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Abstract

A model connecting visual tracking and saliency has recently been proposed. This
model is based on the saliency hypothesis for tracking which postulates that track-
ing is achieved by the top-down tuning, based on target features, of discriminant
center-surround saliency mechanisms over time. In this work, we identify three
main predictions that must hold if the hypothesis were true: 1) tracking reliabil-
ity should be larger for salient than for non-salient targets, 2) tracking reliabil-
ity should have a dependence on the defining variables of saliency, namely fea-
ture contrast and distractor heterogeneity, and must replicate the dependence of
saliency on these variables, and 3) saliency and tracking can be implemented with
common low level neural mechanisms. We confirm that the first two predictions
hold by reporting results from a set of human behavior studies on the connection
between saliency and tracking. We also show that the third prediction holds by
constructing a common neurophysiologically plausible architecture that can com-
putationally solve both saliency and tracking. This architecture is fully compliant
with the standard physiological models of V1 and MT, and with what is known
about attentional control in area LIP, while explaining the results of the human
behavior experiments.

1 Introduction

Biological vision systems have evolved sophisticated tracking mechanisms, capable of tracking
complex objects, undergoing complex motion, in challenging environments.These mechanisms have
been an area of active research in both neurophysiology [10, 35] and psychophysics [28], where re-
search has been devoted to the study of object tracking by humans [29]. This effort has produced
several models of multi-object tracking, that account for the experimental evidence from human
psychometric data [28]. Prominent among these are the FINST model of Pylyshyn [29], and the
object file model of Kahnemman et al [18]. However, these models are not quantitative, and only
explain the psychophysics of tracking simple stimuli, such as dots or bars. They do not specify a set
of computations for the implementation of a general purpose tracking algorithm, and it is unclear
how they could be applied to natural scenes. While some computational models for multiple object
tracking (MOT) such as the oscillatory neural network model of Kazanovich et al. [19], and the
particle filter based model of Vul et al. [37], have been proposed, there have been no attempts to
demonstrate their applicability to real video scenes.

Visual tracking has also been widely studied in computer vision, where numerous tracking algo-
rithms [38] have been proposed. Early solutions relied on simple object representations, and em-
phasized the prediction of object dynamics, typically using a Kalman filter. The prediction of these
dynamics turned out to be difficult, motivating the introduction of more sophisticated methods such
as particle filtering [15]. Nevertheless, because these approaches relied on simple target represen-
tations, they could not deal with complex scenes. This motivated research in the appearance-based
modeling techniques [17, 32, 9] where a model of object appearance is learned from the target loca-
tion in the initial frame, and used to identify the target in the next. It is, however, difficult to learn
appearance models from complex scenes, where background detail tends to drift into the region used
to learn the model, corrupting the learning.
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The best results among tracking algorithms have recently been demonstrated for a class of meth-
ods that pose object tracking as incremental target/background classification [22, 8, 2, 13]. These
discriminant trackers train a classifier to distinguish target from background at each frame. This
classifier is then used to determine the location of the target in the next frame. Target and back-
ground are extracted at this location, the classifier updated, and the process iterated.

Recent work in the computer vision literature [22] has postulated a connection between discriminant
tracking and one of the core processes of early biological vision - saliency, by suggesting that the
ability to track objects is a side-effect of the saliency mechanisms that are known to guide the de-
ployment of attention. More precisely, [22] has hypothesized that tracking is a simple consequence
of object-based tuning, over time, of the mechanisms used by the attentional system to implement
bottom-up saliency. We refer to this as the saliency hypothesis for tracking. Working under this
hypothesis, [22] proposed a tracker based on the discriminant saliency principle of [12]. This is a
principle for bottom-up center-surround saliency, which poses saliency as discrimination between
a target (center) and a null (surround) hypothesis. Center-surround discriminant saliency has pre-
viously been shown to predict various psychophysical traits of human saliency and visual search
performance [11]. The extension proposed by [22], to the tracking problem, endows discriminant
saliency with a top-down feature selection mechanism. This mechanism enhances features that re-
spond strongly to the target and weakly to the background, transforming the saliency operation from
a search for locations where center is distinct from the surround, to a search for locations where
target is present in the center but not in the surround. [22] has shown that this tracker has state-of-
the-art performance on a number of tracking benchmarks from the computer vision literature.

