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Abstract

The layered dynamic texture (LDT) is a generative
model, which represents video as a collection of stochastic
layers of different appearance and dynamics. Each layer is
modeled as a temporal texture sampled from a different lin-
ear dynamical system, with regions of the video assigned to
a layer using a Markov random field. Model parameters are
learned from training video using the EM algorithm. How-
ever, exact inference for the E-step is intractable. In this
paper, we propose a variational approximation for the LDT
that enables efficient learning of the model. We also pro-
pose a temporally-switching LDT (TS-LDT), which allows
the layer shape to change over time, along with the asso-
ciated EM algorithm and variational approximation. The
ability of the LDT to segment video into layers of coherent
appearance and dynamics is also extensively evaluated, on
both synthetic and natural video. These experiments show
that the model possesses an ability to group regions of glob-
ally homogeneous, but locally heterogeneous, stochastic dy-
namics currently unparalleled in the literature.

1. Introduction

Traditional motion representations, based on optical
flow, are inherently local and have significant difficulties
when faced with aperture problems and noise. The classi-
cal solution to this problem is to regularize the optical flow
field [1, 2, 3, 4], but this introduces undesirable smoothing
across motion edges or regions where the motion is, by def-
inition, not smooth (e.g. vegetation in outdoors scenes). It
also does not provide any information about the objects that
compose the scene, although the optical flow field could
be subsequently used for motion segmentation. More re-
cently, there have been various attempts to model video as
a superposition of layers subject to homogeneous motion.
While layered representations exhibited significant promise
in terms of combining the advantages of regularization (use
of global cues to determine local motion) with the flexibil-
ity of local representations (little undue smoothing), and a

truly object-based representation, this potential has so far
not fully materialized. One of the main limitations is their
dependence on parametric motion models, such as affine
transforms, which assume a piece-wise planar world that
rarely holds in practice [5, 6]. In fact, layers are usually
formulated as “cardboard” models of the world that are
warped by such transformations and then stitched to form
the frames in a video stream [5]. This severely limits the
types of video that can be synthesized: while the concept
of layering showed most promise for the representation of
scenes composed of ensembles of objects subject to homo-
geneous motion (e.g. leaves blowing in the wind, a flock
of birds, or highway traffic), very little progress has so far
been demonstrated in actually modeling such scenes.

Recently, there has been more success in modeling com-
plex scenes as dynamic textures or, more precisely, samples
from stochastic processes defined over space and time [7, 8,
9]. This work has demonstrated that global stochastic mod-
eling of both video dynamics and appearance is much more
powerful than the classic global modeling as “cardboard”
figures under parametric motion. In fact, the dynamic tex-
ture (DT) has shown a surprising ability to abstract a wide
variety of complex patterns of motion and appearance into
a simple spatio-temporal model. One major current limita-
tion is, however, its inability to account for visual processes
consisting of multiple, co-occurring, dynamic textures, for
example, a flock of birds flying in front of a water fountain,
highway traffic moving at different speeds, and video con-
taining both trees in the background and people in the fore-
ground. In such cases, the existing DT model is ill-equipped
to model the video, since it must represent multiple motion
fields with a single dynamic process.

To address this problem, various extensions of the DT
have been recently proposed in the literature [8, 10, 11].
These extensions have emphasized the application of the
standard DT model to video segmentation, rather than ex-
ploiting the probabilistic nature of the DT representation to
propose a global generative model for video. They repre-
sent the video as a collection of localized spatio-temporal
patches (or pixel trajectories), which are modeled with dy-
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namic textures or similar time-series representations, and
clustered to produce the desired segmentations. Due to
their local character, these representations cannot account
for globally homogeneous textures that exhibit substantial
local heterogeneity. These types of textures are common in
both urban settings, where the video dynamics frequently
combine global motion and stochasticity (e.g. vehicle traf-
fic around a square, or pedestrian traffic around a landmark),
and natural scenes (e.g. a flame that tilts under the influence
of the wind, or water rotating in a whirlpool).

