
Boosting Algorithms for Simultaneous Feature Extraction and Selection

Mohammad J. Saberian Nuno Vasconcelos
Department of Electrical and Computer Engineering

University of California, San Diego
saberian@ucsd.edu, nuno@ece.ucsd.edu

Abstract

The problem of simultaneous feature extraction and se-
lection, for classifier design, is considered. A new frame-
work is proposed, based on boosting algorithms that can
either 1) select existing features or 2) assemble a combina-
tion of these features. This framework is simple and mathe-
matically sound, derived from the statistical view of boost-
ing and Taylor series approximations in functional space.
Unlike classical boosting, which is limited to linear fea-
ture combinations, the new algorithms support more sophis-
ticated combinations of weak learners, such as “sums of
products” or “products of sums”. This is shown to enable
the design of fairly complex predictor structures with few
weak learners in a fully automated manner, leading to faster
and more accurate classifiers, based on more informative
features. Extensive experiments on synthetic data, UCI
datasets, object detection and scene recognition show that
these predictors consistently lead to more accurate classi-
fiers than classical boosting algorithms.

1. Introduction

A central problem in computer vision is that of learning
good image representations. One of the most challenging
aspects of this problem is the search for the best features for
the solution of problems such as object detection. Recent
progress has drawn extensively in machine learning, where
there are two main approaches to feature learning, feature
selection (FS) and feature extraction (FE). FS starts from a
large pool of features and uses learning techniques to select
the best subset for the problem at hand. FE creates a set
of features by designing a transformation from the image
space to a new space where the problem of interest is best
solved. In general, FE produces better solutions since it
is not limited by the representation power of the original
feature set. On the other hand, it usually involves a more
complex learning problem, and is frequently too complex
for practical applications.

While there are many approaches to unsupervised FE,

e.g. dimensionality reduction methods such as principal
component analysis, or manifold learning, sparse decom-
positions, deep belief networks, among others, substantially
less progress has been reported in the area of supervised FE.
This is of particular relevance for vision, where various au-
thors have noted the importance of complex features in bi-
ological recognition [19], [17]. In fact, a major open prob-
lem for computer vision is how to replicate the ability of
biology to learn layers of recognizers based on features that
are simultaneously more selective for the objects of interest
(discriminant) and invariant than their predecessors. Com-
plex features also play an important role in the modeling of
object parts, and are critical to the success of methods that
represent objects as constellations of such parts [4]. The
ability to address these questions requires the development
of powerful supervised FE methods.

Substantially greater progress has been achieved in the
area of supervised FS. In fact, modern classifiers, such
as support vector machines (SVM), boosting, or logis-
tic regression, implement simple hyperplane boundaries in
learned feature spaces. The features that define these spaces
are selected from either the set of training examples (e.g.
the support vectors of the SVM) or from a large pre-defined
feature pool (e.g the Haar wavelets popular in the boosting
literature). These features tend to have little individualdis-
criminant power, because they are either too example spe-
cific (SVM templates) or too simple (Haar wavelets). In
result, a large number of features must be selected, and the
classifier learned in a high dimensional space. While the ro-
bustness of the large margin principle enables great robust-
ness to the dimensionality of this space, high dimensional
spaces of weak features increase classifier complexity and
the potential for over-fitting. It is not uncommon for a SVM
to select80% of its training set as support vectors, or for
boosting to produce classifiers with thousands of features.

In fact, much of the research in fast object detection, e.g.
the design of detector cascades [20], attempts to overcome
this problem by judiciously controlling the number of fea-
tures evaluated per classified example. Nevertheless, the
weakness of the individual features bounds the representa-

1



Figure 1.Example of the Haar features used in face detection [20].

tion power of the resulting object detectors, and can limit
object detection performance. This is illustrated in Figure1
which depicts a well known example from face detection
[20] where boosting is able to select effective linear com-
binations of very simple Haar wavelets. It is clear that the
approximation of a face by these patterns will require a very
large number of them. In the case of more complex objects,
or objects that exhibit more variability, the approximation
may not even be feasible with tractable amounts of detec-
tor complexity and speed. In the boosting literature, these
scenarios are addressed by resorting to more complex weak
learners, usually decision trees. This, however, is known to
be somewhat unstable, since the robustness of boosting to
over-fitting quickly erodes with tree depth. In practice, no
tree depth guarantees uniformly good performance, and the
default choice seems to be the decision stump, which is a
threshold on a single feature.