In this work, we evaluate the validity of the saliency hypothesis by identifying three main predic-
tions that ensue from the saliency hypothesis: 1) tracking reliability should be larger for salient than
for non-salient targets, 2) tracking reliability should have a dependence on the defining variables of
saliency, namely feature contrast and distractor heterogeneity, and must replicate the dependence of
saliency on these variables and, 3) saliency and tracking can be implemented with common low level
neural mechanisms. We confirm that the first two of these predictions hold by performing several
human behavior experiments on the dependence between target saliency and human tracking perfor-
mance. These experiments build on well understood properties of saliency, such as pop-out effects,
to show that tracking requires discrimination between target and background using a center-surround
mechanism. In addition, we characterize the dependence of tracking performance on the extent of
discrimination, by gradually varying feature contrast between target and distractors in the tracking
tasks. The results show that both tracking performance and saliency have highly similar patterns
of dependency on feature contrast and distractor heterogeneity. To confirm that the third prediction
holds, we show that both saliency and tracking can be implemented by a network compliant with
the widely accepted neurophysiological models of neurons in area V1 [5] and the middle temporal
area (MT) [36], and with the emerging view of attentional control in the lateral intra-parietal area
(LIP) [3]. This network extends the substantial connections between discriminant saliency and the
standard model that have already been shown [12] and is a biologically plausible optimal model for
both saliency and tracking.

2 Human Behavior Experiments on Saliency and Tracking
We start by reporting on human behavior experiments 1 investigating the connections between the
psychophysics of tracking and saliency. To the best of our knowledge, this is the first report on
psychophysics experiments studying the relation between attentional tracking of a single target and
its saliency. Video stimuli were designed with the Psychtoolbox [4] on Matlab v7, running on
a Windows XP PC. A 27 inch LCD monitor of size 47.5◦ × 30◦ visual angle and resolution of
1270× 1068 pixels was used to present the stimuli. Subjects were at a viewing distance of 57 cm.
The same apparatus was used for all experiments.
2.1 Experiment 1 : Saliency affects tracking performance
The experimental setting was inspired by the tracking paradigm of Pylyshyn [29]. Subjects viewed
displays containing a green target disk surrounded by 70 red distractor disks and a static fixation
square. Example displays are shown in [1]. At the start of each trial, the target disk was cued with
a bounding box. Subjects were instructed to track the target covertly, while their eyes fixated on a
black fixation square in the center. After a keystroke from the subject, all disks moved independently,
with random motion, for around 7 seconds. Then, the disks stopped moving and the colors of 3

1IRB approved study, subjects provided informed consent and were compensated $8 per hour
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disks were switched to 3 new colors - cyan, magenta and blue. Of these, one was the target and the
other two the spatially closest distractors. Subjects were asked to identify the target among the 3
highlighted disks.

Method 13 subjects (age 22-35, 9 male, 4 female) performed 4 trials each, organized into 2 ver-
sions of 2 conditions. First version: this version tested subject tracking performance under two
different stimulus conditions. In the first, denoted salient, the target remained green throughout the
presentation, changing randomly to one of the three highlight colors at the end of the 7 seconds. In
the second, denoted non-salient, the target remained green for the first half of this period, switched
to red for the remaining time, finally turning to a highlight color. While in the first condition the
target is salient throughout the presentation, the second makes the target non-salient throughout the
latter half of the trial. To eliminate potential effects of any other variables (e.g. target-distractor dis-
tances and motion patterns), the non-salient display was created by rotating each frame of a salient
display by 90◦ (and changing the green disk to red in the second half of the presentation).

Under the saliency hypothesis for tracking, the rate of successful target tracking should be much
higher for salient than for non-salient displays. However, this could be due to the fact that the target
was the only green disk in salient displays, and since it continuously popped-out subjects could be
acquiring the target at any time even after losing track. Second Version: The second version ruled
out this alternate hypothesis by using a different type of display for the salient condition. In this
case, the target was a red disk, and its 7 nearest spatial neighbors were green. All other distractors
were randomly assigned to either the red or green class. This eliminated the percept of pop-out.
As before, the display for the non-salient condition was created by rotation and color switch of
the target on the second half of the presentation. The video displays are available in the attached
supplement [1].

