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Abstract To some extent, the smoothness limitation of the dy-
namic texture has been addressed in the literature by modi-
The dynamic texture is a stochastic video model that fying the linear assumptions of the dynamic texture model.
treats the video as a sample from a linear dynamical sys- For example, [9] keeps the linear observation function,
tem. The simple model has been shown to be surprisinglywhile modeling the state-transitions with a closed-loop dy
useful in domains such as video synthesis, video segmenaamic system. In contrast, [10, 11] utilize a non-linear
tation, and video classification. However, one major dis- observation function, modeled as a mixture of linear sub-
advantage of the dynamic texture is that it can only model spaces, while keeping the standard linear state-transitio
video where the motion is smooth, i.e. video textures whereSimilarly in [12], different views of a video texture are
the pixel values change smoothly. In this work, we proposerepresented by a non-linear observation function that mod-
an extension of the dynamic texture to address this issueels the video texture manifold from different camera view-
Instead of learning a linear observation function with PCA, points. Finally, [7] treats the observation function as a
we learn a non-linear observation function using kernel- piece-wise linear function that changes over time, but ts no
PCA. The resultingcernel dynamic texturés capable of  a generative model.
modeling a wider range of video motion, such as chaotic  In this paper, we improve the modeling capability of the
motion (e.g. turbulent water) or camera motion (e.g. pan- dynamic texture by using a non-linear observation fungtion
ning). We derive the necessary steps to compute the Martinwhile maintaining the linear state transitions. In partcu
distance between kernel dynamic textures, and then validat instead of using PCA to learn a linear observation function,
the new model through classification experiments on videoas with the standard dynamic texture, we kemelPCA to
containing camera motion. learn a non-linear observation function. The resultieg
nel dynamic textures capable of modeling a wider range of
video motion. The contributions of this paper are threekfol
1. Introduction First, we introduce the kernel dynamic texture and describe
. . . . a simple algorithm for learning the parameters. Second, we
The dynamic texture [1].'5 a generative stochastic n?Odelshow how to compute the Martin distance between kernel
of V|de_o that treats the video as a sample from a linear dynamic textures, and hence introduce a similarity measure
dynamical system. Although S'mple’ the_ model has beenforthe new model. Third, we build a video classifier based
shown to be surprisingly useful in domains such as video on the kernel dynamic texture and the Martin distance, and

synthe§is [1,2], video Classifi.cation [3, 4, 5], and videg-se evaluate the efficacy of the model through a classification
mentation [6, 7, 8, 2]. Despite these numerous successes

S . ) ) experiment on video containing camera motion. We begin
one major dls_advantage ofthe dy.”a"_“c texture IS that !t CaNihe paper with a brief review of kernel PCA, followed by
only model video where the motion is smooth, i.e. \_/|d_eo each of the three contributions listed above.
textures where the pixel values change smoothly. This lim-
itatio.n. stems from t.he linear assum.p.tions of .the moplel: 2 Kernd PCA
specifically, 1) the linear state-transition function, afni
models the evolution of the hidden state-space variables Kernel PCA [13] is the kernelized version of standard
over time; and 2) the linear observation function, which PCA [14]. With standard PCA, the data is projected onto
maps the state-space variables into observations. As a rethe linear subspace (linear principal components) that bes
sult, the dynamic texture cannot model more complex mo- captures the variability of the data. In contrast, kerneAPC
tion, such as chaotic motion (e.g. turbulent water) or camer (KPCA) projects the data onto non-linear functions in the
motion (e.g. panning, zooming, and rotations). input-space. These non-linear principal components are de



fined by the kernel function, but are never explicitly com- 9 e g @

puted. An alternative interpretation is that kernel PCAt firs
applies a non-linear feature transformation to the datd, an

then performs standard PCA in the feature-space. @ @ @ @

Given a training data set df pointsY = [y1,...,yn] . . .
with 5, € R™ and a kernel functiork(y1,y,) with as- Figure 1. Graphical model of the dynamic texture.

sociated feature transformatiaf(y), i.e. k(y1,y2)
(¢(v1), ¢(y2)), the c-th kernel principal component in the .
feature-space has the form [13] (assuming the data has zero- |NPut: Video sequencgyy, ..., yn], state space dimen-
mean in the feature-space): sionn, kernel functionk(yy, ya).
Compute the mear = & SN v
N Subtract the meany, «— y; — ¥, Vt.
Ve = Z o cP(Y;) (1) Compute the (centered) kernel matiiX]; ; = k(v:, y;)
i=1 Compute KPCA weights: from K.
[{%1---:6}\/] =alK

