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Abstract. The sparsity of point clouds limits deep learning models on
capturing long-range dependencies, which makes features extracted by
the models ambiguous. In point cloud object detection, ambiguous fea-
tures make it hard for detectors to locate object centers (Fig. 1) and
finally lead to bad detection results. In this work, we propose Selective
Point clOud voTing (SPOT) module, a simple effective component that
can be easily trained end-to-end in point cloud object detectors to solve
this problem. Inspired by probabilistic Hough voting, SPOT incorporates
an attention mechanism that helps detectors focus on less ambiguous fea-
tures and preserves their diversity of mapping to multiple object centers.
For evaluating our module, we implement SPOT on advanced baseline
detectors and test on two benchmark datasets of clutter indoor scenes,
ScanNet and SUN RGB-D. Baselines enhanced by our module can stably
improve results in agreement by a large margin and achieve new state-
or-the-art detection, especially under more strict evaluation metric that
adopts larger IoU threshold, implying our module is the key leading to
high-quality object detection in point clouds.

1 Introduction

3D object detection is important for many applications, such as indoor robot nav-
igation, augmented reality, and autonomous driving. While it can be performed
using data from many sensing modalities, there has recently been interest in
point clouds, due to their ability to accurately represent geometric information,
their lightweight nature, and the popularity of LIDAR sensors. It is, however,
challenging to implement object detection on point clouds, for two main reasons.
First their non-Euclidean structure [5] makes them poorly suited for classic deep-
learning architectures. Second, their sparsity increases the challenges of feature
extraction. The first problem has received substantial interest in the recent com-
puter vision literature, with the introduction of many deep architectures tailored
for point clouds [25, 18, 17, 27, 29, 37, 13, 22]. However, considerably less progress
has been observed on the second.

0 First two authors had equal contribution.
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Fig. 1. Object localization from local shape measurements. Left: points on lo-
cations where the object surface has low dimensional structure, such as a table top, con-
tribute ambiguous information for localization of the object center. Right: points with
3D structure, denoted suspicious coincidences due to the associated non-accidental
confluence of geometric information (e.g. three lines that intersect at a point), are
much more informative for this localization.

Modern point cloud architectures for object detection, attempt to mitigate
the sparseness problem by aggregating information from multiple points [46, 43,
20, 33, 26, 34, 32]. An object is usually defined in terms of its center or a bounding
box, which are detected by aggregating local shape information from the points
on the object surface. This can be seen as a voting mechanism, where each
point contributes information for both the localization and identification of the
object. For example, the aggregation of geometric information from all points in
the surface of each of the tables of Fig. 1 is what allows the perception of these
point clouds as tables. However, the consolidation of the local measurements into
a global object percept is a difficult problem, because not all points on an object
are equally informative of object identity and location.

Consider, for example, the localization of the table of known dimensions of
Fig. 1, from local shape measurements derived from sets of points on the surface
of the object, such as those shown of the figure. As shown on the left, a neigh-
borhood on the surface of the table is consistent with many object centers. This
can be seen from the fact that any 2D translation along the tabletop leaves the
neighborhood unchanged. Any amount of noise in the point cloud can originate
a vote to an incorrect center or bounding box. Hence, such points are not reli-
able indicators of the object location. This is not the case for the neighborhood
shown on the right, which is centered on a corner of the table. In this case, the
neighborhood is only consistent with a center vote. Hence, the point is a reliable
indicator of the object location.

For object class detection, the situation is obviously more complex, since the
table can have any height and length. Nevertheless, it remains true that points
where the object surface has 3D structure (e.g. table corners) are much more
informative than points of 2D (table edges) or 1D structure (table top). This is
similar to the aperture problem in optic flow estimation, where object corners
are known to be more informative of object motion than other image points.
In fact, the importance of these informative points for object recognition and
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localization has long been pointed out in the vision literature. This dates back
to at least the work Attneave [1] which equated the visual cortex to a detec-
tive that makes inductive inferences about the environment by looking out for
“suspicious coincidences”, such as the confluence of three 3D edges into a single
point. This is what enables the recognition of a table from a hand-drawn sketch
depicting some lines and corners. In computer vision, the detection of suspicious,
or non-accidental coincidences has been proposed as a principle for perceptual
organization by various authors [4, 23] and motivated a large literature on corner
detection and interest points [14, 31].