Results and Discussion Figure 2 (a) and (b) present the rate of successful tracking in the two ver-
sions. In both cases, this rate was much higher in the salient than in the non-salient condition. In the
latter, the tracking performance was almost at the chance level of 1

3 , suggesting complete tracking
failure. In fact, the similarity of detection rates in the two experiments suggests that target pop-out
does not aid human tracking performance at all. It only matters if the target is locally salient, i.e.
salient with respect to its immediate neighborhood. This is consistent with the saliency hypothesis,
since bottom-up saliency mechanisms are well known to have a center-surround structure [16, 12].
In fact, it suggests two new predictions. The first, motivated by the hypothesis that tracking requires
top-down biases of bottom-up saliency, is that center-surround organization also applies to tracking.
To address this prediction, we will investigate the spatial organization of tracking mechanisms in
greater detail in Experiment 3. The second, which follows from the fact that only target color var-
ied between the two conditions, is that tracking performance depends on the discriminability of the
target. We study this prediction in Experiment 2. While the first experiment used color as a discrim-
inant cue, the conclusion that saliency affect tracking performance applies even when other features
are salient. For example, studies on multiple object tracking with identical targets and distractors
have reported tracking failure when target and distractors are too close to each other [14]. This is
consistent with the discriminant hypothesis: when target and distractors are identical, the target must
be spatio-temporally salient (due to its trajectory or position) in an immediate neighborhood to be
tracked accurately.

2.2 Experiment 2: Tracking reliability as a function of feature contrast
Experiment 2 aimed to investigate the connection between the two phenomena in greater detail,
namely to quantify how tracking reliability depends on target saliency. Since saliency is not an in-
dependent variable, this quantification can only be done indirectly. One possibility is to resort to a
variable commonly used to manipulate saliency: the amount of feature contrast between target and
distractors. Several features can be used, as it is well known that targets which differ from distrac-
tors in terms of color, luminance, orientation or texture can be perceived as salient [27, 25]. In fact,
Nothdurft [26] has precisely quantified the dependence of saliency on orientation contrast in static
displays. His work has shown that perceived target saliency increases with the orientation contrast
between target and neighboring distractors. This increase is quite non-linear, exhibiting the thresh-
old and saturation effects shown in Figure 1 (a), where we present curves of saliency as a function
of orientation contrast between target and distractors for three levels of distractor homogeneity [26].
The relationship between tracking reliability and target saliency can thus be characterized by ma-
nipulating orientation contrast and measuring the impact on tracking performance. If the saliency
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hypothesis for tracking holds, saliency and tracking reliability should be equivalent functions of ori-
entation contrast. In particular, increasing orientation contrast between target and distractors should
result in a non-linear increase of tracking reliability, with threshold and saturation effects similar to
those observed by Nothdurft.

Method 12 subjects (8 male and 4 female) in the age range 21-35 participated in the study. The
experimental setting was adapted from the work of Makovski and Jiang [23]. All displays had
size 26◦ × 26◦ (700 × 700 pixels) and consisted of 23 ellipses, all of color blue, against a black
background. Each ellipse had a major axis of ∼ 0.56◦ (15 pixels) and minor axis of ∼ 0.19◦ (5
pixels). The orientation of the ellipses depended on the condition from which the trial was drawn.
At the start of a trial, one of the ellipses was designated as target (cued with a white bounding box).
Subjects were instructed to track the target covertly, while fixating on a white square at the center of
the screen. On a keystroke, the ellipses started moving and continued to do so for ∼ 8-10 sec. At
the end of the trial, all ellipses were completely occluded by larger white disks and subjects asked to
click on the disk corresponding to the target. Each subject performed 30 trials under 7 conditions,
for a total of 210 trials, and no feedback was given on the accuracy of their selection.

The 7 conditions corresponded to different levels of orientation contrast between target and distractor
ellipses. Distractor orientation, defined by the major axis of the distractor ellipses, was always 0 ◦.
Target orientation, determined by the major axis of the target ellipse, was selected from 7 values:
0◦, 10◦, 20◦, 30◦, 40◦, 60◦ or 80◦. This made orientation contrast equal to the target orientation.
Example displays are shown in the attached supplement [1]. To keep all other variables (e.g. distance
between items, motion patterns, distance from target to fixation square) identical, a trial was first
created for one condition (target orientation 0◦). The trials of all other conditions were obtained by
applying a transformation to each frame of this video clip. This consisted of an affine transformation
of the grid of ellipse centers, followed by the desired change in target orientation.