These limitations were addressed in [12] through the
introduction of a global generative model, denoted as the
layered dynamic texture (LDT). This model augments the
DT with a discrete hidden variable that enables the assign-
ment of different dynamics to different regions of the video.
The hidden variable is modeled as a Markov random field
(MRF), to ensure spatial smoothness of the segmentation,
and conditioned on its state, each video region is a stan-
dard DT. An EM algorithm for maximum-likelihood esti-
mation of LDT parameters from an observed video sample
was also derived in [12]. The problem of the intractability
of exact inference during the E-step (due to the MRF) was
addressed with the use of a Gibbs sampler. This, however,
results in a slow learning algorithm, limiting the applica-
tion of the model to very small video samples. In this work,
we propose a variational approximation for the LDT that
enables efficient learning of its parameters. We further pro-
pose an LDT extension, the temporal-switching LDT, that
allows the shape of the layers to change over time, enabling
segmentation in both space and time. Finally, we apply
the LDT to motion segmentation of challenging video se-
quences, and report state-of-the-art results on the synthetic
texture database from [13].

The paper is organized as follows. In Section 2, we re-
view the LDT and the EM learning algorithm. The vari-
ational approximation is proposed in Section 3, and the
temporally-switching LDT in Section 4. Finally, in Section
5, the variational LDT is applied to motion segmentation
of both synthetic and real videos.

2. Layered dynamic textures

Consider a video composed of various textures, e.g. the
combination of fire, smoke, and water, shown on the right
side of Figure 1. In this case, a single DT cannot simul-
taneously account for the appearance and dynamics of the
three textures, because each texture moves distinctly, e.g.
fire changes faster and is more chaotic than smoke. This
type of video can be modeled by encoding each texture as a
separate layer, with its own state-sequence and observation
matrix (see Figure 1). Different regions of the spatiotem-
poral video volume are assigned to each texture and, condi-
tioned on this assignment, each region evolves as a standard
DT. The video is a composite of the various layers.
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Figure 1. Generative model for a video with multiple dynamic tex-
tures (smoke, water, and fire). The three textures are modeled with
separate state sequences and observation matrices. The textures
are then masked, and composited to form the layered video.
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Figure 2. a) Graphical model for the LDT; b) Example of a 4 × 4
layer assignment MRF.

The graphical model for the LDT [12] is shown in Figure
2a. Each of the K layers has a state process x(j) = {x(j)

t }
that evolves separately, where x(j)

t ∈ R
n is the state vector

at time t and n is the dimension of the hidden state-space.
A pixel trajectory yi = {yi,t}, where yi,t ∈ R is the pixel
value at location i at time t, is assigned to one of the layers
through the hidden variable z i, and the collection of hidden
variables Z = {zi} is modeled as an MRF grid to ensure
spatial smoothness of the layer assignments (e.g. Figure
2b). We will assume that each pixel yi has zero-mean over
time (i.e. mean-subtracted). The model equations are{

x
(j)
t = A(j)x

(j)
t−1 + v

(j)
t , j ∈ {1, · · · ,K}

yi,t = C
(zi)
i x

(zi)
t + wi,t , i ∈ {1, · · · ,m} (1)

where C(j)
i ∈ R

1×n is the transformation from the hid-
den state to the observed pixel for each pixel y i and each
layer j. The noise processes and initial state are distributed
as Gaussians, i.e. v(j)

t ∼ N (0, Q(j)), wi,t ∼ N (0, r(zi)),
and x(j)

1 ∼ N (µ(j), Q(j)), where Q(j) is a n × n covari-
ance matrix, and r(j) > 0. Each layer is parameterized by
Θj = {A(j), Q(j), C(j), r(j), µ(j)}. Finally, the MRF Z
has potential functions

Vi(zi) = α
(zi)
i , Vi,i′ (zi, zi′) =

{
γ1, zi = zi′

γ2, zi �= zi′
(2)



where Vi is the self-potential function with α(j)
i the prior

probability for assigning zi = j, and Vi,i′ is the potential
function between connected nodes z i and zi′ that attributes
higher probability to configurations with neighboring pixels
in the same layer. In this work, we treat the MRF as a prior
on Z , which controls the smoothness of the layers.