Algorithm 1 Learning a kernel dynamic texture

The KPCA weight vectot,, = [aic,...,an.|T is given A=ldy- an|[E1- - En_1]l
by a. = \/%vc, where A\, and v, are the c-th largest by = &y _Aj;t717 Vi
eigenvalue and eigenvector of the kernel mafixwhich Q= o Zi\i—ll oy
has entriesK]; ; = k(yi,y;). Finally, the KPCA coeffi- g = C(&), Vt, (€.g. minimum-norm reconstruction).
cientsX = [z1,- -,z ]| of the training sel” are given by e L ZN e — QtHQ
mN t=

X = o' K, wherea = [ay,- -+ ,a,] is the KPCA weight T
matrix, andn is the number of principal components. i

Several methods can be used to reconstruct the input
vector from the KPCA coefficients, e.g. minimum-norm
reconstruction [15, 16], or constrained-distance recanst
tion [17]. Finally, in the general case, the KPCA equations
can be extended to center the data in the feature-space if i
is not already zero-mean (see [18] for details).

When the parameters of the model are learned using the
method of [1], the columns of' are the principal compo-
pents of the video frames (in time), and the state vector is
a set of PCA coefficients for the video frame, which evolve
according to a Gauss-Markov process.

3. Kernel Dynamic Textures 3.2. Kernel Dynamic Textures

In this section, we introduce the kernel dynamic texture.  Consider the extension of the standard dynamic texture
We begin by briefly reviewing the standard dynamic texture, where the observation matriX is replaced by a non-linear

followed by its extension to the kernel dynamic texture. functionC'(z;) of the current state;,
3.1. Dynamic texture Ty = Ari1 + vt 3)
yr = C(x) +wy

A dynamic texture [1] is a generative model for video,
which treats the video as a sample from a linear dynamicalln general, learning the non-linear observation functiam c
system. The model, shown in Figure 1, separates the visuabe difficult since the state variables are unknown. As an
component and the underlying dynamics into two stochasticalternative, the inverse of the observation function, fhe
processes. The dynamics of the video are represented as fainction D(y) : R™ — R"™ that maps observations to the
time-evolving state process € R", and the appearance of state-space, can be learned with kernel PCA. The estimates
the framey; € R™ is a linear function of the current state of the state variables are then the KPCA coefficients, and
vector with some observation noise. Formally, the systemthe state-space parameters can be estimated with the least-

equations are squares method of [1]. The learning algorithm is summa-

rized in Algorithm 1. We call a non-linear dynamic system,
{ = Axp1 + v @) learned in this manner, lernel dynamic texturbecause it
yr = Cry + wy uses kernel PCA to learn the state-space variables, rather

than PCA as with the standard dynamic texture. Indeed

whereA € R™"™" is the state-transition matrix; € R™*" when the kernel function is the linear kernel, the learning

is the observation matrix, angy € R" is the initial condi- algorithm reduces to that of [1].

tion. The state and observation noise are givemwby,,, The kernel dynamic texture has two interpretations:

N(0,Q,) andw; ~,;,4 N(0,71,,), respectively. 1) kernel PCA learns the non-linear observation function
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Figure 2. Synthesis examples: (left) The original timéesefsine wave, triangle wave, or periodic ramp); and a rangample generated

from: (middle) the dynamic texture; and (right) the kernghamic texture, learned from the signal. The two dimensgadfrike signal are
shown in different colors.

C'(zx), which contains non-linear principal components; or any discernible signal from the ramp wave.

2) kernel PCA first transforms the data with the feature-  The results from these simple experiments indicate that
transformationg(y) induced by the kernel function, and the kernel dynamic texture is better at modeling arbitrary
then a standard dynamic texture is learned in the featuretime-series. In particular, the kernel dynamic texture can
space. This feature-space interpretation will prove Usefu  model both discontinuities in the first derivative of the-sig
Section 4, where we compute the Martin distance betweennal (e.g. the triangle wave), and jump discontinuities & th

kernel dynamic textures. signal (e.g. the periodic ramp). These types of discontinu-
_ ities occur frequently in video textures containing chaoti
3.3. Synthetic examples motion (e.g. turbulent water), or in texture undergoing eam

In this section we show the expressive power of the ker- €7@ motion (e.g. panning across a sharp edge). While the
nel dynamic texture on some simple synthetic time-series. 2PPlication of the kernel dynamic texture to video syntsesi

Figure 2 (left) shows three two-dimensional time-serigs: 1 IS certainly interesting and a direction of future work e t
asine wave, 2) a triangle wave, and 3) a periodic rampwave.rema'nder of th_ls_, paper we_W|II focus only on utilizing the
Each time-series has length 80, and contains two periods of10del for classification of video textures.
the waveform. The two-dimensional time-series was pro-
jected linearly into a 24-dimensional space, and Gaussian3-4- Other related works
i.i.d. noise ¢ = 0.01) was added. Note that the triangle
wave and periodic ramp are not smooth signals in the sense.
that the former has a discontinuity in the first derivative,
while the latter has a jump-discontinuity in the signal.