To study the effect of distractor heterogeneity [26], three versions of the experiment were conducted
with different numbers of ellipses in the target orientation. In the first version, only one ellipse (the
actual target) was in target orientation. In this case, there was no distractor heterogeneity. In the
second version, 18 of the 23 ellipses were in distractor orientation, and the remaining 5 in target
orientation. One of the latter was the actual target. Finally, in the third version, 13 ellipses were in
distractor and 10 in target orientation, for the largest degree of distractor heterogeneity.

Results and Discussion Figure 1 (b), shows the curves of tracking accuracy vs. orientation con-
trast obtained in all three versions of the experiment. These curves are remarkably similar to Noth-
durft’s saliency curves, shown in (a). Again, there are 1) distinct threshold and saturation effects
for tracking, with tracking accuracy saturating for orientation contrasts beyond 40 ◦, and 2) decreas-
ing tracking accuracy as distractor heterogeneity increases. The co-variation of tracking accuracy
and saliency is illustrated in Figure 1 (c), where the two quantities are presented as a scatter plot
The correlation between the two variable is near perfect (r = 0.975). In summary, tracking has a
dependence on orientation contrast remarkably similar to that of saliency.
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Figure 1: (a) saliency vs. orientation contrast (adapted from [26]) (b) human tracking success rate vs. orien-
tation contrast. (c) scatter plot of saliency values from (a) vs tracking accuracy from (b), r = 0.975. (d) model
prediction : tracking success rate vs. orientation contrast for the network of Figure 3.

2.3 Experiment 3: The spatial structure of tracking
It is well known that bottom-up saliency mechanisms are based on spatially localized center-
surround processing [16, 6]. Hence, the saliency hypothesis for tracking predicts that tracking
performance depends only on distractors within a spatial neighborhood of the target. The results
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of Experiment 2 provide some evidence in support of this prediction, by showing that tracking per-
formance depends on distractor heterogeneity. This implies that the visual content of the background
affects human tracking performance. The open question is whether the effect of the background 1)
is limited to a localized neighborhood of the target, or 2) extends to the entire field of view. This
question motivated Experiment 3. In this experiment, the distance d csd between the target and the
closest distractor of the same orientation, denoted the closest similar distractor (CSD), was con-
trolled so that dcsd = R, where R is a parameter. This guaranteed that there were no distractors
with the target orientation inside a neighborhood of radius R around it. By jointly varying this pa-
rameter and the amount of distractor heterogeneity, it is possible to test three hypotheses: (a) no
surround region is involved in tracking: in this case, the rate of tracking success does not depend
on the distractor heterogeneity at all, (b) the entire visual field affects tracking performance: in this
case, for a fixed distractor heterogeneity, the rate of tracking success does not depend on R, (c) the
effect of the surround is spatially localized: in this case, there is a critical radius R critical beyond
which distractors have no influence in tracking performance. This implies that the rate of tracking
success does not depend on distractor heterogeneity for R > R critical. Experiment 2 already estab-
lished that hypothesis (a) does not hold. Experiment 3 was designed to determine which of (b) and
(c) holds.

Method 9 subjects (7 male and 2 female) in the age range 21-35 participated in the study. The
target orientation was fixed at 40◦ for all stimuli. Two versions of the experiment were conducted,
with two levels of distractor heterogeneity. As in Experiment 2, the first version used 18 (5) of the
23 ellipses in distractor (target) orientation. In the second version, 13 ellipses were in distractor and
10 in target orientation. In both versions, the stimulus was produced with four values of average R
(average, over all frames in the video sequence, of the distance d csd). Across the 4 conditions, this
quantity was in the range 1.67◦ to 5.01◦ (about 45 pixels to 135 pixels).

Results and Discussion Figure 2(a) presents the rate of tracking success as a function of average
R, for the two versions of the experiment. The tracking accuracy for the case where there is no
distractor heterogeneity (no distractor with the target orientation) is also shown, as a flat line. Two
main observations are worth noting. First, for a fixed (non-zero) amount of distractor heterogene-
ity, tracking performance always increases with R. This implies that it is easier to track when the
CSD is farther from the target. Second, for large R tracking accuracy does not depend on distractor
heterogeneity (it is nearly the same under the two heterogeneity conditions), converging to the accu-
racy observed when there is no distractor heterogeneity (Experiment 3). These observations support
the conclusion that hypothesis (c) holds, i.e. tracking ability is influenced by a localized surround
region, of radius Rcritical ≈ 4◦. When similar distractors are kept out of this region, the degree of
distractor heterogeneity has no effect in tracking performance.

