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Abstract. In this article, we propose an approach to learn the char-
acteristics of colonic mucosal surface structures, the so called pit pat-
terns, commonly observed during high-magnification colonoscopy. Since
the discrimination of the pit pattern types usually requires an experi-
enced physician, an interesting question is whether we can automatically
find a collection of images which most typically show a particular pit
pattern characteristic. This is of considerable practical interest, since it
is imperative for gastroenterological training to have a representative im-
age set for the textbook descriptions of the pit patterns. Our approach
exploits recent research on semantic image retrieval and annotation. This
facilitates to learn a semantic space for the pit pattern concepts which
eventually leads to a very natural formulation of our task.

1 Motivation

Over the past few years there has been considerable research in computer-based
systems to guide in vivo assessment of colorectal polyps, using endoscopic imag-
ing. This research is motivated by the prevalence of colorectal cancer, one of
the three most commonly diagnosed forms of cancer in the US, and its high
mortality rate. Following the concept of the adenoma-carcinoma sequence [11],
colorectal cancer predominantly develops from adenomatous polyps, although
adenomas do not inevitably become cancerous. In fact, the resection of colorec-
tal adenomas reduces the incidence of colorectal cancer. In this context, it is safe
to say that the ultimate objective of image analysis is to distinguish neoplastic
from non-neoplastic lesions, although finer grained discriminations are obviously
possible. While early approaches (e.g. [5]) to computer-assisted dignity assess-
ment were based on visual data from conventional white-light endoscopes, re-
search has shifted towards novel imaging modalities. These include narrow band
imaging (NBI, e.g. [9]), high-magnification chromo-endoscopy (HMCE e.g. [4]),
and probe-based confocal laser endomicroscopy (e.g. [1]). The emergence of these
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novel imaging modalities has made it challenging for gastroenterologists to inter-
pret the acquired imagery. In order to prevent serious mistakes (e.g. perforation
of the colon, etc.), substantial experience with the particular imaging modal-
ity and the highlighted tissue structures is still necessary, especially in situations
where the physician’s assessment differs from that of the decision support system
(which is still an uncommon tool in clinical practice).

In this work, we tackle the problem of preparing prospective gastroenterolo-
gists for clinical practice with the novel imaging modalities. We argue that, dur-
ing gastroenterological training, it is imperative to have (i) access to a database
of labeled images from the prospective imaging modality and (ii) possibility to
browse through images depicting the textbook description of a particular struc-
ture. In the absence of a computer vision system to assemble these images, an
experienced gastroenterologist will typically have to work through a vast im-
age repository, to sort out the most relevant training examples. We propose a
computer vision solution to this problem, based on recent advances in semantic
image retrieval [8]. This is a formulation of image database search, where images
are mapped onto a semantic space of image concepts.

While, in computer vision, concepts are usually cars or buildings, the idea can
be applied to the pit pattern classes commonly used in the medical literature for
prediction of histopathological results (cf. [3]). Unlike [8], we are not interested in
the strict task of retrieval by semantic example. Instead, our work is directed to
the semantic browsing scenario. This is the scenario where gastroentrologists are
able to browse the image space efficiently by focusing on regions where particular
concepts, i.e. pit patterns, are most prominent. We propose a system that enables
this type of semantically focused browsing . Although our approach is generic, we
demonstrate its applicability in the context of HMCE and Kudo’s pit pattern
analysis scheme [6].

The technical details of pit pattern browsing are given in the following sec-
tion. Section 3 is devoted to experimental results and Sect. 4 presents our con-
clusions.

2 Learning the Pit Pattern Concepts

The starting point of our approach is a database of endoscopy images D =
{I1, . . . , I|D|} and a collection of concepts {w1, . . . , wC}, i.e. the pit pattern types.
We require that each database image is augmented by a binary caption vector
cy ∈ {0, 1}C , where cjy = 1 signifies that the j-th concept is present in image Iy.