Given layer assignments, the LDT is a superposition of
DTs defined over different regions of the video volume. In
this case, estimating LDT parameters reduces to estimating
those of the DT of each region. When layer assignments
are unknown, the LDT parameters can be estimated with
the EM algorithm [12].

2.1. Parameter estimation with EM

Given a training video Y = {yi,t}, the parameters Θ of
the LDT are learned by maximum-likelihood [14]

Θ∗ = argmax
Θ

log p(Y ) = argmax
Θ

log
∑
X,Z

p(Y,X,Z). (3)

Since the data likelihood depends on hidden variables (state
sequencesX = {x(j)} and layer assignmentsZ), (3) can be
found with the EM algorithm [15], which iterates between

E − Step : Q(Θ; Θ̂) = EX,Z|Y ;Θ̂[log p(X,Y, Z; Θ)] (4)

M − Step : Θ̂′ = argmax
Θ

Q(Θ; Θ̂), (5)

where p(X,Y, Z; Θ) is the complete-data likelihood, pa-
rameterized by Θ, and EX,Z|Y ;Θ̂ the expectation with re-
spect to X and Z , conditioned on Y , parameterized by the
current estimates Θ̂. As is typical for mixture models, we
use an indicator variable z (j)

i of value 1 if and only if zi = j,
and 0 otherwise. In the E-step [12], the following condi-
tional expectations are computed

x̂
(j)
t = EX|Y [x(j)

t ], ẑ
(j)
i = EZ|Y [z(j)

i ],
P̂

(j)
t,t = EX|Y [P (j)

t,t ], P̂
(j)
t,t−1 = EX|Y [P (j)

t,t−1],
x̂

(j)
t|i = EX|Y,zi=j [x

(j)
t ], P̂

(j)
t,t|i = EX|Y,zi=j [P

(j)
t,t ],

(6)

where EX|Y,zi=j is the conditional expectation of X given
the observation Y and that the i-th pixel belongs to layer j.
Next a number of statistics are aggregated over time,

Γ(j)
i =

∑τ
t=1 yi,tx̂

(j)
t|i , Φ(j)

i =
∑τ

t=1 P̂
(j)
t,t|i,

φ
(j)
1 =

∑τ−1
t=1 P̂

(j)
t,t , φ

(j)
2 =

∑τ
t=2 P̂

(j)
t,t ,

ψ(j) =
∑τ

t=2 P̂
(j)
t,t−1, N̂j =

∑m
i=1 ẑ

(j)
i ,

(7)

where τ is the number of video frames. In the M-step [12],
the parameter estimates are recomputed

C
(j)
i

∗
= Γ(j)

i

T
Φ(j)

i

−1
, A(j)∗ = ψ(j)φ

(j)
1

−1
, µ(j)∗ = x̂

(j)
1 ,

r(j)
∗

= 1
τN̂j

∑m
i=1 ẑ

(j)
i

(∑τ
t=1 y

2
i,t − C

(j)
i

∗
Γ(j)

i

)
,

Q(j)∗ = 1
τ

(
P̂

(j)
1,1 − µ(j)∗(µ(j)∗)T + φ

(j)
2 −A(j)∗ψ(j)T

)
.

2.2. Related work

A number of applications of DT (or similar) models to
segmentation have been reported in the literature [8, 10, 11],
but do not exploit the probabilistic nature of the DT repre-
sentation for the segmentation itself. More related to the
extensions proposed is the dynamic texture mixture (DTM)
of [13]. This is a model for collections of video sequences,
and has been successfully used for motion segmentation
through clustering of spatio-temporal patches. The main
difference with respect to the LDT is that (like all clus-
tering models) the DTM is not a global generative model
for video of co-occurring textures (as is the case of the
LDT). Hence, the application of the DTM to segmentation
requires decomposing the video into a collection of small
spatio-temporal patches, which are then clustered. The lo-
calized nature of this video representation is problematic for
the segmentation of textures which are globally homoge-
neous but exhibit substantial variation between neighboring
locations, such as the rotating blades of a windmill. Fur-
thermore, patch-based segmentations have poor boundary
accuracy, due to the artificial boundaries of the underlying
patches, and the difficulty of assigning a patch that over-
laps multiple regions to any of them. On the other hand, the
LDT models video as a collection of layers, offering a truly
global model of the appearance and dynamics of each layer,
and avoiding boundary uncertainty.