In summary, results of the human behavior experiments show that the first two predictions made
by the saliency hypothesis for tracking hold. These predictions are that tracking reliability 1) is
larger for salient than for non-salient targets (Experiment 1), 2) depends on the defining variables
of saliency, namely feature contrast and distractor heterogeneity (Experiment 2), and replicates the
dependence of saliency on these variables. This includes the threshold and saturation effects of the
dependence of saliency on feature contrast (Experiment 2), and the spatially localized dependence
of saliency on distractor heterogeneity (Experiment 3). Overall, these experiments provide strong
evidence in support of the saliency hypothesis for tracking. We next consider the final prediction,
which is that saliency and tracking can be implemented with common neural mechanisms.

3 Joint neural architecture for saliency and tracking

To construct a saliency based neurally plausible computational model for tracking we start with the
neural model proposed by [12] to compute saliency and identify the mechanisms required to extend
it to perform tracking, and then show how these mechanisms can be implemented in a biologically
plausible manner.

In [12], saliency is equated to optimal decision-making between two classes of visual stimuli, with
label C ∈ {0, 1}, C = 1 for stimuli in a target class, and C = 0 for stimuli in a background
class. The classes are defined in a center-surround manner where, at each location l, the target
(background) class is that of stimuli in a center (surround) window. The stimuli are not observed
directly, but through projection onto a set of n features, of responsesY(l) = (Y 1(l), . . . , Yn(l)). The
saliency of location l is then equated to the expected accuracy of target/background classification,
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Figure 2: (a) and (b) Experiment 1: successful target tracking rate for targets that are (a) globally salient
(pop-out), and (b) locally salient (do not pop-out). (c) and (d) Experiment 3: the effect of background on
tracking performance - (c) Tracking accuracy of human subjects for two versions of distractor homogeneities
are plotted as a function of the average target-similar distractor distance. Also shown, using a blue dashed line,
is the tracking accuracy for the version with no similar distractors at target orientation of 40◦ from Experiment
2. (d) model prediction for the same data using the saliency based model of Figure 3.

given the feature responses from the two classes and can be written as:

S(l) =
1

n

∑
k

Sk(l), Sk(l) = EY (l){γ[PC(l)|Yk(l)(1|y)]}, γ(x) =

{
x− 1

2
x ≥ 0.5

0 x < 0.5
(1)

The saliency measure Sk(l) is the expected confidence with which the feature response Yk(l)
is assigned to the target class. γ(x) is a nonlinearity that thresholds the posterior probability
PC(l)|Yk(l)(1|y) to prevent locations assigned to the background class by the Bayes decision rule
(PC(l)|Yk(l)(1|y) ≤ 0.5), from contributing to the saliency. This tunes the saliency measure to re-
spond only to the presence of target stimuli, not to its absence. This definition of saliency was
shown, in [12], to be computable using units that conform to the standard neurophysiological model
of cells in visual cortex area V1 [5], when the features are bandpass filters (e.g. Gabor filters) ex-
tracted from static natural images. However, for the tracking task, the feature set Y for representing
the target and background needs to contain spatiotemporal features that are tuned to the velocity
of moving patterns. It can be shown that saliency for such velocity tuned spatiotemporal features
can be computed by combining the outputs of a set of V1 like units of [12], akin to the widely
used approach for constructing models for MT cells from afferent V1 units [36, 33]. This enhanced
network, illustrated in Figure 3, is equivalent to an MT neuron tuned to a particular velocity (see
supplement [1]).

3.1 Neurophysiologically plausible feature selection

A key component of the saliency tracker of [22] is a feature selection procedure that continuously
adapts the saliency measure of (1) to the target. The basic idea is to select, at each time step, the
features in Y(l) that best discriminate between target (center) and background. This changes the
saliency from a bottom-up identification of locations where center and surround differ, to a top-
down identification of locations containing the target in the center and background in the surround.
However, the procedure of [22] (based on feature ranking) is not biologically plausible. To derive
a biologically plausible feature selection mechanism, we replace the saliency measure of (1) with a
feature-weighted extension

S(l) =
∑
k

αkSk(l),
∑
k

αk = 1 (2)

where αk is the weight given to the saliency of the k th feature channel. We associate a binary
variable Fk with each feature Yk, such that Fk = 1 if and only if Yk is the most salient feature of the
target. We then assume that, given the knowledge of which feature is most salient, target presence
at location l is independent of the remaining feature responses, and so the posterior probability of
target presence given the observation of all features is written as:

