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Abstract

The classical hypothesis, that bottom-up saliency is a center-surround process, is
combined with a more recent hypothesis that all saliency decisions are optimal in
a decision-theoretic sense. The combined hypothesis is denoted as discriminant
center-surround saliency, and the corresponding optimal saliency architecture is
derived. This architecture equates the saliency of each image location to the dis-
criminant power of a set of features with respect to the classification problem that
opposes stimuli at center and surround, at that location. Itis shown that the result-
ing saliency detector makes accurate quantitative predictions for various aspects
of the psychophysics of human saliency, including non-linear properties beyond
the reach of previous saliency models. Furthermore, it is shown that discriminant
center-surround saliency can be easily generalized to various stimulus modalities
(such as color, orientation and motion), and provides optimal solutions for many
other saliency problems of interest for computer vision. Optimal solutions, under
this hypothesis, are derived for a number of the former (including static natural
images, dense motion fields, and even dynamic textures), andapplied to a num-
ber of the latter (the prediction of human eye fixations, motion-based saliency in
the presence of ego-motion, and motion-based saliency in the presence of highly
dynamic backgrounds). In result, discriminant saliency isshown to predict eye
fixations better than previous models, and produces background subtraction algo-
rithms that outperform the state-of-the-art in computer vision.

1 Introduction

The psychophysics of visual saliency and attention have been extensively studied during the last
decades. As a result of these studies, it is now well known that saliency mechanisms exist for a
number of classes of visual stimuli, including color, orientation, depth, and motion, among others.
More recently, there has been an increasing effort to introduce computational models for saliency.
One approach that has become quite popular, both in the biological and computer vision communi-
ties, is to equate saliency with center-surround differencing. It was initially proposed in [12], and
has since been applied to saliency detection in both static imagery and motion analysis, as well
as to computer vision problems such as robotics, or video compression. While difference-based
modeling is successful at replicating many observations from psychophysics, it has three signifi-
cant limitations. First, it does not explain those observations in terms of fundamental computational
principles for neural organization. For example, it implies that visual perception relies on a linear
measure of similarity (difference between feature responses in center and surround). This is at odds
with well known properties of higher level human judgments of similarity, which tend not to be
symmetric or even compliant with Euclidean geometry [20]. Second, the psychophysics of saliency
offers strong evidence for the existence of both non-linearities and asymmetries which are not eas-
ily reconciled with this model. Third, although the center-surround hypothesis intrinsically poses
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saliency as a classification problem (of distinguishing center from surround), there is little basis on
which to justify difference-based measures as optimal in a classification sense. From an evolutionary
perspective, this raises questions about the biological plausibility of the difference-based paradigm.

An alternative hypothesis is that all saliency decisions are optimal in a decision-theoretic sense.
This hypothesis has been denoted as discriminant saliency in [6], where it was somewhat narrowly
proposed as the justification for a top-down saliency algorithm. While this algorithm is of interest
only for object recognition, the hypothesis of decision theoretic optimality is much more general,
and applicable to any form of center-surround saliency. This has motivated us to test its ability to
explain the psychophysics of human saliency, which is better documented for the bottom-up neural
pathway. We start from the combined hypothesis that 1) bottom-up saliency is based on center-
surround processing, and 2) this processing is optimal in a decision theoretic sense. In particular,
it is hypothesized that, in the absence of high-level goals,the most salient locations of the visual
field are those that enable the discrimination between center and surround with smallest expected
probability of error. This is referred to as thediscriminant center-surround hypothesis and, by
definition, produces saliency measures that are optimal in aclassification sense. It is also clearly
tied to a larger principle for neural organization: that allperceptual mechanisms are optimal in a
decision-theoretic sense.

In this work, we present the results of an experimental evaluation of the plausibility of the discrim-
inant center-surround hypothesis. Our study evaluates theability of saliency algorithms, that are
optimal under this hypothesis, to both

• reproduce subject behavior in classical psychophysics experiments, and

• solve saliency problems of practical significance, with respect to a number of classes of
visual stimuli.