Non-accidental coincidences are important for detection exactly because their
non-accidental nature makes them rare. Hence, when objects are sampled sparsely,
they are likely to either be missed or immersed in an ocean of less informative
points. This increases the difficulty of recovering object identity and location. In
this work, we seek to address this problem by focusing the attention of the object
detector in points of suspicious coincidences. For this we introduce a Selective
Point clOud voTing (SPOT) module, which seeks to increase the attention of the
point cloud around points of suspicious coincidences and reduce it everywhere
else. SPOT consists of a combination of two operations: 1) detection of locations
of suspicious coincidences, and 2) voting synthesis in the neighborhood of these
locations. The two operations are performed on the 3D interest points produced
by popular detection architectures in the literature. The first is implemented
by a softmax network and the second by a set of non-linear regressions. This
allows the implementation of both operations with a simple module that can be
easily integrated into most existing point cloud detectors, to enable end-to-end
training. We demonstrate this by implementing SPOT on three point cloud ob-
ject detectors, VoteNet [26], PointRCNN [33], and a self-implemented version of
PointRCNN that uses the Sparse Convolutional Network [13] as backbone. Eval-
uation on two large datasets of indoor scenes, ScanNet [8] and SUN RGB-D [35],
shows that a simple implementation of SPOT without any bells and whistles can
enhance all the baseline models by a large margin. In particular, it is shown that
SPOT improves performance under more strict evaluation metrics, using higher
IoU thresholds. This suggests that selective voting is important for high quality
point cloud object detection.

2 Related work

Feature Learning for Point Cloud Analysis. To deal with the irregular
format of point cloud, one popular direction is to convert points into voxels in
regular 3D grids and then utilize 3D CNNs for feature learning [42, 25, 28, 46]. Re-
cent works adopt Sparse Convolutional Networks [13] to reduce the computation
cost of 3D convolution so that much larger point cloud input can be processed
for vision tasks like semantic segmentation [13] and object detection [43, 20, 47].
Another trend is to use neural networks specially formulated for point cloud
data. PointNet [27] and PointNet++ [29] are pioneers in this area that take
point coordinates as input and learn permutation invariant features by multi-
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layer perceptrons and MaxPooling, showing strong performance on modeling
point cloud geometry. In this work, we evaluate SPOT on both kinds of feature
learning schemes, showing that our module is an universally useful structure for
enhancing point cloud object detectors.

Point Cloud Object Detection. Due to the growing applications of high-
resolution lidar sensors and the challenge of 2D-3D sensor fusion, recent methods
are proposed to directly detect objects in 3D using point clouds. Some of these
convert point clouds into voxels and use 3D CNNs to form backbones [46, 43, 20,
47]. PointRCNN [33] and VoteNet [26] utilize PointNet [27] and PointNet++ [29]
to do detection on raw point clouds. More recently, several works [44, 6, 34, 32]
explore the hybrid of voxel and point representation to take the advantages from
both. Our work investigates the impact of suspicious coincidence on point cloud
object detectors and proposes a method to make them more robust.

Hough Voting in 2D/3D Object Detection. Hough transform/voting is a
good paradigm for bottom-up detection. Origin Hough transform [16] lets edge
points vote in parameter space for detecting simple shapes like lines and circles.
Generalized Hough transform [2] can detect arbitrary shapes, by recording a
matching table of the mappings from an edge orientation to possible positions
of a reference point on the shape. Leibe et al. [21] further extend this idea to
general object detection and segmentation in images, by using more discrimina-
tive features and probabilistic voting that learns the likelihood of a vote being
an object center in a data-driven manner. Improved methods also show success
in 3D recognition problems [41, 19, 24, 38]. Recent works attempt embedding
Hough voting in deep learning models for 3D object detection. [39, 9] cast votes
according to the weights of convolutional kernels. VoteNet [26] includes a voting
module to cast one-to-one votes, with each local feature voting for one object
center. Similar schemes are implemented in PointRCNN [33], where one fore-
ground point is used to predict a single proposal. In contrast, our work inherits
and extends the idea of probabilistic Hough voting [21] that selectively allows a
local feature to cast multiple votes with probability weighting and implements
it in an end-to-end trainable style, showing strong performance on high quality
object detection in point clouds.