This is termed a weakly labeled set of images, since cjy = 0 does not necessarily
mean that the j-th concept is not present. We further don’t know which image
region contains the annotated concept (i.e. no prior segmentation available). In
fact, weak labeling is carried to the extreme, since the caption vectors only con-
tain one non-zero entry for the prominent concept. This follows from the fact
that the medical labeling procedure is based on reconciliation with histopatho-
logical ground-truth. For example, if the laboratory results indicate a normal
gland and the gastroenterologist has the visual impression of a pit pattern type
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Fig. 1. Processing pipeline for learning three exemplary pit pattern concepts
{w1, w2, w3} (e.g. I, II, III-L). First, we decompose each image into a collection of
localized features. Then, we estimate (i) the semantic-level feature representations
{PX|W (x|wi)}3i=1 from the visual-level feature representations and (ii) the mapping
from feature space to semantic space, i.e. the semantic 2-simplex embedded in IR3.

I, then the image is labeled with that type. However, a pit pattern of type II
(or any other type) can also be visible in some areas of the image. While this
labeling strategy guarantees that the annotated pit pattern is visible to some
extent, at least to the experienced gastroenterologist, many of the images do not
convey the textbook description [6] corresponding to the labeled pit pattern.

2.1 Image Representation at the Visual and Semantic Level

The first stage for learning the image concepts is similar to previous studies
(e.g. [7]), where automated dignity assessment was the primary objective. Each
image I in the database is represented by a collection of localized features I =
{x1, . . . ,xN} drawn independently from a random vector X, defined in some
feature space X ⊂ IRd. This stage is illustrated in the leftmost part of Fig. 1.
Defining a random variable Y (with realizations in {1, . . . , |D|}) such that Y = y
when features are drawn from image Iy, the probability of image I at the visual
level is

PX|Y (I|y) =

N∏
j=1

PX|Y (xj |y) . (1)

The density (i.e. the generative model) PX|Y (x|y) for image Iy is estimated by
a KV -component multivariate Gaussian mixture

PX|Y (x|y) =

KV∑
k=1

γkyG(x;µk
y ,Σ

k
y) with

∑
k

γky = 1 , (2)

based on the corresponding collection of features.
In contrast to [7], where captions are neglected, and images retrieved by

visual similarity (query-by-visual-example), the captions now represent a key



component of the system. Introducing a random variable W (with realizations
in {1, . . . , C}) such that W = i when features are drawn from concept wi, induces
a new collection of probability densities {PX|W (x|wi)}Ci=1 on X . These densities
are denoted the feature representations at semantic level. Assuming conditional
independence of the features given concept membership, the concept-conditional
probability of image I at the semantic level is

PX|W (I|w) =

N∏
j=1

PX|W (xj |w) . (3)

Similar to density estimation at the visual level, we use multivariate Gaussian
mixtures with KS components to estimate PX|W (x|w), i.e.

PX|W (x|w) =

KS∑
l=1

αl
wG(x;νl

w,Φ
l
w) with

∑
l

αl
w = 1 . (4)

Modeling the densities at the visual and semantic level by Gaussian mixtures
has the convenient advantage that we can exploit the hierarchical mixture mod-
eling approach of [10] to estimate the mixture parameters at the semantic level
{αl

w,ν
l
w,Φ

l
w} from the mixture parameters at the visual level {λky ,µk

y ,Σ
k
y}. This

step is visualized in the middle of Fig. 1, where the mixtures associated with
several images in a class are summarized by the class’ single semantic-level mix-
ture. Note that the number of Gaussian components at semantic level (C ×KS)
is considerably smaller than the number of Gaussian components at visual level
(|D| × KV ). Figure 1 illustrates the case where KV = 3 and KS = 4. The
computational effort to estimate the semantic-level mixtures, using the method
of [10], is also considerably smaller than that required for direct estimation of
PX|W (x|w) based on the pooled features of all images annotated with concept
w.