With respect to time-series models, the LDT is related
to switching linear dynamical models, which are LDSs
that can switch between different parameter sets over time
[16, 17, 18, 19]. In particular, it is most related to the
switching state-space LDS [19], which models the observed
variable by switching between the outputs of a set of in-
dependent LDSs. The fundamental difference between the
two models is that, while [19] switches parameters in time
using a hidden-Markov model (HMM), the LDT switches
parameters in space (i.e within the dimensions of the ob-
served variable) using an MRF grid. This substantially
complicates all statistical inference, leading to different al-
gorithms for learning and inference with the LDT.

3. Inference by variational approximation

Computing the exact E-step for the LDT is intractable
because the expectations of (6) require marginalizing over
the states of the MRF. In [12], these expectations are ap-
proximated using a Gibbs sampler, which is slow and lim-
its the learning algorithm to small videos. A popular low-
complexity alternative to exact inference is to rely on a vari-
ational approximation. This consists of directly approxi-
mating the posterior distribution p(X,Z|Y ) with a distri-
bution q(X,Z) within some class of tractable probability
distributions F . Given an observation Y , the optimal varia-
tional approximation minimizes the Kullback-Leibler diver-



gence between the approximate and exact posteriors [20]

q∗(X,Z) = argmin
q∈F

D(q(X,Z) ‖p(X,Z|Y ) ) (8)

= argmin
q∈F

L(q(X,Z)), (9)

where

L(q(X,Z)) =
∫
q(X,Z) log

q(X,Z)
p(X,Y, Z)

dXdZ. (10)

To obtain a tractable approximate posterior, we assume
statistical independence between pixel assignments zi and
state variables x(j), i.e.

q(X,Z) =
K∏

j=1

q(x(j))
m∏

i=1

q(zi), (11)

and note that optimizing L (i.e. finding the best approxi-
mate posterior) will induce a set of variational parameters
that models the dependencies between x(j) and zi. Sub-
stituting (11) into (10), the L function is minimized by se-
quentially optimizing each of the factors q(x(j)) and q(zi),
while holding the others factors constant [20]. The optimal
factorial distributions are (see [21] for derivations)

log q(x(j)) =
m∑

i=1

h
(j)
i log p(yi|x(j), zi = j) (12)

+ log p(x(j)) − logZ(j)
q ,

log q(zi) =
K∑

j=1

z
(j)
i log h(j)

i , (13)

where Z (j)
q is a normalization constant (see [21]), h(j)

i are
the variational parameters

h
(j)
i = Eq[z

(j)
i ] =

α
(j)
i g

(j)
i∑K

k=1 α
(k)
i g

(k)
i

, (14)

log g(j)
i = Eq

[
log p(yi|x(j), zi = j)

]
(15)

+
∑

(i,i′)∈E
h

(j)
i′ log

γ1

γ2
,

Eq is the expectation with respect to q(X,Z), and E is the
set of edges in the MRF.

The optimal factorial distributions can be interpreted as
follows. The variational parameters {h(j)

i }, which appear in
both q(zi) and q(x(j)), account for the dependence between

X and Z . h(j)
i is the posterior probability of assigning pixel

yi to layer j, and is estimated by the expected log-likelihood
of observing pixel yi from layer j, with an additional boost
of log γ1

γ2
per neighboring pixel also assigned to layer j. h (j)

i

also weighs the contribution of each pixel y i to the factor

q(x(j)), which effectively acts as a soft assignment of pixel

yi to layer j. Also note that in (12), h(j)
i can be absorbed

into p(yi|x(j), zi = j), making q(x(j)) the distribution of an
LDS parameterized by Θ̃j = {A(j), Q(j), C(j), Rj , µ

(j)},

where Rj is a diagonal matrix with entries [ r(j)

h
(j)
1

, · · · , r(j)

h
(j)
m

].