PC(l)|Y(l),Fk
(1|y, 1) = 2γ[PC(l)|Yk(l)(1|y)], (3)

This reflects a conservative strategy, where features cannot be considered salient unless they are in-
dividually discriminant for target presence. Given the location l ∗ where the target has been detected,
the posterior probability of feature saliency can then be computed by Bayes rule

PFk|C(l∗)(1|1) =
PC(l∗)|Fk

(1|1)PFk (1)∑
j PC(l∗)|Fj

(1|1)PFj (1)
, where (4)
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PC(l∗)|Fk
(1|1)=

∫
PC(l∗)|Y(l∗),Fk

(1|y, 1)PY(l∗)|Fk
(y|1)dy (5)

=

∫
2γ[PC(l∗)|Yk(l

∗)(1|y)]PYk(l∗)(y)dy (using (3))

= 2EYk(l∗){γ[PC(l∗)|Yk(l
∗)(1|y)]} = 2Sk(l

∗), (6)

and the last equality follows from (1). Using (6) in (4), we get

PFk|C(l∗)(1|1) =
Sk(l

∗)PFk(1)∑
j Sj(l∗)PFj (1)

. (7)

Under reasonable assumptions of persistence of the dominant features in the target, this analysis can
be extended over time, by denoting the state of Fk and l∗ at time t by F t

k and l∗t , and the sequence
of target locations till time t by l∗t = (l∗t , l

∗
t−τ . . . l

∗
0), and we get the recursion (see [1]),

PF t
k
|C(l∗t )(1|1) =

Sk(l
∗
t )PF t−τ

k
|C(l∗t−τ )

(1|1)∑
j Sj(l∗t )PF t−τ

j |C(l∗t−τ )
(1|1) . (8)

Hence, the posterior probability of feature k being the most salient at time t given that the target is
at l∗t is computed by divisively normalizing a weighted version of S k(l

∗
t ), the bottom-up saliency of

the feature k at l∗t , by the total saliency summed over all features. The weight applied to the saliency
of each feature (corresponding to αk in (2)) is the posterior probability of the feature being the most
salient at time t − τ . Therefore the posterior at time t − τ is fed back with a delay, to become the
weight at time t. This enhances the most salient features, suppressing the non-salient ones, and is
equivalent to applying a soft-thresholding to select only the dominant features.

This feature selection mechanism involving selective enhancement and suppression of features, op-
erating on the outputs of the MT stage bears a close resemblance to the phenomenon of feature-based
attention [24]. In fact, the proposed approach to feature selection is similar to previously proposed
biologically plausible models of feature-based attention that rely on a Bayesian formulation and
include divisive normalization [30, 31, 20, 7]. Further, neurophysiological studies have found evi-
dence of feature-based attention in the lateral intraparietal (LIP) area [3]. LIP is also known to have
cortico-cortical connections to area MT [21], and attentional control is thought to be fed-back from
LIP to MT [34]. Studies also suggest that the LIP might be computing a priority map that combines
both bottom-up inputs and top-down signals, and the peak of this map response is used to guide
visual attention [3]. These findings are compatible with the feature selection approach of (8), and
therefore area LIP is a plausible candidate location for the feature selection stage of our model.

3.2 Neurophysiologically plausible discriminant tracker

A neurophysiologically plausible version of the discriminant tracker of [22] can be constructed with
the discriminant saliency measure of (1), and the feature selection mechanism of (8). As in [22],
in the absence of top-level information regarding the target, initialization and target acquisition can
be treated as discrimination between the visual stimulus contained in a pair of center (target) and
surround windows, at every location of the visual field. In this case, there is no explicit top-down
guidance about the object to recognize, and the saliency of location l is measured by the saliency
of all unmodulated feature responses. This consists of using the bottom-up saliency measure of (2)
with αk = PF 0

k
(1), where PF 0

k
(1) is a uniform prior for feature selection, at time t = 0. The

outputs of all features or neurons are then summed with equal weights to produce a final saliency
map. The peak of this map represents the location which is most distinct from its surround, based
on the responses of the motion sensitive spatio-temporal features, and becomes the target. Spatial
attention is then shifted to the peak of this map.