An alternative solution is to maintain the features simple
but add features combinations, such as feature products or
logical operations, e.g. “and” or “or”, to the feature pool.
This, however is not trivial when the starting feature pool is
large already, as is usually the case in vision (e.g.50, 000
Haar wavelets in [20]). One possibility is to endow the
learning algorithm with the ability to either use the avail-
able features orcreatenew combinations of these features,
as needed. Some steps towards this goal have recently been
given in the boosting literature. One example is the method
of [7] which learns products of decision trees. Alternatively,
[3] suggests the addition, to the boosted predictor, of logi-
cal combinations (“and”, “or”) of previously selected weak
learners. [13], on the other hand, relies on a combination of
binary quantized feature responses and sequential forward
selection to design new weak learners. Yet, all of these
works rely on a single type of feature combination, or re-
quire extensive (or approximate) search of the space of fea-
ture combinations, to create new weak learners.

In this work, we aim to derive boosting algorithms for
FE. This is done by formulating FE as the problem of learn-
ing more sophisticated combinations of weak learners than
their classical addition. A new framework for the design of
boosting algorithms that learns such combinations is then
introduced. The framework is simple and mathematically
sound, relying on the statistical view of Boosting [6] and
Taylor series approximations in functional space [18]. The
resulting boosting algorithms grow a predictor by selecting
among a pair of predefined operations, which could be sums
and products, or “ands” and “ors”, among others. These op-

erations can be added as needed, so as to produce groups of
features of greater complexity than those in the initial pool.
Two new boosting algorithms are derived from the proposed
framework. In addition to the classical linear combination
of weak learners, they can learnsums of weak learner prod-
ucts(SOP) orproducts of weak learner sums(POS). SOP-
Boost is shown to generalize classical boosting algorithms,
converge to a globally optimal solution, and grow fairly
complex predictor structures with few weak learners, in a
fully automated way. Extensive experiments on synthetic
data, UCI datasets, object detection and scene recognition
show that it is consistently able to produce more accurate
classifiers than classical boosting methods. This includes
boosting algorithms with a variety of weak learners, rang-
ing from simple regressors to trees of non-trivial depth.

2. Boosting

A classifier is a mappingh(x) from examplesx ∈ X
into labelsy ∈ {−1, 1}, usually implemented ash(x) =
sgn[f(x)] wheref : X → R is a real-valued predictor. The
optimal predictorf∗(x) is the minimizer of the classifica-
tion risk

R(f) = EX,Y {L[yf(x)]} ≈
∑

i

L[yif(xi)] (1)

whereL(.) is a loss function that upper bounds the error
rate. Boosting methods learn and approximate the optimal
predictor as alinear combination of simpler predictors,gk :
X → R, called weak learners i.e.

f(x) =
∑

k

αkgk(x) g ∈ G (2)

whereG = {g1, .., gm} is the set of all weak learners. For
mathematical consistency, we assume thatg(x) = 0 and
g(x) = 1 are inG. Under the statistical view of [6, 12],
boosting methods learn this linear combination by iterative
descent methods in functional space, with respect to the op-
timization problem

{

minf(x) R(f)
s.t f(x) ∈ ΩG ,

(3)

whereΩG is the set of all linear combinations of weak learn-
ers inG. Note thatΩG is a convex set and, ifR(.) is a convex
function, the optimization problem of (3) is convex.

Let the first and second derivative of the loss function
used in (1) beL′ = ∂L(v)

∂v
andL′′ = ∂2L(v)

∂v2 and assume
that, afterk iterations, the estimate of the optimal predictor
is fk(x). Using a Taylor series expansion ofR(fk + g)
aroundfk, the first and second order functional variations



along the direction of weak learnerg(x) ∈ G are [18]

δR(fk; g) =
∂R(fk + ξg)

∂ξ

∣

∣

∣

∣

ξ=0

(4)

=
∑

i

yig(xi)L
′[yif

k(xi)] (5)

δ2R(fk; g) =
∂2R(fk + ξg)

∂ξ2

∣

∣

∣

∣

ξ=0

(6)

=
∑

i

g2(xi)L
′′[yif

k(xi)]. (7)

From these, [18] has shown that the best weak learner to
add to the predictor at iterationk + 1 is

g∗ = argmin
g∈G

δR(fk; g) (8)

when gradient descent is used, and

g∗ = argmax
g∈G

[δR(fk; g)]2

δ2R(fk; g)
(9)

when Newton method is used. Given the best weak learner,
g∗, the optimal step size is

α∗ = argmin
α∈R

R(fk + αg∗). (10)

The predictor estimate is then updated as

fk+1(x) = fk(x) + α∗g∗(x), (11)

and the final predictor would be alinear combination of
weak learners.