The optimal q∗(X,Z) is found by iterating through each

pixel i, recomputing the variational parameters h (j)
i accord-

ing to (14) and (15), until convergence. This might be
computationally expensive, because it requires running a
Kalman smoothing filter to update each h(j)

i . The compu-
tational load can be reduced by updating batches of vari-
ational parameters at a time, e.g. the set of nodes in the
MRF with non-overlapping Markov blankets (as in [22]).
In practice, batch updating typically converges to the solu-
tion reached by serial updating, but is significantly faster.

Given the optimal approximate posterior q ∗(X,Z), the
approximation to (6) of the E-step is

x̂
(j)
t ≈ Eq∗ [x(j)

t ], P̂
(j)
t,t ≈ Eq∗ [x(j)

t x
(j)
t

T
],

ẑ
(j)
i ≈ h

(j)
i , P̂

(j)
t,t−1 ≈ Eq∗ [x(j)

t x
(j)
t−1

T
],

x̂
(j)
t|i = EX|Y,zi=j[x

(j)
t ] ≈ Eq∗ [x(j)

t ],

P̂
(j)
t,t|i = EX|Y,zi=j [x

(j)
t x

(j)
t

T
] ≈ Eq∗ [x(j)

t x
(j)
t

T
].

(16)

Note that for the expectation EX|Y,zi=j , we assume that, if
m is large (as is the case with images), fixing the value of
a single zi = j will have little effect on the posterior, due
to the combined evidence from the large number of pixels
in the layer. Finally, the approximation for the maximum
a posteriori layer assignment (i.e. segmentation), Z ∗ =
argmaxZ p(Z|Y ), is z∗i ≈ argmaxj h

(j)
i , ∀i.

4. Temporally-switching LDT

In this section, we propose an extension of the
LDT, which we denote as the temporally-switching lay-
ered dynamic texture (TS-LDT). The TS-LDT contains a
temporally-switching MRF that allows for the layer regions
to change over time, and hence enables segmentation in
both space and time. In the TS-LDT, a pixel y i,t is assigned
to one of the layers at each time instance, through the hid-
den variable zi,t, and the collection of assignment variables
Z = {zi,t} is modeled as a MRF to ensure both spatial and
temporal smoothness. The model equations are{
x

(j)
t = A(j)x

(j)
t−1 + v

(j)
t , j ∈ {1, · · · ,K}

yi,t = C
(zi,t)
i x

(zi,t)
t + wi,t + γ

(zi,t)
i , i ∈ {1, · · · , N}

where C(j)
i ∈ R

1×n, v(j)
t ∼ N (0, Q(j)), and x

(j)
1 ∼

N (µ(j), Q(j)) are the same as the LDT. For the TS-LDT,
the observation noise processes is now distributed as wi,t ∼
N (0, r(zi,t)), and the mean value, γ (j)

i ∈ R, for pixel i



in layer j is now explicitly included. Note that we must
specify the mean for each layer, since a pixel may switch
between layers at any time. Finally, each frame of the 3D
MRF grid has the same structure as the LDT MRF, with ad-
ditional edges connecting nodes between frames (e.g. z i,t

and zi,t+1) according to the potential function

Vt,t′(zi,t, zi,t′) =
{
β1, zi,t = zi,t′

β2, zi,t �= zi,t′
. (17)

4.1. Parameter estimation with EM

The EM algorithm for the TS-LDT is similar to that of
the LDT. The E-step computes the expectations, now con-
ditioned on zi,t = j (see [21] for derivations),

x̂
(j)
t = EX|Y [x(j)

t ], ẑ
(j)
i,t = EZ|Y [z(j)

i,t ],
P̂

(j)
t,t = EX|Y [P (j)

t,t ], P̂
(j)
t,t−1 = EX|Y [P (j)

t,t−1],
x̂

(j)
t|i = EX|Y,zi,t=j [x

(j)
t ], P̂

(j)
t,t|i = EX|Y,zi,t=j [P

(j)
t,t ].