3 Selective Point Cloud Voting

3.1 Overview

While the idea of selective voting can be of interest for many operations on
point clouds, in this work we consider its deployment in the context of the two-
stage object detection architecture show at the top of Fig. 2. This is a general
architecture, implemented by several popular detectors in the literature. The
first stage generates object proposals. Given an input of N points with XYZ
coordinates, a backbone network is used to abstract the point cloud and learn
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Fig. 2. Detection pipeline and Selective Point clOud voTing (SPOT). The
proposal module of existing point cloud detectors is replaced by the proposed SPOT for
better localization of object centers.

deep features. It outputs a subset of the input containing M interest points qi =
(zi, f i), each composed by a vector zi of 3D coordinates and a D-dimensional
descriptor f i of the local object geometry. Interest points are all the information
retained for object proposal generation. Proposals are generated by a proposal
module, which maps the interest point descriptors f i into a preliminary prediction
of the locations of scene objects. The second stage performs a pooling or NMS
of proposals to infer a refined set of descriptors. Finally, those are processed by
a detection head that includes classification, bounding box regression, and NMS
modules to output the final detection.

SPOT works on the proposal module in the first stage. Commonly used
proposal module has slightly different implementations on different detectors.
For example, PointRCNN [33] predicts 3D bounding boxes as proposals that
is similar to region proposal [30] in image object detection; in VoteNet [26],
object centers are regressed as proposals instead of whole bounding boxes, and
the local shape descriptors f i are propagated to the proposals for its second
stage. Though implemented differently, a common behavior is that all interest
points uniformly generate proposals, which gives no preference to the points of
suspicious coincidences, such as the corner on the right of Fig. 1. Since these
points are rare, they can be missed altogether, or have small contribution to
the set of proposals considered in the subsequent stages of the detector. Instead,
the large majority of the proposals available to the later stages originate from
points that are much less informative of the object identity and location, such
as the tabletop points on the left of Fig. 1. These proposals are likely to be less
accurate than those rooted at locations of suspicious coincidences.

The two-stage detector is generally supervised by a combination of a proposal
loss on the first stage and a detection loss on the second stage. The detection loss
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Ldet consists of objectness, bounding box regression and semantic classification.
In our case, the first stage is supervised by a voting loss Lvote and the whole
system is trained with the loss

L = Lvote + λdetLdet (1)

In this section, we will discuss the novel SPOT model trained with the addition
of the voting loss Lvote.

3.2 SPOT

SPOT can be seen as an attention mechanism that aims to focus the proposal
stage of Fig. 2 on interest points indicative of suspicious coincidences, such as
the formation of a 3D corner by the confluence of three 3D lines on the same
point1. Given a set of interest points qi = (zi, f i), it produces a set of votes
vij = (dij , f

i
j , p

i
j). Each interest point can contribute none or multiple votes,

depending on how suspicious it is. Vote vij is composed by a 3D coordinate

dij , a D-dimensional descriptor f ij and a probability pij . The 3D coordinate is the
prediction of the object center, the descriptor is a refined version of the descriptor
f i provided by the input interest point, and the probability is the posterior of this
vote being predicted as a valid object center. The goal of SPOT is to increase
the attention of the point cloud around points of suspicious coincidences and
reduce it everywhere else. This is performed by a sequence of two operations:
1) detection of locations of suspicious coincidences, and 2) selectively voting for
object centers in the neighborhood of these locations.

Suspicious Coincidences. The central operation for the detection of suspi-
cious coincidences is the estimation of the certainty with which the object center
can be determined from the shape information contained in each interest point.
This is inspired by Fig. 1. Interest points located at points of the object surface
rich in 3D structure (such as corners) provide stronger constraints for localization
of the object center than interest points at locations where the object surface
has lower dimensional structure (such as table tops). Since the amount of 3D
structure in the vicinity of the interest point can in principle be derived from
the local shape descriptor f i, it should be possible to detect suspicious interest
points by analyzing the shape descriptors.