3. Boosting new feature combinations

Although boosting selects informative features for clas-
sification, the original set of weak learners may not be rich
enough to capture all the feature space dimensions required
for discrimination. For example, it may be necessary to
use conjunctions of the features to capture some of these
dimensions. In this case, the linear combination is insuffi-
cient, and boosting can fail to produce an accurate detec-
tor. To overcome this problem, we propose a boosting pro-
cedure that can learn more sophisticated combinations of
weak learners, e.g. sums of products or products of sums.

3.1. Boosting Sum of Products, SOP-Boost

Given a set of weak learnersG, SOP-Boost aims to solve
{

minf(x) R(f)
s.t f(x) ∈ Ωsop

G .
(12)

whereΩsop
G is now the set of all possiblelinear combina-

tions of productsof weak learners, i.e.

Ωsop
G =







h(x)|h(x) =
∑

j

∏

l

gj,l(x), gj,l ∈ G







. (13)

It can be shown thatΩsop
G is a convex set. Hence, for any

convex functionR(.), the optimization problem of (12) is
convex.

The proposed boosting algorithm is based on the Taylor-
Boost framework [18]. Assume that afterk iterations the
predictor hasm terms,

fk(x) =

m
∑

j=1

pkj (x), (14)

each of which is a single weak learner or a product of weak
learners,

pkj (x) =

tj
∏

l=1

gj,l(x) gj,l(x) ∈ G. (15)

At iterationk + 1 it is possible to improvefk(x) with two
types of updates: 1) additive and 2) multiplicative.

Additive update: In this case we consider adding a weak
learner to the predictor, i.e.fk+1(x) = fk(x) + g(x). The
optimal updates are as in standard boosting, i.e.δR(fk; g)
andδ2R(fk; g) are given by (5) and (7), respectively, the
optimal weak learner,g∗0 , is obtained by (8) or (9), depend-
ing on the choice of gradient descent or Newton method,
and the optimal step size,α∗

0, is given by (10). The updated
predictor has risk

R̂0 = R(fk + α∗
0g

∗
0). (16)

Multiplicative update : In this case, one of the existing
terms is multiplied by a new weak learner, i.e.pk+1

r (x) =
pkr (x)× g(x). Using (14), this results in

fk+1(x) = pkr (x)g(x) +
∑

j 6=r

pkj (x) (17)

= [fk(x)− pkr (x)] + pkr (x)g(x) (18)

= Qk
r (x) + pkr (x)g(x) (19)

whereQk
r (x) = fk(x) − pkr (x). Using (19) and a Taylor

series expansion ofR(fk+1) around functionalQk
r (x), the

first and second order variations of the risk with respect to
a multiplicative update of therth term infk(x) are

δR(fk; g, r) =
∂R[Qk

r + ξpkrg]

∂ξ

∣

∣

∣

∣

ξ=0

(20)

=
∑

i

yig(xi)p
k
r (xi)L

′[yiQ
k
r (xi)] (21)

δ2R(fk; g, r) =
∂2R[Qk

r + ξpkrg]

∂ξ2

∣

∣

∣

∣

ξ=0

(22)

=
∑

i

[g(xi)p
k
r (xi)]

2L′′[yiQ
k
r (xi)]. (23)



Algorithm 1 SOP-Boost
Input: Training setSt, set of weak learnersG =
{g1, ...gm}, Number of iterationN and a definition of
loss functionL(.).
Initialization: Set k = 0, m = 0, pkm(x) = 0 and
fk(x) = 0 .
while k < N do

Find the best additive updateα∗
0g

∗
0 by using (5) and (7)

in (8) or (9) and (10).
SetR̂0 = R(fk + α∗

0g
∗
0).

for r = 1 tom do
Find the best update forrth product term,α∗

rg
∗
r , us-

ing (21) and (23) in (8) or (9) and (24).
SetR̂r = R[(fk − pkr ) + pkrα

∗
rg

∗
r ].

end for
Setr∗ = argminr R̂r r = 0, . . . ,m.
if r∗ = 0 then
pk+1
m+1 = α∗

0g
∗
0

m = m+ 1
else
pk+1
r∗ = pkr∗ × α∗

r∗g
∗
r∗

end if
pk+1
r = pkr r 6= r∗

fk+1(x) =
∑m

r=1 p
k+1
r (x)

k = k + 1
end while
Output: decision rule:sign[fN (x)]

The best weak learner,g∗r , is given by the combination of
(8) or (9) with (21) and (23), and the optimal step size is

α∗
r = argmin

α∈R

R(Qk
r + αg∗r ). (24)

The updated predictor has risk

R̂r = R(Qk
r + α∗

rg
∗
r ). (25)

SOP-Boost computes the optimal weak learners, and corre-
sponding risks, under two strategies: 1) one additive update
and 2)m multiplicative updates. It then selects the update
that most reduces the classification risk. This method is pre-
sented in Algorithm 1.