(18)

Next, the aggregated statistics are computed

φ
(j)
1 =

∑τ−1
t=1 P̂

(j)
t,t , φ

(j)
2 =

∑τ
t=2 P̂

(j)
t,t ,

Φ(j)
i =

∑τ
t=1 ẑ

(j)
i,t P̂

(j)
t,t|i, ψ(j) =

∑τ
t=2 P̂

(j)
t,t−1,

N̂j =
∑τ

t=1

∑m
i=1 ẑ

(j)
i,t , ξ

(j)
i =

∑τ
t=1 ẑ

(j)
i,t x̂

(j)
t|i ,

Γ(j)
i =

∑τ
t=1 ẑ

(j)
i,t (yi,t − γ

(j)
i )x̂(j)

t|i .

(19)

In the M-step, the parameters are updated according to

C
(j)
i

∗
= Γ(j)

i

T
Φ(j)

i

−1
, A(j)∗ = ψ(j)φ

(j)
1

−1
, µ(j)∗ = x̂

(j)
1 ,

r(j)
∗

= 1
N̂j

∑m
i=1

[∑τ
t=1 ẑ

(j)
i,t (yi,t − γ

(j)
i )2 − C

(j)
i

∗
Γ(j)

i

]
,

Q(j)∗ = 1
τ

[
P̂

(j)
1,1 − µ(j)∗(µ(j)∗)T + φ

(j)
2 −A(j)∗ψ(j)T

]
,

γ
(j)
i

∗
= 1

P
τ
t=1 ẑ

(j)
i,t

(∑τ
t=1 ẑ

(j)
i,t yi,t − C

(j)
i ξ

(j)
i

)
,

which now take into account the mean of each layer γ (j)
i .

4.2. Inference by variational approximation

Similar to the LDT, the variational approximation for the
TS-LDT assumes statistical independence between pixel as-
signments zi,t and state variables x(j), i.e.

q(X,Z) =
K∏

j=1

q(x(j))
m∏

i=1

τ∏
t=1

q(zi,t). (20)

The optimal factorial distributions are (derivations in [21])

log q(x(j)) =
τ∑

t=1

m∑
i=1

h
(j)
i,t log p(yi,t|x(j)

t , zi,t = j)

+ log p(x(j)) − logZ(j)
q , (21)

log q(zi,t) =
K∑

j=1

z
(j)
i,t log h(j)

i,t , (22)

a) b)

c) d)

Figure 3. Segmentation of synthetic circular motion: a) video
frames; segmentations using: b) LDT, c) DTM, and d) GPCA.

where Z (j)
q is a normalization constant, h(j)

i,t are the varia-
tional parameters

h
(j)
i,t = Eq[z

(j)
i,t ] =

α
(j)
i,t g

(j)
i,t∑K

k=1 α
(k)
i,t g

(k)
i,t

, (23)

log g(j)
i,t = Eq

[
log p(yi,t|x(j)

t , zi,t = j)
]

(24)

+
∑

(i,i′)∈Et

h
(j)
i′,t log

γ1

γ2
+

∑
(t,t′)∈Ei

h
(j)
i,t′ log

β1

β2
,

and Eq is the expectation with respect to q(X,Z). Note
that the TS-LDT variational parameters are similar to those
of the LDT, except that (24) now also includes a boost of
log β1

β2
from pixels in adjacent frames, within the same layer.

The optimal q∗(X,Z) is used to approximate the E-step and
MAP segmentation, in a manner similar to the LDT.