SPOT implements this intuition as follows. Given interest point qi = (zi, f i),
a neighborhood of zi, composed by a series of pre-specified sub-regions Rij , j ∈
{1, . . . , NR}, is defined as shown in Fig. 2. It is assumed that the object center
is within one of the regions Rij , identified by a label yi ∈ {1, . . . , NR}. The
posterior probability of this label is then predicted by a classifier

[pi1, . . . , p
i
NR

]T = [P (yi = 1|f i), . . . , P (yi = NR|f i)]T = g(f i; θg), (2)

1 While the description provided in this section is tailored to VoteNet, SPOT can be
deployed on other detectors with minor modifications. Some variants are discussed
in the experiments section.
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Fig. 3. Detection of suspicious coincidences. Left: A 3D scene composed of a
large table. Right: Corresponding point cloud. For suspicious coincidences, the en-
tropy of the distribution of center locations has low-entropy. These tends to happen
around object regions informative for object identification and localization, such as
table corners and edges.

where g(; θg) is a NN of parameters θg with softmax activation. During de-
tector training, this classifier is optimized on a set of object interest points
Q = {(zi, f i, ci)}, of coordinate zi, descriptor f i, and ground-truth object center
ci. For each interest point, a label yi is set to the index of the region Rij that

contains the object center, i.e. yi = j|ci ∈ Rij . The center location classifier is
then optimized by minimizing the cross-entropy loss

Lvote-cls = −
∑
i

log gyi(f
i; θg). (3)

During inference, given interest point qi = (zi, f i), the classifier g(.; θg) is
used to estimate the probabilities of (2). The detection of suspicious coinci-
dences then follows from the intuition of Fig. 1. While interest points in the
neighborhood of these coincidences (e.g. the centers of the patches on the right
of the figure) should have distributions of low uncertainty, those consistent with
many object centers (e.g. on the left of the figure) should generate high uncer-
tainty. This is confirmed by Fig. 3, which shows a typical example of the the
information entropy of the posterior distribution

H(f i) = −
NR∑
j=1

gj(f
i; θg) log gj(f

i; θg) (4)

for many interest points on an object surface. Points of lower dimensional struc-
ture, such as the center of a tabletop, the ground, etc., generate larger entropies
than points on the vicinity of the 3D edges and corners that demarcate the table
boundaries.

This suggests that the detection of suspicious coincidences can be framed
as an instance of the problem of assessing classification confidence, which has
received recent interest in the literature on calibration of deep classifiers [11, 12,
40, 7]. Methods based on the thresholding of the entropy of (4) or the largest
probability at the classifier output

C(f i) = max
j
gj(f

i; θg) (5)
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are commonly used in this literature to assess whether the classifier is confident
in the classification of a given example. However, the calibration of the network
probabilities is known to be difficult. For example, some methods require the
training of a secondary network just for this purpose [40, 12, 7], while others rely
on computational expensive Monte-Carlo dropout [10] procedures.

In this work, we rely on an alternative approach, which aims to increase the
robustness of suspicious coincidence detection. This is implemented as follows.
Given a point cloud P of M interest points qi of shape descriptor f i, the posterior
probabilities from all interest points are stored in an array G ∈ [0, 1]M×NR such
that Gij = gj(f

i; θg). The entries of G are then ranked in decreasing order and
the minimum confidence threshold for suspicious coincidence detection set to
the value of the Kth largest entry, i.e.

T (P;K) = rankK(G). (6)

The set of suspicious coincidences is then defined as the set of interest points for
which the confidence measure of (5) is above this threshold, i.e.

S(K) = {qi ∈ P |C(f i) ≥ T (P;K)}. (7)

where C is the confidence measure of (5). Note that the computations above
can be easily performed by standard neural network operations. C is a simple
max-pooling operation and (6) is implemented by sorting the outputs of gj in
each iteration.

The parameter K controls the number |S(K)| of detected suspicious coinci-
dences. |S(K)| is usually smaller than K, because suspicious coincidences can
assign strong probability to more than one object center location. This is typi-
cally the case for complex scenes, where an interest point located at a suspicious
coincidence, e.g. the corner of a table, may be located near another object, e.g.
a chair. In this case, because the receptive field centered on the interest point
overlaps with both objects, the interest point may confidently vote for both of
them. In our experience, it is not uncommon for suspicious coincidences to vote
for two or three different center locations.

The overall procedure can be seen as an attention mechanism that focuses the
detector on the object locations most informative for object identification and
detection. An additional benefit is that, in 3D object detection, the background is
usually composed of planar structures, such as the ground or the walls of a room.
Since, as shown in Fig. 3, interest points located on these structures are unlikely
to be declared suspicious, SPOT tends to suppress background clutter. Hence,
in addition to being an attention mechanism that highlights informative object
features, it also acts as an object-level attention mechanism, which declares
objects as overall salient from background walls and ground.