3.2. Boosting Product of Sums, POS-Boost

Given a set of weak learnersG, POS-Boost aims to solve
{

minf(x) R(f)
s.t f(x) ∈ Ωpos

G .
(26)

where

Ωpos
G =







h(x)|h(x) =
∏

j

∑

l

gj,l(x), gj,l ∈ G







. (27)

Note thatΩsop
G is not a convex set i.e. ifg1, g2 ∈ Ωpos

G ,
g1 + g2 does not necessarily belong toΩpos

G . Hence, the
optimization problem of (26) is not convex. In this case,
the minimization of the risk by descent methods produces a
local minimum.

The proposed boosting algorithm is again based on Tay-
lorBoost. Assume that afterk iterations the predictor is a
product ofm sums

fk(x) =

m
∏

j=1

Sk
j (x) (28)

whereSk
j is a sum oftj weak learners,

Sk
j (x) =

tj
∑

l=1

gj,l(x) gj,l(x) ∈ G. (29)

Similar to SOP-Boost, two updates are considered at itera-
tion k + 1.

Multiplicative Update : In this case we consider mul-
tiplying the predictor by a weak learner, i.e.fk+1(x) =
fk(x) × g(x). Noting that this update is equivalent to
fk+1(x) = 0 + fk(x) × g(x), and using a Taylor series
expansion ofR(fk+1) around the zero functional,z(x) =
0 ∀x, leads to the following first and second order varia-
tions

δR(fk; g) =
∂R[0 + ξfkg]

∂ξ

∣

∣

∣

∣

ξ=0

(30)

=
∑

i

yig(xi)f
k(xi)L

′[0] (31)

δ2R(fk; g) =
∂2R[0 + ξfkg]

∂ξ2

∣

∣

∣

∣

ξ=0

(32)

=
∑

i

[g(xi)f
k(xi)]

2L′′[0]. (33)

The best weak learnerg∗0(x) is given by the combination of
(8) or (9) with (31) and (33), and the optimal step size is

α∗
0 = argmin

α∈R

R(fk × αg∗0). (34)

The updated predictor has risk

R̂0 = R(fk × α∗
0g

∗
0). (35)

Additive Update: In this case, a new weak learner
is added to one of the existing summation terms, i.e.
Sk+1
r (x) = Sk

r (x) + g(x) for somer. This results in

fk+1(x) = (Sk
r (x) + g(x))×

∏

j 6=r

Sk
j (x) (36)

=
m
∏

j=1

Sk
j (x) +

∏

j 6=r

Sk
j (x)g(x) (37)

= fk(x) + T k
r (x)g(x) (38)



where

T k
r (x) =

∏

j 6=r

Sk
j (x) =

fk(x)

Sk
r (x)

. (39)

Using a Taylor series expansion ofR(fk+1) aroundfk, the
first and second order variations of risk with respect to the
addition ofg(x) to therth term offk are

δR(fk; g, r) =
∂R[fk + ξT k

r g]

∂ξ

∣

∣

∣

∣

ξ=0

(40)

=
∑

i

yig(xi)T
k
r (xi)L

′[yif
k(xi)] (41)

δ2R(fk; g, r) =
∂2R[fk + ξT k

r g]

∂ξ2

∣

∣

∣

∣

ξ=0

(42)

=
∑

i

[g(xi)T
k
r (xi)]

2L′′[yif
k(xi)]. (43)

The best weak learner,g∗r , is given by the combination of
(8) or (9) with (41) and (43), and the optimal step size is

α∗
r = argmin

α
R(fk + αT k

r g
∗
r ). (44)

The updated predictor has risk

R̂r = R(fk + α∗
rT

k
r g

∗
r ). (45)

Similarly to SOP-Boost, POS-Boost computes the optimal
weak learners, and corresponding risks, for each update sce-
nario. It then selects the update that most reduces the clas-
sification risk. This method is presented in Algorithm 2.