5. Application to motion segmentation

In this section, we present experiments on motion seg-
mentation of both synthetic and real video using the LDT.
All segmentations were obtained by learning an LDT with
the variational EM algorithm, and computing the posterior
layer assignments Z∗ = argmaxZ p(Z|Y ) with the varia-
tional approximation. We compare the LDT segmentations
with those produced by various state-of-the-art methods in
the literature, including DTM [13] with a patch-size of 5×5,
generalized PCA (GPCA) [10], and level-sets with Ising
models [11] (forK = 2 only). Segmentations are evaluated
by computing the Rand index [23], which is a measure of
clustering performance, with the ground-truth. We begin by
presenting results on a synthetic textures containing circu-
lar motion, followed by quantitative results on the database
from [13], and conclude with results on real video. Videos
of all results are available in [24].

5.1. Results on synthetic circular motion

We first demonstrate LDT segmentation of sequences
containing several rings of distinct circular motion, as
shown in Figure 3a. Each video contains 2, 3, or 4 circular
rings, with each ring rotating at a different speed. The se-
quences were segmented with LDT, DTM, and GPCA with



Method K = 2 K = 3 K = 4

LDT 0.944 (05) 0.894 (12) 0.916 (20)
DTM [13] 0.912 (17) 0.844 (15) 0.857 (15)
Ising [11] 0.927 (12) n/a n/a
AR [11] 0.922 (10) n/a n/a
AR0 [11] 0.917 (20) n/a n/a
GPCA [10] 0.538 (02) 0.518 (10) 0.538 (10)

Table 1. Average Rand index for various segmentation algorithms
on the synthetic texture database.

n = 2. LDT (Figure 3b) correctly segments all the rings, fa-
voring global homogeneity over localized grouping of seg-
ments by texture orientation. On the other hand, DTM (Fig-
ure 3c) tends to find incorrect segmentations based on local
direction of motion. In addition, on the 4-ring video, DTM
incorrectly assigns one segment to the boundaries between
rings, illustrating how the poor boundary accuracy of the
patch-based segmentation framework can create substantial
problems. Finally, GPCA (Figure 3d) is able to correctly
segment 2 rings, but fails when there are more. In these
cases, GPCA correctly segments one of the rings, but ran-
domly segments the remainder of the video. These results
illustrate how LDT can correctly segment sequences whose
motion is globally (at the ring level) homogeneous, but lo-
cally (at the patch level) heterogeneous. Both DTM and
GPCA fail to exhibit this property. Quantitatively, this is re-
flected by the much higher average Rand scores of the seg-
mentations produced by LDT (1.00, as compared to 0.491
for DTM, and 0.820 for GPCA).

5.2. Results on synthetic texture database

We next present results on the synthetic texture database
from [13], which contains 299 sequences with K =
{2, 3, 4} regions of different video textures (e.g. water, fire,
vegetation), as illustrated in Figure 5a. In [13], the database
was segmented with DTM, using a fixed initial contour. Al-
though DTM was shown to be superior to other state-of-the-
art methods [11, 10], the segmentations contain some er-
rors due to the poor boundary localization discussed above.
In this experiment, we show that using the LDT to refine
the DTM segmentations substantially improves the results
from [13]. For comparison, we apply the level-set methods
of [11], Ising, AR (auto-regressive models), and AR0 (AR
with zero-mean), also initializing with the DTM segmenta-
tion. We also compare with GPCA [10], which requires no
initialization. Each method was run for several values of n,
and the average Rand index was computed for each K . No
post-processing was applied to the segmentations. We note
that this large-scale experiment on the LDT, with hundreds
of video, is infeasible with the Gibbs sampler [12], where
EM runs for several hours. The variational approximation
is significantly faster, with EM taking only a few minutes.

Table 1 shows the performance obtained, with the best n,
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Figure 4. Texture database results: average Rand index vs. the
state-space dimension (n) for video with K = {2, 3, 4} textures.

by each algorithm. It is clear that LDT segmentation signifi-
cantly improves the initial segmentation produced by DTM:
the average Rand increases from 0.912 to 0.944, from 0.844
to 0.894, and from 0.857 to 0.916, for K = {2, 3, 4} re-
spectively. LDT also performs best among all algorithms,
with Ising as the closest competitor (Rand 0.927). Figure 4
shows a plot of the Rand index versus the dimension n of
the segmentation models, demonstrating that LDT segmen-
tation is robust to the choice of n.