We derive decision-theoretic optimal center-surround algorithms for a number of saliency problems,
ranging from static spatial saliency, to motion-based saliency in the presence of egomotion or even
complex dynamic backgrounds. Regarding the ability to replicate psychophysics, the results of this
study show that discriminant saliency not only replicates all anecdotal observations that can be ex-
plained by linear models, such as that of [12], but can also make (surprisingly accurate) quantitative
predictions for non-linear aspects of human saliency, which are beyond the reach of the existing
approaches. With respect to practical saliency algorithms, they show that discriminant saliency not
only is more accurate than difference-based methods in predicting human eye fixations, but actu-
ally produces background subtraction algorithms that outperform the state-of-the-art in computer
vision. In particular, it is shown that, by simply modifyingthe probabilistic models employed in
the (decision-theoretic optimal) saliency measure - from well known models of natural image statis-
tics, to the statistics of simple optical-flow motion features, to more sophisticated dynamic texture
models - it is possible to produce saliency detectors for either static or dynamic stimuli, which are
insensitive to background image variability due to texture, egomotion, or scene dynamics.

2 Discriminant center-surround saliency

A common hypothesis for bottom-up saliency is that the saliency of each location is determined by
how distinct the stimulus at the location is from the stimuliin its surround (e.g., [11]). This hypoth-
esis is inspired by the ubiquity of “center-surround” mechanisms in the early stages of biological
vision [10]. It can be combined with the hypothesis of decision-theoretic optimality, by defining a
classification problem that equates

• the class of interest, at locationl, with the observed responses of a pre-defined set of fea-
turesX within a neighborhoodW1

l of l (thecenter),

• the null hypothesis with the responses within a surroundingwindowW0
l (thesurround ),

The saliency of locationl∗ is then equated with the power of the feature setX to discriminate
betweencenter andsurround. Mathematically, the feature responses within the two windows are
interpreted as observations drawn from a random processX(l) = (X1(l), . . . ,Xd(l)), of dimension
d, conditioned on the state of a hidden random variableY (l). The observed feature vector at any
locationj is denoted byx(j) = (x1(j), . . . , xd(j)), and feature vectorsx(j) such thatj ∈ Wc

l , c ∈
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{0, 1} are drawn from classc (i.e., Y (l) = c), according to conditional densitiesPX(l)|Y (l)(x|c).
The saliency of locationl, S(l), is quantified by the mutual information between features,X, and
class label,Y ,

S(l) = Il(X;Y ) =
∑

c

∫
pX(l),Y (l)(x, c) log

pX(l),Y (l)(x, c)

pX(l)(x)pY (l)(c)
dx. (1)

The l subscript emphasizes the fact that the mutual information is defined locally, withinWl. The
functionS(l) is referred to as thesaliency map.

3 Discriminant saliency detection in static imagery

Since human saliency has been most thoroughly studied in thedomain of static stimuli, we first
derive the optimal solution for discriminant saliency in this domain. We then study the ability of
the discriminant center-surround saliency hypothesis to explain the fundamental properties of the
psychophysics of pre-attentive vision.

3.1 Feature decomposition

The building blocks of the static discriminant saliency detector are shown in Figure 1. The first
stage, feature decomposition, follows the proposal of [11], which closely mimics the earliest stages
of biological visual processing. The image to process is first subject to a feature decomposition into
an intensity map and four broadly-tuned color channels,I = (r + g + b)/3, R = br̃ − (g̃ + b̃)/2c+,
G = bg̃ − (r̃ + b̃)/2c+, B = bb̃ − (̃r + g̃)/2c+, andY = b(r̃ + g̃)/2 − |r̃ − g̃|/2c+, where
r̃ = r/I, g̃ = g/I, b̃ = b/I, andbxc+ = max(x, 0). The four color channels are, in turn, combined
into two color opponent channels,R − G for red/green andB − Y for blue/yellow opponency.
These and the intensity map are convolved with three Mexicanhat wavelet filters, centered at spatial
frequencies0.02, 0.04 and0.08 cycle/pixel, to generate nine feature channels. The feature spaceX
consists of these channels, plus a Gabor decomposition of the intensity map, implemented with a
dictionary of zero-mean Gabor filters at 3 spatial scales (centered at frequencies of0.08, 0.16, and
0.32 cycle/pixel) and4 directions (evenly spread from0 to π).

