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ABSTRACT ing, but simple selection of the best subset from a small num-
ber of orthonormal families (such as wavelets [7], Gabor [8,

A new algorithm for the design of complex features, to beg], or localized Fourier decompositions [1]). One low com-

used in the discriminant saliency approach to object classi’;’ . . ) ! 4 .

L . : . . plexity solution of this type, first proposed in [10], relies

fication, is presented. The algorithm consists of sequlenti L L ) . ) ;
he principle of discriminant saliency. The idea is to, gize

rotations of an initial basis of simple features, so as toimax ; . AR
) . . class of interest, find a set of features that are discrintifzain
mize the discriminant power of the feature set for image-clas . ) ; . .
o IR . ; . that class (i.e. which best separate it from images in altroth
sification. Discrimination is measured in an informatioa-th

oretic sense. The proposed algorithm has lower comple classes). Given an image to classify, salient locationstozm

. : . ; Be detected as the locations where the discriminant feature
ity than popular techniques for learning parts, and is evalu . . .
roduce a strong response. The resulting saliency map is in-

ated on classification tasks from the PASCAL challenge. It idrodt . .
. . dicative of the presence of objects from the class of interes
shown that complex features consistently outperform smpl. . : o . N :
in the image. Simple classifiers, whose input is this salienc
features. ; e
have been shown to achieve good classification performance,
Index Terms— feature selection, complex feature, visual sometimes comparable to the state-of-the-art for much more
recognition complicated classification architectures, with minimaineo

putation and significant robustness to clutter [10].

1. INTRODUCTION Previous work on discriminant saliency has relied on very
basic methods for the selection of discriminant features. |
It has long been known that the careful selection of visuathis paper, we investigate the extension of the saliencyéra
measurements, deatures, is important for the solution of work, by providing it with the capability to learn the opti-
most image processing problems. In the area of object recogial feature sets. This is done through a computationally ef-
nition, there has been arecent emphasis on localized egpres ficient feature extraction algorithm, which producesnplex
tations, i.e. measurements that have a relatively smabmeg features. These are combinations of the origsiable fea-
of image support. This simplifies the design of the subseueures, which are more tuned for the discrimination of thesla
recognition stages, by constraining the dimensionalitthef ~ of interest. The complex features now produced are more like
feature space in which they operate, and improves the robughe patches underlying the patch-based approaches, boécan
ness of the representation to geometric transformatiares, d learned with much less complexity. The performance of the
to camera motion, pose variability, etc. There are two maimew algorithm is tested on image classification problenmsfro
types of localized representations, which we refer tbeas  the PASCAL challenge [11], where it is shown that complex
tures [1] and parts [2, 3, 4, 5], and both have been widely features can lead to improved performance.
used in the recent recognition literature.
Part-based representations rely on prototypical patches,
usually produced by key-point detectors and clusteringcivh 2. FEATURE SELECTION
depict image-like structures. They have recently become
quite popular for the representation of objects as consteb 1. Simple features
lations of parts [6] and image classification with “visual
texture” [2, 4, 5]. These methods typically have significantThe central problem for the design of a discriminant salfenc
computation, because the design of a part dictionary withletector is feature selection. Assuming that feature vecto
good generalization requires learning a large codeboak fro are drawn from a random proceXs = (Xy,..., X,,)? ac-
a large number of training examples. cording to a random variabl€ € {0, 1} which determines
Since any orthonormal feature set spans the space of inthe class Y = 1 for objects in the class of interest, e.g.
age neighborhoods of a given size, recognition can also B#aces”, andY” = 0 for the null hypothesis, e.g. “non-faces”),
based on combinations of features that do not require learithe saliency of each feature is measured by the marginal mu-



tual information between the feature and the class labgl [12 for the optimal¢ is also not feasible, given the high dimen-
sionality of the space of rotations for anyof practical inter-
I(X%;Y) =< KL[Px, |y (z])|| Px, ()] >v, (1) est. To address this problem we adopt a coordinate-descent
type of solution. Starting from the initial basis, we prodee
whereK L{p||q] = [ p(z)log »(#) 1.-is the Kullback-Leibler iteratively, at each point identifying the subspace corita

divergence between the disqt(rgil)autiop@) andg(z) and<  the two most discriminant features. We then find the best