2.2 Learning the Semantic Space

The identification of images which most characteristically depict a particular
concept requires a semantic image representation with explicit control over the
concepts. In [8], the authors introduce the idea of an image as a point on a se-
mantic space. The image is first modeled as a vector Iy = (n1y, . . . n

C
y )T of concept

counts (cf. top right part of Fig. 1), where nky is the number of feature vectors
in the y-th image drawn from the k-th concept. The concept count vectors are
then modeled as realizations of a multinomial random variable T . As illustrated
on the bottom right of Fig. 1, the parameter vector πy = (π1

y, . . . , π
C
y )T of the

multinomial distribution associated with the image is a point on the standard
(C − 1)-simplex, since

∑
i π

i = 1. This simplex is denoted the semantic space,
and πy the semantic multinomial (SMN) associated with image Iy.

The question is how to estimate the mapping based on a database of tuples
{(Iy, cy)}y=1,...,|D|. For that purpose, we employ a modification of the semantic
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Fig. 2. Identifying the images, represented by SMNs, which most typically represent
the concept w1 (here pit pattern type I).

multiclass labeling approach of [2] which implements the mapping based on an
estimation of posterior concept probabilities, i.e.

πw
y = PW |X(w|Iy) =

PX|W (Iy|w)PW (w)

PX(Iy)
. (5)

Although it is possible to directly estimate πw
y by assuming a uniform con-

cept prior PW (w) and estimating PX(Iy) by
∑

w PX|W (Iy|w)PW (w), we choose
an alternative approach to cover for numerical instabilities. The strategy is to
compute logPW |X(w|xj) for each feature vector xj separately, using (4), then
determine the concept with the largest posterior probability per feature vector
and eventually tally the occurrences of the winning concepts. This facilitates
Maximum-Likelihood (ML) parameter estimation of πy through ∀w : π̃w

y =
nwy · 1/N. In [8], the authors further suggest regularization with a Dirichlet prior,
which leads to a maximum-a-posteriori estimate

π̂w
y =

π̃w
y + π0∑C

i=1(π̃i
y + π0)

, (6)

where π0 is a regularization parameter. The remaining question is how to identify
the desired set of images from the semantic representation in the form of points
on the semantic space. Given that we aim to identify the images most typical of
the concept wi (e.g. pit pattern III-L), we only need to navigate on the simplex. In
fact, we can easily identify a subregion of the full simplex whose SMNs represent
images where the wi-th concept is prominent with probability t, by using πi >
t, t ∈ [0, 1]. Fig. 2 illustrates this idea for π1 > 0.8. Sorting the SMNs in that
region along the i-th dimension gives a list of the most representative (i.e. top-
ranked) images for concept wi.

3 Experimental Evaluation

We evaluate our proposed approach on a weakly labeled database of 716 HMCE
images (magnified 150×) of size 256× 256 pixel, captured by an Olympus Evis
Exera CF-Q160ZI/L endoscope. The images stem from a total of 40 patients and
the database contains only images where the histological ground truth is coher-
ent with the annotated pit pattern type. The cardinalities of the image sets per
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Fig. 3. Schematic illustration of the six pit pattern types according to [6]. The typi-
cal characteristics are (a) normal, round pit; (b) asteroid, stellar or papillary pit; (c)
tubular or round pit (smaller than type I); (d) tubular or round pit (larger than type
I); (e) dendritic or gyrus-like pit; (f) irregular arrangements, loss of structure.

concept are {124, 74, 124, 20, 276, 98} for pit pattern types I, II, III-L, III-S, IV
and V. A graphical and textual description of the pit pattern characteristics is
provided in Fig. 3. Apart from the gastroenterologist’s experience, these descrip-
tions represent the textbook material for dignity assessment of colorectal lesions.
The images are converted from RGB to YBR color space for further processing.

As localized features, we use DCT coefficients (extracted in zigzag scan or-
der) of 8 × 8 patches, obtained from a sliding window, moving by two pixel
increments in both image dimensions (cf. Fig. 1). We extract the first 16 co-
efficients (including the DC coefficient) from the same patch across the color
channels and arrange the coefficients in feature vectors according to a YBRY-
BRYBR. . . interleaving pattern. The Gaussian mixtures to model PX|Y (x|y)
are fitted by the classic Expectation-Maximization (EM) algorithm. The num-
ber of mixture components at this level is set to KV = 8 and we restrict the
covariance matrices to diagonal form. At the semantic level, we set KS = 64
and estimate the parameters using the hierarchical estimation approach of [10].
Regarding SMN estimation, we choose a regularization parameter π0 = 1/6,
although experiments show that the approach is not sensitive to this choice.