3.2 Leveraging natural image statistics

In general, the computation of (1) is impractical, since it requires density estimates on a potentially
high-dimensional feature space. This complexity can, however, be drastically reduced by exploiting
a well known statistical property of band-pass natural image features, e.g. Gabor or wavelet coeffi-
cients: that features of this type exhibit stronglyconsistent patterns of dependence (bow-tie shaped
conditional distributions) across a very wide range of classes of natural imagery [2, 9, 21]. The
consistency of these feature dependencies suggests that they are, in general, not greatly informative
about the image class [21, 2] and, in the particular case of saliency, about whether the observed
feature vectors originate in the center or surround. Hence,(1) can usually be well approximated by
the sum of marginal mutual informations [21]1, i.e.,

S(l) =

d∑
i=1

Il(Xi;Y ). (2)

Since (2) only requires estimates of marginal densities, ithas significantly less complexity than (1).
This complexity can, indeed, be further reduced by resorting to the well known fact that the marginal
densities are accurately modeled by a generalized Gaussiandistribution (GGD) [13]. In this case, all
computations have a simple closed form [4] and can be mapped into a neural network that replicates
the standard architecture of V1: a cascade of linear filtering, divisive normalization, quadratic non-
linearity and spatial pooling [7].

1Note that this approximationdoes not assume that the features are independently distributed, but simply
that their dependencies are not informative about the class.
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Figure 1:Bottom-up discriminant saliency detector.
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Figure 2: The nonlinearity of human saliency re-
sponses to orientation contrast [14] (a) is replicated
by discriminant saliency (b), but not by the model
of [11] (c).

3.3 Consistency with psychophysics

To evaluate the consistency of discriminant saliency with psychophysics, we start by applying the
discriminant saliency detector to a series of displays usedin classical studies of visual attention [18,
19, 14]2. In [7], we have shown that discriminant saliency reproduces the anecdotal properties of
saliency - percept of pop-out for single feature search, disregard of feature conjunctions, and search
asymmetries for feature presence vs. absence - that have previously been shown possible to replicate
with linear saliency models [11]. Here, we focus onquantitative predictions of human performance,
and compare the output of discriminant saliency with both human data and that of the difference-
based center-surround saliency model [11]3.

The first experiment tests the ability of the saliency modelsto predict a well known nonlinearity
of human saliency. Nothdurft [14] has characterized the saliency of pop-out targets due to ori-
entation contrast, by comparing the conspicuousness of orientation defined targets and luminance
defined ones, and using luminance as a reference for relativetarget salience. He showed that the
saliency of a target increases with orientation contrast, but in a non-linear manner: 1) there exists a
threshold below which the effect of pop-out vanishes, and 2)above this threshold saliency increases
with contrast, saturating after some point. The results of this experiment are illustrated in Figure 2,
which presents plots of saliency strength vs orientation contrast for human subjects [14] (in (a)),
for discriminant saliency (in (b)), and for the difference-based model of [11]. Note that discrim-
inant saliency closely predicts the strong threshold and saturation effects characteristic of subject
performance, but the difference-based model shows no such compliance.

The second experiment tests the ability of the models to makeaccurate quantitative predictions of
search asymmetries. It replicates the experiment designedby Treisman [19] to show that the asym-
metries of human saliency comply with Weber’s law. Figure 3 (a) shows one example of the displays
used in the experiment, where the central target (vertical bar) differs from distractors (a set of iden-
tical vertical bars) only in length. Figure 3 (b) shows a scatter plot of the values of discriminant
saliency obtained across the set of displays. Each point corresponds to the saliency at the target
location in one display, and the dashed line shows that, likehuman perception, discriminant saliency
follows Weber’s law: target saliency is approximately linear in the ratio between the difference of
target/distractor length (∆x) and distractor length (x). For comparison, Figure 3 (c) presents the cor-
responding scatter plot for the model of [11], which clearlydoes not replicate human performance.