fli) >y= Y. Py(i)f(i). Salient features for the class of rotation within that subspace. Since this is a two-dimemaio

interest are those that maximize this mutual information. ~ rotation, it can be performed efficiently by searching over a
number of pre-defined rotation angles. If the old basis was

orthonormal, the new basis is guaranteed to have this prop-
2.2. Complex feature selection erty, since the rotation takes place within a two dimendiona
n.?_ubspace, which is orthogonal to all other dimensions of the
space. The process is iterated until there is no increa$ein t
pm of the marginal mutual information of (1).
The search, at each iteration, for the best two dimensional

The use of (1) makes feature selection tractable, from a co
putational point of view, but can limit the classificationrpe
formance. Since the features are chosen independently 3

each other, any discriminant information which is captured b il b Ve F le. if theré
by their dependences will be lost. In the feature selectio ubspace can stil be expensive. For examp f’ I thereAare
eatures § x 8 image patches) there will b§*) = 2016

literature, this problem is usually avoided by considefaer ible wo di ional sub To'i ici
ture selection costs that account for such dependences, ThPOSSIDIE two dimensional Subspaces. 10 improve etliciency,
e restrict the search to those containing the currentlytmos

however, leads to an exponential increase in the complexity.” >~ ™" . . :
of the feature selection process. One alternative, which w iscriminating feature. This makes the search linear in the
’ umber of features, e.g)(63) in the example above. Since

pursue here, is to keep the cost of (1), but search for the fedl

ture space where this cost is sensible. This is done by gQther features can always become most discriminant in sub-

lecting new basis functions;, for then-dimensional feature sequent iterations, we have found that this does not affect t

space, which are most discriminant than the inifial As- feature selection results in any significant way. Overhk, t

suming that both the new and the existing basis are orthono?—lgor'thm is as follows:

mal, this can be achieved by searching for the rotation of the 1. set® — {¢:li =1,...,n}, whereg; is al x n vector
space which maximizes (1). The process is illustrated by fig- of zeros except for & in thei*® component is the
ure 1, forn = 2. While, in the original space, it is impossible identity matrix)

to achieve optimal classification by picking one of tkig the _

projection onto the rotated axis creates one optimallyrifisc 2. find#* and;j* such that

inant feature, and one which is completely non-informative oy . . v

for classification. The optimal rotation can be identified by (0% 7} = arg Hé}%'XI(COS 001 X+sinf0; X:Y) (3)

searching for the space containing the feature which maxi- Wherei* is the feature such that

mizes (1).
i* = arg mgx](qSkX; Y) 4)
Q- T = < KL[Py, x)y (aly)l| Pox ()] >v
Ny 3. replace the'" and j*" features with their rotation by
” 4 0* i.e.
4 ¢, = cosf*¢; +sinb*p; (5)
¢ = —sin"¢; + cosfp;.
Fig. 1. Example two-dimensional classification problem, with tiasses.
Original basis (left) and rotated basis (right). 4. compute the overall mutual information
Let Z be the new feature] = ¢’ X, whereg is al x n I = ZIWkX;Y) (6)
vector with||¢||?> = 1. The best projection, in a discriminant k
sense, is given by go to 2) if it is larger than that of the previous iteration.
* T~r.
¢" = argmax (¢ X;Y). (2) 3. SALIENCY MAP GENERATION

However, the solution of this problem is still not trivial, Given an object class of interest, and an image where salient
since (2) has no closed-form solution. An exhaustive searclocations are to be identified, the saliency map is a map of



weighted feature responses at all image locations. Eaeh fea 18 N VB
ture is weighted according to its discriminant power with re "" ll I &' C’ k ! m H

spect to the classification problem that opposesthe class of == = = ] = EEX ﬁ "
interest to the null hypothesis. The salierftft) of locationl Yoo ] = ‘BN F B
is the weighted sum of the energy of all feature responses at " - = " - H - t § E
that location N=EF A= MM CFM
S0 = Z I(X; Y) Ry (1) Fig. 2. Comparison of simple (left) and complex (right) featuresed
k from the Caltech “face” class.