3.3. Discussion

We have so far derived descent methods in functional
space to learn combinations of weak learners that are more
sophisticated than those of regular boosting. In fact, us-
ing the+ and× operators it is possible to learn four types
of combinations, 1) sum of products (SOP-Boost), 2) prod-
uct of sums (POS-Boost), 3) pure linear (regular boosting),
which is a special case of SOP-Boost, and 4) pure prod-
uct (similar to [7]) which is a special case of POS-Boost.
The derivations of SOP-Boost and POS-Boost are the most
general for these two operators. They can also be easily
generalized to any other pair of operators. This just requires
application of a Taylor series expansion, finding the best up-
date under each of the possible predictor update strategies,
and selecting the best. For example, it would be possible to
use the logical operators “and”, “or” (as in [3]) to create the
logical equivalent of SOP and POS.

Another interesting property of SOP and POS-Boost is
that they combine weak learners automatically. There is no
need to pre-specify parameters such as the degree of each
term, or the number of terms. On the contrary, the proposed
framework adaptively finds the most informative combina-
tion of weak learners for a specific classification problem.

Algorithm 2 POS-Boost
Input: Training setSt, set of weak learnersG =
{g1, ...gm}, Number of iterationN and a definition of
loss functionL(.).
Initialization: Set k = 0, m = 0, pkm(x) = 1 and
fk(x) = 1
while k < N do

Find the best multiplicative updateα∗
0g

∗
0 by using (31)

and (33) in (8) or (9) and (34).
SetR̂0 = R(fk × α∗

0g
∗
0).

for r = 1 : m do
Find the best update forrth summation term,α∗

rg
∗
r ,

using (41) and (43) in (8) or (9) and (44).

SetR̂r = R[fk + fk

Sk
r
α∗
rg

∗
r ].

end for
Setr∗ = argmin R̂r r = 0, . . . ,m
if r∗ = 0 then
Sk+1
m+1 = α∗

0g
∗
0

m = m+ 1
else
Sk+1
r∗ = Sk

r∗ + α∗
r∗g

∗
r∗

end if
Sk+1
r = Sk

r r 6= r∗

fk+1(x) =
∏m

r=1 S
k+1
r (x)

k = k + 1
end while
Output: decision rule:sign[fN (x)]

Hence, if there is any underlying structure, such as impor-
tant feature correlations, SOP and POS-Boost are likely to
exploit it. This is discussed in more detail in Section4.3,
where we tested our method on face detection using combi-
nations of Haar wavelets.

4. Evaluation

This section compares the performance of SOP and
POS-Boost with regular boosting (denoted Lin-Boost) on
synthetic and real data. In addition, we apply SOP-Boost to
the computer vision problems of object detection and scene
classification.

4.1. Synthetic data

We start with an experiment relative to the XOR prob-
lem, which provides insight. Training and test sets contain
4, 000 examples drawn from four 2D Gaussian random vari-
ables of means[2, 2], [−2,−2], [2,−2], [−2, 2] and covari-
ances[1, .5; .5, 2], [.4, .1; .1, .8], [.4, .1; .1, .8], [1, .3; .3, 1],
respectively. Samples from the first two Gaussians are con-
sidered positive examples and the remaining negatives. This
data is shown in figure2. The weak learners are regressors
on the example coordinates. For these learners, the bound-



−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

 

 

Class 1
Class 2
Boundary

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

 

 

Class 1
Class 2
Boundary

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

 

 

Class 1
Class 2
Boundary

Figure 2. Decision boundaries learned by (Left) regular boosting, (Middle) SOP-Boost and (Right) POS-Boost, on XOR data.

ary produced by regular boosting is a 2D line1. On the
other hand, because the predictors of SOP-Boost or POS-
Boost are multi-nomials, the corresponding boundary can
be much more complex. SOP-Boost, POS-Boost, and Lin-
Boost, were used with second order TaylorBoost and the
logistic loss. The predictors obtained after20 boosting iter-
ations were of the form

fsop = (h1 × h2) + (h3 × h4 × h7 × h8) (46)

+(h5 × h6 × h14) + (h9 × h10 × h11 × h19)

+(h12 × h13 × h17 × h18) + (h15 × h16 + h20).

fpos = (h1 + h5 + h7 + h9 + h13 + h17) (47)

×(h2 + h4 + h6 + h12 + h16 + h20)

×(h3 + h8 + h10 + h11 + h14 + h15 + h18 + h19)

fLin =

20
∑

i=1

ĥi (48)

wherehk, hk, ĥk are the weak learners selected in thekth

iteration of SOP-Boost, POS-Boost and Lin-Boost, respec-
tively. Note that the index indicates the selection order, and
is not an identifier of the weak learner. The decision bound-
aries associated with these predictors are shown in Figure
2. The final test-set error-rate was47.90% for Lin-Boost,
3.87% for POS-Boost and2.88% for SOP-Boost. This is an
example of how the combinations of weak learners learned
by SOP- and POS-Boost can overcome the limitations of
these weak learners in a manner that is not possible with the
linear combinations of Lin-Boost.