4 Applications of discriminant saliency

We have, so far, presented quantitative evidence in supportof the hypothesis that pre-attentive vi-
sion implements decision-theoretical center-surround saliency. This evidence is strengthened by the

2For the computation of the discriminant saliency maps, we followed the common practice of psychophysics
and physiology [18, 10], to set the size of the center window to a valuecomparable to that of the display items,
and the size of the surround window is6 times of that of the center. Informal experimentation has shown that
the saliency results are not substantively affected by variations aroundthe parameter values adopted.

3Results obtained with the MATLAB implementation available in [22].
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Figure 3: An example display (a) and perfor-
mance of saliency detectors (discriminant saliency
(b) and [11] (c)) on Weber’s law experiment.
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Figure 4: Average ROC area, as a function of
inter-subject ROC area, for the saliency algo-
rithms.

Saliency model Discriminant Itti et al. [11] Bruce et al. [1]
ROC area 0.7694 0.7287 0.7547

Table 1: ROC areas for different saliency models with respect to all human fixations.

already mentioned one-to-one mapping between the discriminant saliency detector proposed above
and the standard model for the neurophysiology of V1 [7]. Another interesting property of discrim-
inant saliency is that its optimality is independent of the stimulus dimension under consideration, or
of specific feature sets. In fact, (1) can be applied to any type of stimuli, and any type of features, as
long as it is possible to estimate the required probability distributions from the center and surround
neighborhoods. This encouraged us to derive discriminant saliency detectors for various computer
vision applications, ranging from the prediction of human eye fixations, to the detection of salient
moving objects, to background subtraction in the context ofhighly dynamic scenes. The outputs
of these discriminant saliency detectors are next comparedwith either human performance, or the
state-of-the-art in computer vision for each application.

4.1 Prediction of eye fixations on natural images

We start by using the static discriminant saliency detectorof the previous section to predict human
eye fixations. For this, the saliency maps were compared to the eye fixations of human subjects in
an image viewing task. The experimental protocol was that of[1], using fixation data collected from
20 subjects and 120 natural images. Under this protocol, allsaliency maps are first quantized into
a binary mask that classifies each image location as either a fixation or non-fixation [17]. Using
the measured human fixations as ground truth, a receiver operator characteristic (ROC) curve is
then generated by varying the quantization threshold. Perfect prediction corresponds to an ROC
area (area under the ROC curve) of 1, while chance performance occurs at an area of 0.5. The
predictions of discriminant saliency are compared to thoseof the methods of [11] and [1].

Table 1 presents average ROC areas for all detectors, acrossthe entire image set. It is clear that
discriminant saliency achieves the best performance amongthe three detectors. For a more detailed
analysis, we also plot (in Figure 4) the ROC areas of the threedetectors as a function of the “inter-
subject” ROC area (a measure of the consistency of eye movements among human subjects [8]), for
the first two fixations - which are more likely to be driven by bottom-up mechanisms than the later
ones [17]. Again, discriminant saliency exhibits the strongest correlation with human performance,
this happens at all levels of inter-subject consistency, and the difference is largest when the latter
is strong. In this region, the performance of discriminant saliency (.85) is close to90% of that of
humans (.95), while the other two detectors only achieve close to85% (.81).

4.2 Discriminant saliency on motion fields

Similarly to the static case, center-surround discriminant saliency can produce motion-based
saliency maps if combined with motion features. We have implemented a simple motion-based de-
tector by computing a dense motion vector map (optical flow) between pairs of consecutive images,
and using the magnitude of the motion vector at each locationas motion feature. The probability
distributions of this feature, within center and surround,were estimated with histograms, and the
motion saliency maps computed with (2).
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Figure 5:Optical flow-based saliency in the presence of egomotion.

Despite the simplicity of our motion representation, the discriminant saliency detector exhibits in-
teresting performance. Figure 5 shows several frames (top row) from a video sequence, and their
discriminant motion saliency maps (bottom row). The sequence depicts a leopard running in a grass-
land, which is tracked by a moving camera. This results in significant variability of the background,
due to egomotion, making the detection of foreground motion(leopard), a non-trivial task. As shown
in the saliency maps, discriminant saliency successfully disregards the egomotion component of the
optical flow, detecting the leopard as most salient.