Qualitatively, LDT improves the DTM segmentation in
three ways: 1) segmentation boundaries are more precise,
due to the region-level modeling (rather than patch-level);
2) segmentations are less noisy, due to the inclusion of the
MRF prior; and 3) gross errors, e.g. texture borders marked
as segments, are eliminated. Several examples of these im-
provements are presented in Figures 5b and 5c. From left
to right, the first example is a case where the LDT corrects
a noisy DTM segmentation (imprecise boundaries and spu-
rious segments). The second and third examples are cases
where the DTM produces a poor segmentation (e.g. the bor-
der between two textures is erroneously marked as a seg-
ment), which the LDT corrects. The final two examples
are very difficult cases. In the fourth example, the initial
DTM segmentation is very poor. Albeit a substantial im-
provement, the LDT segmentation is still noisy. In the fifth
example, the DTM splits the two water segments incorrectly
(the two textures are very similar). The LDT substantially
improves the segmentation, but the difficulties due to great
similarity of water patterns prove too difficult to overcome
completely.

Finally, we present results on the ocean-fire video from
[8], which contains a water background and moving re-
gions of fire in the foreground, in Figure 6. The video was
segmented with the TS-LDT, using the DTM segmentation
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Figure 5. Texture database examples: a) video frames; the b) DTM and c) LDT segmentations. r is the the Rand index of the segmentation.

as initialization. The TS-LDT successfully segments the
changing regions of fire. In addition, the TS-LDT improves
localization (tighter boundaries) and corrects noise (spuri-
ous segments) of the DTM segments.

5.3. Results on real video

We conclude the segmentation experiments with results
on real video sequences. Figure 7a presents the segmen-
tation of a moving ferris wheel, using LDT and DTM for
K = {2, 3}. For K = 2, both LDT and DTM segment
the static background from the moving ferris wheel. How-
ever, for 3 regions, the plausible segmentation, by LDT, of
the foreground into two regions corresponding to the ferris
wheel and a balloon moving in the wind, is not matched
by DTM. Instead, DTM segments the ferris wheel into two
regions, according to the dominant direction of its local mo-
tion (either moving up or down), ignoring the balloon mo-
tion. This is identical to the problems found for the syn-
thetic sequences of Figure 3: the inability to uncover global
homogeneity when the video is locally heterogeneous. On
the other hand, the preference of LDT for two regions of
very different sizes, illustrates its robustness to this prob-
lem. The strong local heterogeneity of the optical flow in
the region of the ferris wheel is well explained by the global
homogeneity of the corresponding layer dynamics. Figure
7b shows another example of this phenomenon. For 3 re-
gions, LDT segments the windmill into regions correspond-
ing to the moving fan blades, parts of the shaking tail piece,
and the background. When segmenting into 4 regions, LDT
splits the fan blade segment into two regions, which cor-
respond to the fan blades and the internal support pieces.
On the other hand, the DTM segmentations forK = {3, 4}
split the fan blades into different regions based on the orien-
tation (vertical or horizontal) of the optical flow. Additional

segmentations, which further demonstrate the robustness of
the LDT and its applicability to a wide range of scenes, are
available from [24].

6. Conclusions

In this work, we proposed a variational approximation
for inference on the LDT, which enables efficient learning
of the model parameters. We further proposed an extension
of the LDT, the temporally-switching LDT that can model
changes in the shape of each layer over time. We have con-
ducted extensive experiments, with both synthetic mosaics
of real textures and real video sequences, that tested the
ability of the variational LDT to segment video into regions
of coherent dynamics and appearance. The variational LDT
has been shown to outperform a number of state-of-the-art
methods for video segmentation. In particular, it was shown
to possess a unique ability to group regions of globally
homogeneous but locally heterogeneous stochastic dynam-
ics. We believe that this ability is unmatched by any video
segmentation algorithm currently available in the literature.
The new method also has consistently produced segmen-
tations with better spatial-localization than those possible
with the localized representations, such as the mixture of
dynamic textures, that have previously been prevalent in the
area of dynamic texture segmentation.
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