To demonstrate that we can actually identify images which most typically
depict the textbook pit pattern descriptions, we sort the SMNs on the semantic
simplex along the dimension corresponding to each concept and extract the K
top-ranked images. We further ensure that the extracted images do not belong
to the same patient in order to establish a realistic scenario. We refer to this
step as patient pruning of the result set. Figure 4 shows the images after pruning
the K = 10 top-ranked images per pit pattern concept. Due to the fact that the
database images are not uniformly distributed over the patients, the pruning
step has the effect that the cardinality of the final browsing result per concept is
not equal. Nevertheless, a comparison to the illustrations and descriptions in Fig.
3 reveals the correspondences we were looking for: we observe the characteristic
gyrus-like structures of pit pattern IV, the round pits of pit pattern I, or the
complete loss of structure in case of pit pattern V for instance.

Besides visual inspection of the results in Fig. 4, we conduct a more objec-
tive evaluation by exploiting the ground-truth caption vectors for each image. In
particular, we evaluate the average error rate of the system when browsing the
K top-ranked images per concept. We perform a leave-one-patient-out (LOPO)
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Fig. 4. Result of identifying the most representative images for each pit pattern concept
at the operating point K = 10 (with patient pruning).

evaluation, where we adhere to the following protocol per patient: (i) remove
the patient’s images from the database, (ii) estimate the SMNs based on the
remaining images, (iii) extract the K top-ranked images (now using the whole
database) per concept and (iv) perform the patient pruning step. The average
error rate is then calculated as the percentage of images (averaged over all LOPO
runs) in the final browsing result of concept wi which do not belong there ac-
cording to the corresponding ground-truth caption vectors (i.e. zero entry at the
i-th position). Figure 5 shows the average error rate in dependence of K with
and without patient pruning (for comparative reasons). At the operating point
K = 10 for instance, we obtain three images per concept on average at an error
rate of 4.9%. This corresponds to ≈ 0.88 wrong images in the final browsing
result.

4 Concluding Remarks

Motivated by the need to provide prospective gastroenterologists with a collec-
tion of images showing the most typical characteristic of a particular mucosal
structure during endoscopy, we presented a generic approach to establish a se-
mantic space on a database of weakly labeled HMCE images. To the best of
our knowledge, introducing the notion of a semantic domain to that problem
has not been done so far. On the basis of Kudo’s pit pattern analysis scheme,
we demonstrated that browsing the semantic space in interesting regions in fact
allows to isolate the most characteristic images for each pit pattern type.
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7. Kwitt, R., Uhl, A., Häfner, M., Gangl, A., Wrba, F., Vécsei, A.: Predicting the
histology of colorectal lesions in a probabilistic framework. In: Proceedings of
the IEEE International Workshop on Mathematical Methods in Biomedical Im-
age Analysis (MMBIA ’10). pp. 103 – 110. San Francisco, CA, USA (June 2010)

8. Rasiwasia, N., Moreno, P., Vasconcelos, N.: Bridging the gap: Query by semantic
example. IEEE Trans. Multimedia 9(5), 923 – 938 (August 2007)

9. Tischendorf, J.J.W., Gross, S., Winograd, R., Hecker, H., Auer, R., Behrens, A.,
Trautwein, C., Aach, T., Stehle, T.: Computer-aided classification of colorectal
polyps based on vascular patterns: a pilot study. Endoscopy 42(3), 203 – 207 (March
2010)

10. Vasconcelos, N., Lippman, A.: Image indexing with mixture hierachies. In: Pro-
ceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR ’01). pp. 3 – 10. Kauai, HI, USA (December 2001)

11. Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E., Preisinger, A.C., Leppert,
M., Nakamura, Y., White, R., Smits, A.M., Bos, J.L.: Genetic alterations during
colorectal-tumor development. N. Engl. J. Med. 319(9), 525 – 532 (September 1988)