4.2. Real data

In a second set of experiments, we compared SOP-Boost,
POS-Boost, and Lin-Boost on7 UCI data sets (“Banana”,
“Titanic”, “Waveform”, “Twonorm”, “Thyroid”, “Splice”
and “Ringnorm”). These are provided with20 − 100 pre-
defined train/test splits [1], for which we report average re-
sults. We again used second order TaylorBoost, but con-
sidered four loss functions: the exponential of [5], logistic

1It is possible to use stronger weak learners with regular boosting to ad-
dress this problem. A comparison to these methods is presented in Section
4.2

of [6], canonical boosting loss (CBL) of [11], and Laplace
loss of [18]. As in the previous section, weak learners were
regressors on example coordinates. All classifiers were
trained with100 iterations.

Table1 lists the performances of the different methods.
Comparing SOP-Boost with Lin-Boost, the former pro-
duced more accurate classifiers in24 datasets out of28. In
fact, Lin-Boost had better performance only on “Twonorm”,
and only about1 − 2% improvement. In some of the other
datasets, SOP-Boost produced very significant gains over
Lin-Boost, e.g. 47.1% vs 11.7% on “Banana”. Compar-
ing POS-Boost to Lin-Boost, the former had better rates in
4 datasets, while Lin-Boost was more effective in15. In 9
datasets the two methods had the same accuracy. Overall,
SOP-Boost had the best performance among the three meth-
ods, the next best was Lin-Boost, and the third POS-Boost.

The weaker performance of POS-Boost is probably due
to its lack of guarantee of a globally optimal solution. While
the optimization problems of the first two methods are con-
vex, that of POS-Boost is not. Although this was not a prob-
lem for XOR data, there may be many more local minima in
the UCI problems, on which POS-Boost could get trapped.
On the other hand, because SOP-Boost solves a convex op-
timization problem, it guarantees convergence to the opti-
mal solution. Its superiority over Lin-Boost is explained by
the fact thatΩG ⊂ Ωsop

G , i.e. SOP-Boost searches a (much)
larger space of predictors.

We next compared the performance of SOP-Boost and
implementations of Lin-Boost with various weak learners.
These experiments were based on the exponential loss, sec-
ond order TaylorBoost, and100 training iterations. Ta-
ble 2 compares the results of SOP-Boost+regression weak
learners and Lin-Boost with weak learners based on re-
gression, decision stumps, and decision trees of depth3
and5. For Lin-Boost, the more complex trees lead to the
same or worse performance in5/7 datasets. Overall, SOP-
Boost had the best performance in4/7 datasets. In a pair-
wise comparison, it beats Lin-Boost with regression learn-
ers on6/7 datasets, Lin-Boost+stumps on5/7 (one tie),
Lin-Boost+tree(3) on4/7, and Lin-Boost+tree(5) on5/7.

These results show that SOP-Boost with regression weak



Table 1. The average error rate (%) of different Boosting methods on various data sets using different loss functions

Exp Log CBL Lap
Lin SOP POS Lin SOP POS Lin SOP POS Lin SOP POS

Banana 47.1± .5 11.7± .1 22.4± .5 47.0± .4 11.0± .1 20.9± .5 47.0± .4 11.1± .1 21.1± .3 47.1± .5 11.1± .1 21.4± .3

Titanic 22.7± .1 22.4± .1 23.4± .4 22.7± .1 22.4± .1 23.0± .4 22.7± .1 22.4± .1 23.7± .5 22.7± .1 22.3± .1 23.6± .5

Waveform 13.8± .1 12.9± .1 13.8± .1 13.5± .1 13.2± .1 13.5± .1 13.5± .1 13.1± .1 13.5± .1 13.5± .1 12.9± .1 13.5± .1

Twonorm 3.6± .0 4.6± .1 3.6± .0 3.6± .0 4.5± .1 3.6± .0 3.6± .0 5.1± .1 3.6± .0 3.6± .0 4.6± .1 3.6± .0

Thyroid 11.3± .3 5.4± .3 15.8± .4 10.5± .2 5.7± .3 14.6± .4 10.2± .3 6.7± .4 14.6± .4 10.4± .3 5.7± .3 13.4± .5