4.3 Discriminant Saliency with dynamic background

While the results of Figure 5 are probably within the reach of previously proposed saliency models,
they illustrate the flexibility of discriminant saliency. In this section we move to a domain where
traditional saliency algorithms almost invariably fail. This consists of videos of scenes with com-
plex and dynamic backgrounds (e.g. water waves, or tree leaves). In order to capture the motion
patterns characteristic of these backgrounds it is necessary to rely on reasonably sophisticated prob-
abilistic models, such as the dynamic texture model [5]. Such models are very difficult to fit in the
conventional, e.g. difference-based, saliency frameworks but naturally compatible with the discrim-
inant saliency hypothesis. We next combine discriminant center-surround saliency with the dynamic
texture model, to produce a background-subtraction algorithm for scenes with complex background
dynamics. While background subtraction is a classic problemin computer vision, there has been
relatively little progress for these type of scenes (e.g. see [15] for a review).

A dynamic texture (DT) [5, 3] is an autoregressive, generative model for video. It models the spatial
component of the video and the underlying temporal dynamicsas two stochastic processes. A video
is represented as a time-evolving state processxt ∈ R

n, and the appearance of a frameyt ∈ R
m is

a linear function of the current state vector with some observation noise. The system equations are

xt = Axt−1 + vt

yt = Cxt + wt
(3)

whereA ∈ R
n×n is the state transition matrix,C ∈ R

m×n is the observation matrix. The state and
observation noise are given byvt ∼iid N (0, Q,) andwt ∼iid N (0, R), respectively. Finally, the
initial condition is distributed asx1 ∼ N (µ, S). Given a sequence of images, the parameters of the
dynamic texture can be learned for the center and surround regions at each image location, enabling
a probabilistic description of the video, with which the mutual information of (2) can be evaluated.

We applied the dynamic texture-based discriminant saliency (DTDS) detector to three video se-
quences containing objects moving in water. The first (Water-Bottle from [23]) depicts a bottle
floating in water which is hit by rain drops, as shown in Figure7(a). The second and third, Boat and
Surfer, are composed of boats/surfers moving in water, and shown in Figure 8(a) and 9(a). These
sequences are more challenging, since the micro-texture ofthe water surface is superimposed on a
lower frequency sweeping wave (Surfer) and interspersed with high frequency components due to
turbulent wakes (created by the boat, surfer, and crest of the sweeping wave). Figures 7(b), 8(b)
and 9(b), show the saliency maps produced by discriminant saliency for the three sequences. The
DTDS detector performs surprisingly well, in all cases, at detecting the foreground objects while ig-
noring the movements of the background. In fact, the DTDS detector is close to an ideal background-
subtraction algorithm for these scenes.
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Figure 6:Performance of background subtraction algorithms on: (a) Water-Bottle, (b) Boat, and (c) Surfer.

(a)

(b)

(c)

Figure 7:Results on Bottle: (a) original; b) discriminant saliency with DT; and c) GMM model of [16, 24].

For comparison, we present the output of a state-of-the-artbackground subtraction algorithm, a
Gaussian mixture model (GMM) [16, 24]. As can be seen in Figures 7(c), 8(c) and 9(c), the resulting
foreground detection is very noisy, and cannot adapt to the highly dynamic nature of the water
surface. Note, in particular, that the waves produced by boat and surfer, as well as the sweeping
wave crest, create serious difficulties for this algorithm.Unlike the saliency maps of DTDS, the
resulting foreground maps would be difficult to analyze by subsequent vision (e.g. object tracking)
modules. To produce a quantitative comparison of the saliency maps, these were thresholded at a
large range of values. The results were compared with ground-truth foreground masks, and an ROC
curve produced for each algorithm. The results are shown in Figure 6, where it is clear that while
DTDS tends to do well on these videos, the GMM based background model does fairly poorly.
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