Selective Voting. Selective voting attempts to aggregate local features from
the locations of suspicious coincidences while rejects those from elsewhere. This
is done as follows. During training, given an interest point (zi, f i) whose corre-
sponding object centered at ci, the region Rij that contains the center is first
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identified, which gives the label yi = j. A ground truth offset ∆zi∗ = ci − zi is
then computed. The set of offsets associated with the same region label yi = j
are then assembled into an offset training set Oj = {∆zi∗|zi +∆zi∗ ∈ Rij}. This

set is then used to train a center location regression function ∆zij = φj(f
i; θφj )

for the region Rij . The center location regression functions φj are learned by
minimizing the regression loss

Lvote-reg =

NR∑
j=1

∑
i|yi=j

||φj(f i; θφj )−∆zi∗|| (8)

Combined with (3), the whole voting loss is then implemented as

Lvote = Lvote-cls + λregLvote-reg. (9)

During inference, given interest point (zi, f i), the center location regressors
φj are used to predict an estimate of the location of the center for each of the
regions Rij

dij = zi + φj(f
i; θφj ). (10)

Finally, a descriptor

f ij = f i + ϕj(f
i; θϕj ) (11)

is synthesized for each new center location dij . This is a refinement of the de-

scriptor f i of the interest point (zi, f i), which accommodates variations of local
geometry between zi and dij . Since ground truth descriptors are not available,
ϕj functions are learned end-to-end, using supervision from the second stage loss
Ldet of (1).

Overall, a single interest point produces multiple object center votes vij =

(dij , f
i
j , p

i
j), where dij is the center predicted by (10), f ij the shape descriptor

predicted by (11) and pij the probability P (yi = j|f i) of (2). S(K) of (7) then
takes effect as a selection mechanism that only the votes of interest points in
S(K) are passed to the subsequent stages of the network. Furthermore, the votes
of these interest points are pruned by considering only those whose confidence
is larger than the threshold T (P;K) of (6). This leads to a final set of votes

V = {(dij , f ij , pij) | pij ≥ T (P;K)}. (12)

The functions g of (2), φj of (10), and ϕj of (8) are implemented with a shared
MLP. The network implementation of SPOT is summarized at the bottom of
Fig. 2.

4 Experiments

In this section, we discuss several experiments performed to evaluate the perfor-
mance of SPOT.
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4.1 Dataset and Evaluation Metrics.

SUN RGB-D [35] is a dataset of RGB-D images for scene understanding. It
contains 10K RGB-D images densely annotated with 58,657 3D bounding boxes
with orientations for 47 object categories. For fair comparison, we follow the
evaluation protocol of [26], which prunes the dataset to ∼5K samples and the 10
most common categories. RGB-D images are converted to clouds of 20K points
per image. ScanNetV2 [8] is an indoor scene dataset of 3D meshes reconstructed
from RGB-D images. It contain 1,201 scans from hundreds of rooms, annotated
with instance segmentation for 18 object categories. Following [26], we convert
the meshes to clouds of 40K points per scene by sampling mesh vertices, and
evaluate object detection performance on aligned circumscribed bounding boxes
of instance segmentations.

4.2 Implementation Details

The impact of SPOT is evaluated on three detectors: VoteNet [26], PointR-
CNN [33] and a variant of PointRCNN based on Sparse Convolution [13].
VoteNet The original voting module is replaced by SPOT. This is implemented
with interest point neighborhoods of 24 sub-regionsR1 toR24. These are defined
by 12 radial partitions, as illustrated in the bottom of Fig. 2, and one partition
along the Z-axis. The rank parameter K of (6) is chosen so that the number of
votes |V| of (12) is equal to 1, 024.
PointRCNN To minimize the changes to the original PointRCNN model, we
modify its bin-based localization to SPOT. After the point cloud is segmented
into background and foreground, each foreground point is considered as an inter-
est point, predicting the object center coordinates along the X and Y axes. These
axes are binned into 6 segments, forming a set of square regions R1, . . . ,R36.
The probability of the object center being located Rj is then computed as
pj = pxj · pyj , where pxj and pyj are the probabilities computed by the original
network for the X and Y bins corresponding to Rj .
PointRCNN-SC To investigate the effectiveness of SPOT on different back-
bone networks, we have also implemented a variant of PointRCNN using the
submanifold sparse U-Net [13] as backbone to extract pointwise features. The
remaining components are unaltered. This is denoted as PointRCNN with sparse
convolutions (PointRCNN-SC).

