
aspects of cell response within the classical receptive field (CRF) (Schwartz
& Simoncelli, 2001; Cavanaugh et al., 2002). Differential simple cells
include additional divisive normalization from a region external to the
CRF. They could explain the well-documented observation that many cells
are modulated by stimuli that fall outside this region (Sillito, Grieve, Jones,
Cudeiro, & Davis, 1995; Sengpiel, Sen, & Blakemore, 1997; Levitt & Lund,
1997; Cavanaugh et al., 2002). Note, in particular, that the subtraction
of ψ̃[x( j);�1] from ψ̃[x( j);�0] can be either excitatory or inhibitory,
depending on the stimulus contrasts inside and outside the CRF. The
availability of two independent mechanisms to control the responses from
the two regions appears necessary to explain the recordings from cells that
exhibit this behavior. We intend to investigate this issue in detail in future
research.

Overall, the taxonomy of Table 1 assigns much more credit to simple
cells than simply performing signal processing operations, such as filtering
and gain control. In fact, it suggests that the central operation for learning
within V1 is the divisive normalization that takes place in these cells, either
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in the log-likelihood form of equation 4.1 or the log-likelihood ratio form of
equation 2.14. The coincidence that divisive normalization also solves the
signal processing challenge of gain control is an extremely fortunate one,
arguably too fortunate for evolution to pass on by. At a more generic level,
the taxonomy of Table 1 also makes a compelling argument for the interpre-
tation of brains as Bayesian inference engines, tuned to the statistics of the
natural world. Note, in particular, that the exact shapes of the probability
distributions of Table 1 are determined by the MAP estimates of their pa-
rameters. These estimates are, in turn, defined by the center and surround
regions W0

l and W1
l , specified by the lateral connections of divisive nor-

malization. It follows that all probabilities could be computed with respect
to distributions defined by arbitrary regions of the visual field by simply
relying on alternative topologies for these connections. Furthermore, since
all computations are in the log domain, operations such as Bayes rule or
the chain rule of probability can be implemented through simple pooling.
Hence, in principle, the architecture could implement optimal decisions for
many other perceptual tasks.

5 Discussion

We close by relating our work to previous proposals for the organization of
perceptual systems, comparing with other bottom-up saliency models, and
identifying some open questions for future research.

5.1 Connections to Previous Work. In terms of prior literature, our
work is obviously inspired by Barlow’s hypothesis that neurons are
optimally tuned to the statistics of natural stimuli. However, we depart
from Barlow’s initial suggestion that this optimization aims for coding
efficiency (in the sense of redundancy reduction) (Barlow, 1961), or even
more recent suggestions for sparseness (Olshausen & Field, 1996), or
independence (Bell & Sejnowski, 1997; Schwartz & Simoncelli, 2001).
While these hypotheses explain the Gabor-like decompositions found in
V1 (Olshausen & Field, 1996; Bell & Sejnowski, 1997), and can even be used
to derive probabilistic models for cell processing (Wainwright, Schwartz,
& Simoncelli, 2002; Wainwright & Simoncelli, 2000), they have limited
reach as overall principles for neural organization. For example, although
a constraint like sparseness improves generalization and can be applied to
top-down decision rules, it does not, per se, offer a solution to top-down
problems like object recognition. This is opposite to the goal of decision-
theoretic optimality, which, as shown here and in our previous work (Gao
& Vasconcelos, 2005a), can be equally applied to bottom-up or top-down
processing.

Overall, although redundancy reduction, sparseness, or independence
may be desirable constraints to guarantee generalization, efficient repre-
sentation, or tractable energy consumption, they are unlikely to be the end
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goal of a brain, which is (first and foremost) a decision-making device.
Barlow himself has acknowledged this point, recasting his ideas in terms
of redundancy exploitation rather than reduction. Recently Barlow (2001)
essentially proposed what we are also suggesting: “To determine the best
. . . way for an animal to behave . . . , its brain should decide what hypothe-
ses about the world around the animal hold true at that time. The brain
must therefore derive the probabilities of hypotheses being true from the
evidence provided by its senses, and this is what Bayes’ expression tells
one how to do.” He fell short, however, of showing how this could be
implemented with biologically plausible computations or combined with
his previous proposal of neural tuning to stimulus statistics. The discus-
sion above shows that statistically tuned decision-making optimality could
indeed appear as early as in V1.

5.2 Comparison to Previous Bottom-Up Saliency Models. Many
bottom-up saliency models have been previously proposed in both the
computer and biological vision literatures (Itti et al., 1998; Koch & Ullman,
1985; Li, 2002; Wolfe, 1994; Privitera & Stark, 2000; Malik & Perona, 1990;
Kadir & Brady, 2001; Bruce & Tsotsos, 2006; Sha’ashua & Ullman, 1988;
Harris & Stephens, 1988; Heidemann, 2004). Unlike this work, none of these
models is derived from a generic principle for neural organization. With
a few exceptions (e.g., Harris & Stephens, 1988), it is not clear if they are
optimal in a well-defined sense, whether that optimality is subject to any
type of constraints (e.g., sparseness, computational parsimony), or whether
they have any connection to the statistics of perceptual stimuli. Typically
these models simply propose a collection of image processing operations
that mimic what is known about preattentive vision. This could be based
on either psychophysics or neurophysiology but rarely accounts for both.
As far as we know, only two previous proposals have tried to combine
biological and psychophysical plausibility (Itti et al., 1998; Li, 2002).