Once the initial target location is attended, the feature selection mechanism modulates the saliency
response of the individual feature channels, using the weights of (8). The final saliency value at
that location also becomes the normalizing constant for the divisive normalization of (8). These
feature weights are fed back to MT neurons, where each feature map is enhanced or attenuated
depending on the corresponding feature weight. This enhances the features that are salient for
target detection, and suppresses the non-salient ones. LIP also feeds back the retinotopic weight
map corresponding to spatial attention, causing a suppression of feature responses in all areas other
than in a neighborhood of the current locus of attention.
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Figure 3: The network for tracking using feature selection. The discriminant saliency network of [12] is used
to construct a model for an MT neuron. Feature selection, performed possibly in area LIP with weights being
fed-back to MT, is achieved by the modulation of the response of each feature channel by its saliency value
after divisive normalization across features.

After the latency due to feedback, say at time t + τ , the new feature weights and spatial weights,
modulate the feature maps, which are again fed forward to LIP, where the updated saliency map is
computed by simple summation. The top-down saliency of location l at time t+ τ is then given by

Std(l) =
∑
j

Std
j (l) =

∑
j

Sj(l)PF t
j
|C(l∗t )(1|1). (9)

where Sj(l) is the modulated saliency response of the j th feature.

Spatial attention suppresses all but a neighborhood of the last known target location l ∗t , and the
feature-based attention suppresses all features except those present in the target and discriminative
with respect to the background. Therefore, the peak of the new saliency map corresponds to the
position that best resembles the target at time t+ τ , and attention is shifted to that position.

l∗t+τ = argmax
l

Std(l) (10)

The process is iterated, so as to track the target over time, as in [22]. The entire tracking network is
shown in Figure 3. The computation, in V1, of SZj (l) is implemented with the bottom-up network
of [12]. V1 outputs are then linearly combined with weights w jk (which are described in supple-
ment [1]) to obtain the MT responses Sk(l). The remaining operations, possibly in LIP, compute the
probabilities of (8) and the top-down saliency map of (9).

4 Validation of joint architecture
We applied the network of Figure 3 to the sequences used in Experiment 1. Representative frames
of the result of tracking on the displays of the experiment and the videos are available from [1]. The
model replicates the trend observed in both versions of the experiment, accurately tracking the target
in the salient conditions, and losing track in the non-salient condition.

The results of applying the network to the stimuli in Experiments 2 and 3 are shown in Figures 1(d)
and 2(d) respectively. It is seen that the model predictions accurately match the trend observed in
all three versions of the Experiment 2. The model also predicts the effect of background seen in
Experiment 3.

5 Conclusion

We provide the first verifiable evidence for a connection between saliency and tracking that was
earlier only hypothesized [22]. In particular, we show that three main predictions of the hypothesis
hold. First, using psychophysics experiments we show that tracking requires discrimination between
target and background using a center-surround mechanism, and that tracking reliability and saliency
have a common dependence on feature contrast and distractor heterogeneity. Next we construct a
tracking model starting a neurally plausible architecture to compute saliency, and show that it can be
implemented with widely accepted models of cortical computation. Specifically, the model is based
on a feature selection mechanism akin to the well known phenomenon of feature-based attention in
MT. Finally, we show that the tracking model accurately replicates all our psychophysics results.

8



References

[1] See attached supplementary material.
[2] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(2):261–271, 2007.
[3] J. Bisley and M. Goldberg. Attention, intention, and priority in the parietal lobe. Annual review of

neuroscience, 33:1–21, 2010.
[4] D. H. Brainard. The psychophysics toolbox. Spatial Vision, 10:433–436, 1997.
[5] M. Carandini, J. Demb, V. Mante, D. Tolhurst, Y. Dan, B. Olshausen, J. Gallant, and N. Rust. Do we

know what the early visual system does? Journal of Neuroscience, 25:10577–10597, 2005.
[6] J. Cavanaugh, W. Bair, and J. Movshon. Nature and interaction of signals from the receptive field center

and surround in macaque V1 neurons. Journal of Neurophysiology, 88:2530–2546, 2002.
[7] S. Chikkerur, T. Serre, C. Tan, and T. Poggio. What and where: A Bayesian inference theory of attention.

Vision Research, 2010.
[8] R. Collins, Y. Liu, and M. Leordeanu. On-line selection of discriminative tracking features. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 27(10):1631 – 1643, October 2005.
[9] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(5):564–577, 2003.
[10] J. C. Culham, S. A. Brandt, P. Cavanagh, N. G. Kanwisher, A. M. Dale, and R. B. Tootell. Cortical fmri

activation produced by attentive tracking of moving targets. J Neurophysiol, 80(5):2657–2670, November
1998.