4.3 Ablation Studies

We start with a series of experiments using VoteNet and ScanNet V2 to ablate
several parameters of SPOT.

Definition of suspicious coincidences. SPOT defines suspicious coincidences
as in (7), from which the set of center votes V of (12) is extracted. Table 1
compares this strategy to other possibilities for proposal selection. These are
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total votes min votes/I.P. max votes/I.P. AR@0.5 mAP@0.5

VoteNet (regression) 1024 1 1 53.3 33.5

best 1 per I.P. 1024 1 1 56.0 38.7
best 2 per I.P. 2048 2 2 55.0 38.4
best 3 per I.P. 3072 3 3 54.3 37.1
SPOT 1024 0 3 57.8 40.4

Table 1. Ablation study of vote selecting method. I.P. means interest point.
Our method outperforms others by dynamically selecting votes based on the spatial
probability.

256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072
number of votes

33
34
35
36
37
38
39
40
41

m
AP

@
0.

5

top k from all
best n per I.P.

8 12 16 20 24 28 32
number of sub-region

37.5

38.0

38.5

39.0

39.5

40.0

40.5

m
AP

@
0.

5

Fig. 4. Analysis of number of votes and sub-regions. Left: Number of votes v.s.
mAP performance, under the case of 24 sub-regions. Right: Number of sub-regions
v.s. mAP performance, under the case of 1024 votes.

the simple regression of the baseline VoteNet, and three alternative approaches
that keep the best 1, 2, and 3 votes of largest probability from each interest
point. Selecting the best vote from each interest point outperforms the baseline,
confirming the advantages of sub-region center votes as compared to a single
center regression. On the other hand, selecting the best 2 or 3 votes per interest
point degrades performance. This is because these votes are not reliable for
interest points that are not co-located with suspicious coincidences. In fact, as
discussed in Fig. 1, even the top vote is usually unreliable when this is the case.
The detection of suspicious coincidences by SPOT eliminates such ambiguous
interest points, allowing the detector to focus attention on the ones that most
informative of object center locations. Hence, for the same number of votes as the
best 1 strategy, and significantly less than the others, SPOT enables the best
detection performance. When compared to the baseline, it enables significant
gains of more than 3 points under both AR@0.5 and mAP@0.5 metrics.

Number of votes. We next investigated the impact of the number of votes
|V| on overall detector performance. This is shown in Fig. 4 a) for mAP@0.5.
Performance increases until |V| = 1, 024 and decreases after that. Also shown
is the performance of the three best n per I.P. strategies. For |V| = 512 the
performance of SPOT is already superior to the baseline detector and for |V| >



12 H. Du et al.

(a) VoteNet (b) SPOT (c) VoteNet (d) SPOT

Fig. 5. Votes from baseline model and SPOT. Red dots are center votes.

Fig. 6. local geometry of different interest points. Left (blue): Interest points
that cast deterministic votes. Right (red): Interest points that cast multiple votes or
filtered out.

768 SPOT is always superior to all other strategies. While the choice of the
threshold of (6) has some impact on the mAP@0.5 performance, SPOT has
the best performance for a large range of thresholds. These results illustrate its
robustness.

Number of sub-regions. The impact of the number of sub-regions NR on
detection performance was also investigated, by varying the number of spatial
sectors Rij under a bird’s eye view. The results are shown in Fig. 4 b). When the
number of sub-region is too small detection performance degrades. This is not
surprising, because the sub-regions Rij become less selective for center location.
On the other hand, too many sub-regions can also lead to a drop in performance,
because classifier labels become noisier and there are fewer examples per region,
increasing the difficulty of learning all the classification and regression functions
of SPOT. While the careful section of the number of sub-regions can make a
significant difference, in the example of the figure a gain of almost 3 points
for NR = 24, the curve is not very sharp and there is some flexibility in this
parameter.