whereRy (1) is the result of half-wave rectification of the con-
volution of the image with the filtef),, associated feature
X} [10]. We refer toS(1) as thesaliency map with respect to
the class of interest.

simple | complex| scale scale [11]
simple | complex
bicycle 89.5 86.8 96.5 98.2 93

car 92 92 93.1 94.2 96.1
motorbike| 92.6 935 94.9 94.9 97.7
people 91.7 97.6 95.5 97.3 91.7

4. SCALE ADJUSTMENT

Sm,ce the size of the Obje(,:t of "?tereSt’ in the image Wherq'able 1. ROC equal error rate (detection rate at which the false ipesit
saliency must be determined, is usually not known, theate is equal to the miss rate) for the four object classesASCRAL.
saliency operation should search for the best image scale.

This can be done by measuring feature responses at multi- o i
ple scales, i.e. considerii§ = {Xili = 1 S.j = at the top of each feature indicates its scalengans that the
, l.e. J yeeey S,

size of feature i®™ by 2").

1,...,F}, whereF is the selected number of features &hd
the number of scales, and searching for the scale Figure 3 presents a few examples of feature responses
from the learned complex features. The first feature, whose
F responses appear in the first row, seems to capture the contou
" = argmin > KL[Pfg;: ()| Px; (x)], (7)  on the right side of the face. The second feature (second row)
j=1 has strong response to the region around the left eye. The
where Px () is the distribution ofX; in the training set :hg?;igture (third row) appears to be tuned to the left blf
(assumed to display images of roughly the same scale) ang '

P%, () the distribution on the test image of the responses of

feajturej and scale. Feature responses of multiple scales carg.2. Object category classification
be obtained by applying the same feature set to variousslevel
of a Gaussian pyramid decomposition of the testimage.  For the classification experiments we relied on the PASCAL
2005 dataset 1. In this dataset, each image contains one
from four classes of objects, plus background clutter. &4bl
5. EXPERIMENTS
shows the ROC equal error rate (EER) produced by the SVM

To evaluate the impact of feature selection on discriminanfistogram classifier, with various types of features (senpl
saliency, we used an object classification task from the PASRt Single scale, complex at single scale, and the two types
CAL challenge. A saliency map is produced for each image‘,"”th scale selegtlon). Overall, complex feature; achieste b
histogrammed (in all experiments we uskbin histograms) ter rat.e.s than simple feature, and scale selection seents to b
and fed to a support vector machine (SVM). The SVM isheneficial in both cases. The features learned fpr the “peo-
trained to classify histograms into the class of interest anP€” class are shown in figure 4. Note how the simple DCT
the null hypothesis. The saliency detector is evaluatediby t féatures are transformed into complex ‘face-like’ feasure
accuracy of this classification. For completeness, we also present the best results re-
ported in the literature (with more complex classifiers) for
this dataset [11]. With complex features and scale selectio
the simple classifier now proposed achieves better perfor-
We start by analyzing the complex features produced by thmance, than these methods, on two of the four classes.
proposed algorithm. We consider the Caltech face databageigure 5 presents a comparison of the EER obtained with
where the objects of interest (faces) have roughly constasimple and complex features, as a function of the number of
size, and occupy a relatively large portion of each imageselected features. Note that, for all object classes, ommpl
A comparison between the original simple features and thé&atures produce better results, and the differences ayerla
learned complex features is shown in figure 2. The numbewrhen the number of features is small.

5.1. Simple features vs. complex features



Fig. 3. Top four complex features and examples of their responsegufes are shown on the leftmost column, and responsesttéezaure fill the remainder
of each row. In each case, we present the image on the leftaieticyy map (due to the feature only) on the right. The lecatf maximum response is

highlighted with a circle of radius proportional to the scaf the feature.
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Fig. 4. Selected features. Simple DCT features(left) and complatufes
learned from the “people” class(right).

6. CONCLUSION
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In this work, we have analyzed the impact of feature selec-
tion on discriminant saliency. Two conclusions can be dr'awnFig. 5. ROC equal error rate according to number of feature. Objaets

First, complex features appear to improve object classifica

"bicycle”, "car”, "motorbike”, and "people” from the leftdp.

performance. Second, scale selection appears to be bahefici

even with simple features. In the future, we plan to study how

to account for variable scale during training.
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