Splice 16.4± .2 7.9± .2 16.6± .1 16.2± .2 8.0± .2 16.4± .2 16.3± .2 7.8± .2 16.5± .2 16.3± .2 7.9± .2 16.3± .2

Ringnorm 26.3± .1 6.8± .1 33.8± .7 25.3± .1 7.6± .1 34.7± .7 25.4± .1 7.6± .1 34.9± .7 25.4± .1 7.5± .1 32.4± .7

Table 2. The average error rate (%) of different Boosting methods on
various data sets using different type of weak learners

Lin-Boost SOP-Boost
regression stump tree(3) tree(5) regression

Banana 47.1± .5 21.9± .2 13.1± .1 13.4± .1 11.7± .1

Titanic 22.7± .1 23.5± .2 25.1± .3 44.2± .6 22.4± .1

Waveform 13.8± .1 12.9± .1 11.7± .1 11.3± .1 12.9± .1

Twonorm 3.6± 0 4.7± 0 4.1± 0 4.0± 0 4.6± .1

Thyroid 11.3± .3 7.6± .3 8.5± .8 12± .4 5.4± .3

Splice 16.4± .2 7.0± .1 7.6± .9 33.1± .6 7.9± .2

Ringnorm 26.3± .1 8.6± .1 8.2± .1 8.2± .2 6.8± .1

learners has a better bias-variance trade-off than the variants
of Lin-Boost. In particular, Lin-Boost+regressors has too
much bias, which decreases with stumps and trees of depth
3. This method has the best overall performance among
Lin-Boost variants. With trees of depth 5, Lin-Boost has
too much variance and starts to severely over-fit in some
datasets. It should be said, however, that for some datasets
the over-fitting starts to be visible even for stumps, see e.g.
the second row of table2, where increasing tree depth re-
sults in higher error rates. In SOP-Boost, the base learners
are simple regressors, which are used first and latter com-
bined into higher order termsif and only if this leads to
better performance. This introduces some “resistance” to
unduly complex weak learners, which increase the risk of
over-training.

In summary, SOP-Boost has the best overall perfor-
mance because 1) it builds the complex combinations of
weak learners needed for accurate detection, but 2) only
uses such combinations when truly necessary, reducing the
risk of over-fitting.

4.3. Object detection

In this section, we report on experiments involving the
detection of faces, cars, and pedestrians. In all cases, the
features were Haar wavelets. The face dataset contains
9, 000 face and9, 000 non-face images, of size24×24. The
car data is based on the UIUC dataset [2] of 1, 100 positives
and10, 000 negatives, of size20×50. The pedestrian data is
based on the MIT Pedestrian dataset [14] of 1, 000 positives
and10, 000 negatives, of size40× 20. In all cases, the data
was split into five folds, four of which were used for train-
ing and one for testing. All experiments were repeated with

Table 3.The average error rate (%) of different Boosting methods on face,
car and pedestrian detection data sets.

Face Car Pedestrian
AdaBoost 5.7± 0.1 3.3± 1.9 3.9± 0.1

GentleBoost 9.0± 0.3 2.5± 0.3 6.9± 0.2

LogitBoost 8.9± 0.3 2.2± 0.3 5.4± 0.2

SOP+Exp Loss 5.1± 0.3 1.7± 0.3 3.4± 0.3

SOP+Log Loss 4.8± 0.3 1.5± 0.3 2.9± 0.2

Figure 3.Examples of features selected by SOP-Boost.

each fold taking the role of test set, and the results averaged.

Table 3 compares performance of AdaBoost, Gentle-
Boost, LogitBoost, and the combination of SOP-Boost (im-
plemented with second order TaylorBoost) and two loss
functions: exponential (also used by AdaBoost and Gen-
tleBoost) and logistic (by LogitBoost). The SOP+logistic
combination had the higher detection rates in all three tasks,
followed by SOP+exponential. In pairwise comparisons,
the error rate of SOP+logistic was frequently close to half
of that of the classical boosting methods. This is partly
explained by the sophistication of the features learned by
SOP-Boost. Some of the features learned for face detection
are shown in Figure3. The learned features are rather intu-
itive, mostly detectors of faces parts, such as eyes, mouth,or
ears, in certain relative positions. This enables the rejection
of face-like false-positive with a few feature evaluations.



Table 4.Classification accuracy for15 scene categories.