4.4 Detection Results

The detector baselines enhanced by SPOT were compared to the original versions
and several enhancements recently proposed in the literature. The results are
summarized in Table 2, which shows that SPOT improves the performance of all
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Scan
@0.25

Scan
@0.5

SUN
@0.25

SUN
@0.5

DSS [36] 15.2 6.8 42.1 -
F-PointNet [6] 19.8 10.8 54.0 -
GSPN [45] 30.6 17.7 - -
3D-SIS[15] 40.2 22.5 40.2 22.5

PRCNN[33] 53.0 25.4 53.7 23.4
PRCNN+SPOT 55.2 27.8 57.6 25.3

PointRCNN-SC 57.0 31.8 53.0 24.5
PointRCNN-SC+SPOT 57.4 33.1 59.5 27.7

VoteNet [26] 58.7 33.5 57.7 32.3
VoteNet+SPOT 59.8 40.4 60.4 36.3

Table 2. 3D object detection results on SUN RGB-D and ScanNet V2 val-
idation set with 3D IoU threshold 0.25 and 0.50. DSS, F-PointNet and 3D-SIS
results are from [15], GSPN are from [45], VoteNet are from [26], PointRCNN is im-
plemented base on [33] and Sparse Conv backbone is implemented base on [13].

bed table desk refrigerator bathtub counter

AP gain +7.3 +7.4 +7.2 +7.6 +6.2 +4.8
mean size (1.9, 1.8, 1.2) (1.0, 1.2, 0.6) (1.0, 1.4, 0.9) (0.7, 0.7, 1.3) (1.2, 1.1, 0.5) (1.4, 1.9, 0.3)

chair toilet sink garbagebin picture cabinet

AP gain +1.7 +1.4 +1.3 +1.1 +0.2 -1.5
mean size (0.6, 0.6, 0.7) (0.6, 0.6, 0.7) (0.5, 0.5, 0.3) (0.5, 0.5, 0.6) (0.2, 0.4, 0.5) (0.8, 0.8, 0.9)

Table 3. AP gains v.s. object sizes. The best 6 gains (top) and the worst 6 gains
(bottom) out of 17 object categories of ScanNet V2 along with objects’ mean sizes.

detectors. For most combinations of dataset and detector, the gains are between
2 and 3 map@0.5 points, with the larger gains being observed for the strongest
baseline, which is VoteNet. This and the improvements of the PointRCNN with
different backbone designs suggest that SPOT should improve the quality of
other point cloud detectors.

Qualitative Results. To understand how SPOT improves detection accuracy,
we visualize the votes produced by it and compare with those generated by
the baseline model. Fig. 5 shows how SPOT focus the attention of the detector
on suspicious coincidences indicative of object presence. Note the much smaller
number of votes on the ground or table tops and the concentration of votes on
object surfaces. Fig. 6 shows the local geometry of different kinds of interest
points. Interest points that cast deterministic votes, i.e., one vote with high
probability score, tend to gather around 3D structures of objects like corners
and edges. On the other hand interest points that cast multiple votes or are
prunned by SPOT tend to gather on low dimensional structures, such as flat
surfaces, or locations where multiple object intersect. Table 3 summarizes AP
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(a) Ground Truth (b) VoteNet (c) VoteNet w/ SPOT

Fig. 7. Qualitative results for ScanNetV2

(a) Ground Truth (b) VoteNet (c) VoteNet w/ SPOT

Fig. 8. Qualitative results for SUN RGB-D

gains per object class, showing that SPOT benefits the most the detection
of large objects, such as beds, tables, or desks. This is because these objects
contain larger surface areas of low dimensional structure than small objects and
are more likely to produce interest points unaligned with suspicious coincidences.
Fig. 7 and Fig. 8 show how the addition of SPOT affects the object detection of
VoteNet on ScanNetV2 and SUN RGB-D. As shown in these figures, the addition
of SPOT leads to a reduction of false positives. For example, in Fig. 7, the vote
clustering of VoteNet produces a set of detections around each object, even after
NMS. With SPOT the results are much more accurate, due to the attention of
votes around suspicious coincidences.

5 Conclusion

In this work, we considered point cloud object detection, and proposed a proce-
dure for selective point cloud voting (SPOT). This can be seen as an attention
mechanism, which increases the attention of the point cloud in the neighbor-
hood of suspicious coincidences, i.e. features that are most informative of object
identity and location. SPOT was shown to be a valuable addition to several
state of the art detectors based on different architectures, achieving state-of-the-
art results on both ScanNet and SUN-RGBD. All of these observations confirm
long-standing arguments for the importance of suspicious coincidences in object
recognition [1, 3], and suggest that selective point cloud voting should be useful
for future object detector designs. Acknowledgment: This work was partially
funded by NSF awards IIS-1637941, IIS-1924937, and NVIDIA GPU donations.
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