The first, and probably most commonly used, computational saliency
model, was proposed by Itti et al. (1998). It is similar to the one derived
in this work in a number of aspects, including the front end (biologically
inspired features, such as “color-double-opponent” channels and Gabor fil-
tering), which we have mostly replicated (see the appendix), and a “center-
surround” definition of saliency. On the other hand, it defines saliency as
simple feature subtraction, as opposed to the explicit optimization for im-
age locations of maximum discriminant power, which we now propose.
Although simple feature differences can replicate some basic aspects of
perceptual saliency, such as pop-out and conjunctive search, they do not ex-
plain some less trivial properties, such as the asymmetries of visual search,
or provide any links to the underlying neural mechanisms of visual percep-
tion (such as divisive normalization). In this sense, the saliency mechanisms
now proposed provide more insights and richer connections to both the psy-
chophysics and neurophysiology literature. On the other hand, Itti’s model
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also implements a biologically plausible mechanism (neural network with
a layer of integrate-and-fire neurons and a winner-take-all “inhibition of re-
turn” stage), for the prediction of eye movements and search time in visual
search experiments. We have so far not considered this problem.

The second was proposed by Li (2002), who argued that the preatten-
tive computational mechanisms of primary visual cortex (V1) produce a
saliency map and implemented a biologically motivated saliency model,
featuring layer 2–3 pyramidal cells, interneurons, and horizontal intracor-
tical connections. This model has been shown to reproduce not only the
known excitatory and inhibitory contextual effects observed in physiolog-
ical studies of V1 cells, but also various human psychophysical behaviors
in visual search, such as basic features versus conjunction search, search
asymmetries, and the effect of background homogeneity on search diffi-
culty. While the model successfully links the psychophysical results to V1
physiology and anatomy, it does not explain the latter. It also does not ac-
count for some widely accepted V1 properties, such as the classical division
into simple and complex cells, or more recent aspects such as divisive nor-
malization. Finally, it does not provide a holistic functional justification for
V1, as is the case for the work presented in this letter.

It is important to emphasize that the discriminant saliency architecture
now derived is not a model but the optimal solution to the saliency problem,
under the hypothesis that bottom-up saliency is the result of optimal deci-
sion making, for center-surround discrimination, exploiting the regularities
of natural image statistics to achieve parsimony. Philosophically, this offers
an explanation as to why V1 is organized as it is rather than just mimicking
it. In practice, it avoids the main difficulty of model building, which is to
determine exact values for all the parameters involved. Typically this dif-
ficulty leads to simplified architectures, which can replicate some, but not
all, of the psychophysics. For this reason, a number of important aspects
of saliency, such as asymmetries, Weber’s law, and other nonlinearities, are
frequently unaccounted for by prior saliency models.

It is also interesting to note that unlike most previous models, the op-
timal architecture relies heavily on divisive normalization. The latter is
shown to be intrinsically connected to MAP parameter estimation and the
computation of the probabilities required by optimal decisions. Without
it, only suboptimal saliency judgements would be possible. Finally, the
optimal solution equates divisive normalization to the adoption of a non-
linear and asymmetric measure of stimulus similarity, the Kullback-Leibler
(KL) divergence, which underlies the mutual information used to quantify
discrimination. This suggests that the KL divergence is the “right” mea-
sure of stimulus similarity, at least for discriminant tasks. Its asymmetry
is responsible for the asymmetry of the saliency judgements exhibited by
the architecture now derived. The latter is a hallmark of the psychophysics
of early vision, which linear approaches (e.g., those based on amplitude
differences) cannot replicate.
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5.3 Future Work. The discussion above suggests a number of possibil-
ities for future work. We have already mentioned that one question that
merits further investigation is the relationship between the differentially
normalized simple cell model of Table 1 and the response of simple cells to
stimulation outside the CRF (Allman et al., 1985; Sillito et al., 1995; Sengpiel
et al., 1997; Levitt & Lund, 1997; Cavanaugh et al., 2002). Another interest-
ing possibility is to investigate in greater detail the role of the scale prior
of equation 2.6. In the absence of any goals, it makes sense to simply adopt
the interpretation of the prior as a regularizer, in which case the conjugate
form of equation 2.6 is an acceptable choice. There is, however, no reason
that the prior could not be controlled by feedback from higher-level cortical
areas. From this point of view, the connection between adaptation and the
shift of the simple cell response by the MAP estimate of the scale, discussed
in section 4.1, could be a consequence of a process of hierarchical Bayesian
inference that integrates top-down priors with bottom-up observations, as
proposed in Lee and Mumford (2003), Lee (2003), and Lee, Yang, Romero,
and Mumford (2002). This could, in turn, provide a coherent justification to
the diversity of responses to stimulation of the CRF that have been reported
in the literature (Sillito et al., 1995; Sengpiel et al., 1997; Levitt & Lund, 1997;
Cavanaugh et al., 2002).