Method Accuracy%
Liu et al. [9] 63.32

Lazebnik et al. [8] 72.2

Rasiwasia et al. [16] 72.5

Liu et al. [9] 75.16

Rasiwasia et al. [15] 72.2

AdaBoost [10] 74.79

TangentBoost [10] 76.24

SOP-Boost+Exp loss 76.96

4.4. Scene Classification

We finish with results on scene classification using the
15-scene dataset. The most popular classifier for this prob-
lem is the SVM classifier of visual word histograms pro-
posed in [8]. There are many variants of this method that
implement spatial encodings, multiple kernels, different
codebook learning methods, etc. Since our goal was to eval-
uate the performance of the learning algorithms, we present
a comparison based on the basic visual word histogram,
without any of these extensions. Good results on this prob-
lem have been reported for generative classifiers that rep-
resent images as vectors of posterior probabilities under the
15-classes. These probabilities can be computed with Gaus-
sian [15] or Dirichlet [16] mixture models. Among dis-
criminant methods, SVMs [15, 16], and various versions of
boosting have also been used. Best current results are due
to the TangentBoost method of [10]. As shown in Table4,
the combination of SOP-Boost and the exponential loss out-
performs all previous methods. The comparison of the last
four rows of the table is particularly interesting, becauseall
these classifiers use as input the vectors of posterior prob-
abilities under a Gaussian mixture. The only difference is
the algorithm used to learn the final classification boundary,
which is an SVM, AdaBoost, TangentBoost and SOP-Boost
respectively.

5. Conclusion

In this work, we considered the problem of simultane-
ous feature creation and selection in classifier design. The
proposed solution is based on boosting and a pool of simple
features. At each boosting iteration, it searches for both the
best feature to add to the current ensemble and the best pos-
sible combination of current and new features. This allows
boosting to create weak learner combinations that are more
sophisticated than the classical weighted sum. In particu-
lar, we have proposed algorithms for learning sums of weak
learner products, SOP-Boost, and products of weak learners
sums, POS-Boost. Extensive experiments on synthetic data,
UCI data, and data from object detection and scene classi-
fication, has shown the superior performance of SOP-Boost
over previous boosting methods.

References

[1] http://theoval.cmp.uea.ac.uk/ gcc/matlab/index.shtml.6
[2] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-

jects in images via a sparse, part-based representation.IEEE
Trans. PAMI, 26:1475 –1490, 2004.7

[3] O. Danielsson, B. Rasolzadeh, and S. Carlsson. Gated clas-
sifiers: Boosting under high intra-class variation. InCVPR,
pages 2673 –2680, 2011.2, 5

[4] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. InCVPR,
2010.1

[5] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory,
pages 23–37, 1995.6

[6] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting.Annals of Statistics,
28:337–407, 2000.2, 6

[7] B. Kégl and R. Busa-Fekete. Boosting products of base clas-
sifiers. InICML, pages 497–504, 2009.2, 5

[8] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. InCVPR, pages 2169–2178, 2006.8

[9] J. Liu and M. Shah. Scene modeling using co-clustering. In
ICCV, 2007.8

[10] H. Masnadi-Shirazi, V. Mahadevan, and N. Vasconcelos. On
the design of robust classifiers for computer vision. InCVPR,
2010.8

[11] H. Masnadi-Shirazi and N. Vasconcelos. Variable margin
losses for classifier design. InNIPS, 2010.6

[12] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting
algorithms as gradient descent. InNIPS, 2000.2

[13] T. Mita, T. Kaneko, B. Stenger, and O. Hori. Discriminative
feature co-occurrence selection for object detection.IEEE
Trans. PAMI, 30(7):1257 –1269, july 2008.2

[14] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Pog-
gio. Pedestrian detection using wavelet templates. InCVPR,
pages 193–99, 1997.7

[15] N. Rasiwasia and N. Vasconcelos. Scene classification with
low-dimensional semantic spaces and weak supervision. In
CVPR, 2008.8

[16] N. Rasiwasia and N. Vasconcelos. Holistic context modeling
using semantic co-occurrences. InCVPR, 2009.8

[17] Riesenhuber and T. Poggio. Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2(11):1019–
1025, 1999.1

[18] M. J. Saberian, H. Masnadi-Shirazi, and N. Vasconcelos.
Taylorboost: First and second order boosting algorithms with
explicit margin control. InCVPR, 2011.2, 3, 6

[19] S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of
intermediate complexity and their use in classification.Na-
ture Neuroscience, 5(7):682–687, 2002.1

[20] P. Viola and M. J. Jones. Robust real-time face detection.In-
ternational Journal of Computer Vision, 57:137–154, 2004.
1, 2