[11] D. Gao, V. Mahadevan, and N. Vasconcelos. On the plausibility of the discriminant center-surround
hypothesis for visual saliency. Journal of Vision, 8(7):1–18, 6 2008.

[12] D. Gao and N. Vasconcelos. Decision-theoretic saliency: computational principle, biological plausibility,
and implications for neurophysiology and psychophysics. Neural Computation, 21:239–271, Jan 2009.

[13] H. Grabner and H. Bischof. On-line boosting and vision. IEEE Conference on Computer Vision and
Pattern Recognition, 1:260–267, 2006.

[14] J. Intriligator and P. Cavanagh. The spatial resolution of visual attention. Cognitive Psychology, 43:171–
216, 1997.

[15] M. Isard and A. Blake. Condensation conditional density propagation for visual tracking. International
Journal of Computer Vision, 29:5–28, 1998.

[16] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254–1259, 1998.

[17] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust online appearance models for visual tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):1296–1311, 2003.

[18] D. Kahneman, A. Treisman, and B. J. Gibbs. The reviewing of object files: Object-specific integration of
information. Cognitive Psychology, 24(2):175–219, April 1992.

[19] Y. Kazanovich and R. Borisyuk. An oscillatory neural model of multiple object tracking. Neural compu-
tation, 18(6):1413–1440, 2006.

[20] J. Lee and J. Maunsell. A normalization model of attentional modulation of single unit responses. PLoS
One, 4(2), 2009.

[21] J. Lewis and D. Van Essen. Corticocortical connections of visual, sensorimotor, and multimodal process-
ing areas in the parietal lobe of the macaque monkey. The Journal of comparative neurology, 428(1):112–
137, 2000.

[22] V. Mahadevan and N. Vasconcelos. Saliency-based discriminant tracking. Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on, 0:1007–1013, 2009.

[23] T. Makovski and Y. Jiang. Feature binding in attentive tracking of distinct objects. Visual cognition,
17(1):180–194, 2009.

[24] J. Maunsell and S. Treue. Feature-based attention in visual cortex. TRENDS in Neurosciences, 29(6):317–
322, 2006.

[25] H. C. Nothdurft. Texture segmentation and pop-out from orientation contrast. Vision Research,
31(6):1073–1078, 1991.

[26] H. C. Nothdurft. The conspicuousness of orientation and motion contrast. Spatial Vision, 7:341–363,
1993.

[27] H. C. Nothdurft. Salience from feature contrast: additivity across dimensions. Vision Research, 40:1183–
1201, 2000.

[28] L. Oksama and J. Hyn. Is multiple object tracking carried out automatically by an early vision mechanism
independent of higher-order cognition? an individual difference approach. Visual Cognition, 11(5):631 –
671, 2004.

[29] Z. W. Pylyshyn and R. W. Storm. Tracking multiple independent targets: evidence for a parallel tracking
mechanism. Spatial vision, 3(3):179–197, 1988.

[30] R. Rao. Bayesian inference and attentional modulation in the visual cortex. Neuroreport, 16(16):1843,
2005.

9



[31] J. Reynolds and D. Heeger. The normalization model of attention. Neuron, 61(2):168–185, 2009.
[32] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. International

Journal of Computer Vision, 77(1-3):125–141, May 2008.
[33] N. Rust, V. Mante, E. Simoncelli, and J. Movshon. How MT cells analyze the motion of visual patterns.

Nature Neuroscience, 9(11):1421–1431, 2006.
[34] Y. Saalmann, I. Pigarev, and T. Vidyasagar. Neural mechanisms of visual attention: how top-down feed-

back highlights relevant locations. Science, 316(5831):1612, 2007.
[35] H. Sakata, H. Shibutani, and K. Kawano. Functional properties of visual tracking neurons in posterior

parietal association cortex of the monkey. J Neurophysiol, 49(6):1364–1380, 1983.
[36] E. Simoncelli and D. Heeger. A model of neuronal responses in visual area MT. Vision Research,

38(5):743–761, 1998.
[37] E. Vul, M. Frank, G. Alvarez, and J. Tenenbaum. Explaining human multiple object tracking as resource-

constrained approximate inference in a dynamic probabilistic model. Advances in Neural Information
Processing Systems, 22:1955–1963, 2009.

[38] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys, 38(4):13, 2006.

10