One property of the GGD to which we have so far not devoted much
attention is the shape parameter β. We acknowledge some ambivalence
with respect to the importance of this parameter. On one hand, it defines
the heavy-tailed nature of the statistics of natural image features that justify
the adoption of GGD-type of models. In this sense, it is important that β be
constrained to a range of values that guarantees leptokurtic distributions.
On the other hand, the precise value of β does not appear to be critical as
long as it falls within this range. This is visible in Figures 3 and 7, where β

simple changes the exponent of |x|. In the range of values consistent with
leptokurtic behavior (β in the vicinity of 1), this does not seem to make a
tremendous difference. Our experimentation with different values of this
parameter (see the appendix) has also not produced qualitatively significant
changes in the resulting saliency maps. It would nevertheless be interesting
to investigate how all the equations would change if this parameter were
estimated in a Bayesian manner and whether the result would be of any
neurophysiological or psychophysical significance.

Finally, it would be interesting to extend some of the ideas presented
above to other areas of cortical processing. For example, it is known that
in addition to divisive normalization in V1, gain modulation appears in
a number of more general contexts, including gaze direction, attention,
coordinate transformations, and object recognition (Salinas & Thier, 2000;
Chance et al., 2002). A natural question is whether these contexts are
amenable to decision-theoretic formulation, similar to that performed
above. In the particular context of attention, the ability of this formulation
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to account for both bottom-up and top-down saliency, appears to us as a
definite plus. We intend to investigate this issue in the future.

Appendix: Bottom-Up Discriminant Saliency Detector

All saliency results presented in this work were obtained with a discrimi-
nant saliency detector implemented as follows. The image was first subject
to a feature decomposition that mimics the three major neural pathways
of primary visual cortex. Its implementation follows the work of Itti et al.
(1998) and is based on a five-channel decomposition of the visual stimulus
into an intensity map and four broadly tuned color channels,

I = (r + g + b)/3,

R =�r̃ − (g̃ + b̃)/2�+,

G =�g̃ − (r̃ + b̃)/2�+,

B =�b̃ − (̃r + g̃)/2�+,

Y =�(r̃ + g̃)/2 − |r̃ − g̃|/2�+,

where r̃ = r/I, g̃ = g/I, b̃ = b/I , and �x�+ = max(x, 0). The four color chan-
nels were in turn combined into two color opponent channels, R − G for
red/green and B − Y for blue/yellow opponency. These and the intensity
map were then convolved with three Mexican hat wavelet filters, centered
at spatial frequencies 0.04, 0.08, and 0.16 cycle per pixel, to generate nine
feature channels. All of these channels, plus a Gabor decomposition of the
intensity map, constitute the feature space X . The Gabor decomposition
was implemented with a dictionary of zero-mean Gabor filters at three
spatial scales (centered at frequencies of 0.08, 0.16, and 0.32 cycle per
pixel) and four directions (evenly spread from 0 to π). Its algorithmic
implementation followed the work of Manjunath and Ma (1996).

The saliency map was computed with the three-layer saliency network
of Figure 3, with the shape parameter, β, of the GGD estimated through
the method of moments (Huang & Mumford, 1999). The saliency detection
performance does not depend critically on this parameter; for example,
arbitrarily setting β = 1 produced qualitatively similar results. The choice
of sizes for the center and surround windows was guided by available
evidence from psychophysics and neurophysiology, where it is known
that human percepts of saliency depend on the density and size of the
items in the display (Nothdurft, 2000; Knierim & Van Essen, 1992), and the
strength of neural response is a function of the stimulus that falls in the
center and surround areas of the receptive field of a neuron (Knierim &
Van Essen, 1992; Allman et al., 1985; Cavanaugh et al., 2002; Li & Li, 1994).
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In particular, we mimicked the common practice of making the size of the
display items comparable to that of the CRF (see, e.g., Treisman & Gelade,
1980; Hubel & Wiesel, 1965), by setting the size of the center window to
a value comparable to the size of the display items (e.g., 1/10 of the image
width for all displays shown in Figure 5).

With respect to the surround, it is known that pop-out occurs only when
this area covers enough display items (Nothdurft, 2000), and there is a
limit on the spatial extent of the underlying neural connections (Knierim &
Van Essen, 1992; Allman et al., 1985; Cavanaugh et al., 2002; Li & Li, 1994).
Considering this biological evidence, the surround window was made six
times larger than that of the center at all image locations. Informal exper-
imentation with these parameters has shown that the saliency results are
not significantly affected by them. For example, setting the surround to the
complement of the center window (i.e., the remaining display area) (Bruce
& Tsotsos, 2006) did not produce any qualitatively noticeable changes. A
precise characterization of the impact of center and surround window size
on the saliency output, as well as connections to physiological data, are
subjects that we intend to address in future research.

Finally, to improve their intelligibility, the saliency maps of Figure 5 were
subject to smoothing, contrast enhancement (by squaring), and a normal-
ization that maps the saliency value to the interval [0, 1].
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