A dynamic texture and a kernel dynamic textureere

The kernel dynamic texture is related to non-linear dy-
mical systems, where both the state transitions and the
observation functions are non-linear functions. In [1B§ t
EM algorithm and the extended Kalman filter are used to

X ) ) X . learn the parameters of a non-linear dynamical system. In
learned from the 24-dimensional time-series, with state- [20], the nonlinear mappings are modeled as multi-layer

space dimensiom = 8. Next, a random sample of : :
erceptron networks, and the system is learned using a
length 160 was generated from the two models, and the 24-IO b y 9

di ional sianal i | iacted back into two di Bayesian ensemble method. These methods can be com-

'mef.‘S'O”? signa \I/_vast_ mealr:y prOJezc eh acthln 0 V\;ﬁ - putationally intensive because of the many degrees of free-
MENsIONS for visualization. -Hgure = Shows the SyntNesiS 4., 5ssociated with both non-linear state-transitions and
results for each time-series. The kernel dynamic texture is

. . . . non-linear observation functions. In contrast, the kedyel
able to model all three time-series well, including the more dye

difficult triandl q This is | trast to th namic texture is a model where the state-transition is tinea

Imeult tnangle and ramp waves. ThiS IS In contrastto e o, 4 e opservation function is non-linear.

dynamic texture, which can only represent the sine wave. . . .
. : : The kernel dynamic texture also has connections to di-

For the triangle wave, the dynamic texture fails to capture

the sharp peaks of the triangles, and the signal begins to de[nensionality reduction; several manifold-embedding algo

o . rithms (e.g. ISOMAP, LLE) can be cast as kernel PCA with
grade after = 80. The dynamic texture does not capture kernels specific to each algorithm [21]. Finally, the kernel

1The centered RBF kernel with width computed from (11) wasluse ~ dynamic texture is similar to [22, 23], which learns appear-




ance manifolds of video that are constrained by a Gauss-
Markov state-space witknownparameters! andq@.

4. Martin distance for kernel dynamic textures

Previous work [3] in video classification used the Mar-
tin distance as the similarity distance between dynamic tex
ture models. The Martin distance [24] is based on the
principal angles between the subspaces of the extended ob-
servability matrices of the two textures [25]. Formally, le
0, = {C,, A} and©, = {Cy, Ay} be the parameters of :
two dynamic textures. The Martin distance is defined as Flgure 3. Examples from the UCLA pan video texture database

d*(84,01) = logHCOS 0: ) The inner-product between these two KPCA components is
whered); is the i-th principal angle between the extended Ny Ny
observability matrices?, and ©,, defined as®, = (Ue,vq) = <Z ai,c¢(y§),26i,d¢(yf)> )
[cr AT¢T ... (AT ... 1", and similarly i=1 i=1
for O,. Itis shown in [25] that the principal angles can be = al'Gpy (10)
computed by solving the following generalized eigenvalue
problem: whereG is the matrix with entrie$G|; ; = g(y?, yg), and
9(y1,y2) = (d(y1),v(y2)). The functiong is the inner-
[ 0 T Oas } { v } = )\[ Oaa 0 } [ v } (5) product in the feature-space between the two data-points,
(Oar)™ 0 Y 0 Ow |y transformed by twalifferentfunctions,¢(y) andq(y). For
subject tax” O,z = 1 andy” O,y = 1, where two Gaussian kernels with bandwidth parametefsand
- oy, it can be shown thag(yi,y2) = exp(—3lz-m —
Ou = (0)T Oy = Z(Ag)Tcgchg (6) Ulby2||2) (see [18] for details). Finally, the inner product
t=0 matrix between all the KPCA componentdis= o’ GJ3.

and similarly forO,, andOy,. The firstn largest eigenval-
ues are the cosines of the principal angles, and hence 5. Experimental evaluation

B(0,,0) = —2 Z log i @ In_ this section we e\_/gluqte the _efflcacy of the kernel Qy-
namic texture for classification of video textures undemgoi

S _ camera motion.
The Martin distance for kernel dynamic textures can be

computed by ysing the interpretat?on that the kerne_l dy- 5.1. Databases
namic texture is a standard dynamic texture learned in the
feature-space of the kernel. Hence, in the maffix= The UCLA dynamic texture database [3, 4] contains 50
CT'Cy, the inner-products between the principal compo- classes of various video textures, including boiling water
nents can be replaced with the inner-products between thdountains, fire, waterfalls, and plants and flowers swaying i
kernel principal components in the feature-space. However the wind. Each class contains four grayscale sequences with
this can only be done when the two kernels induce the same’5 frames ofl 60 x 110 pixels. Each sequence was clipped to
inner-product in the same feature-space. a48 x 48 window that contained the representative motion.
Consider two data setg/?} e and{y?}*,, and two A second database containing panning video textures
kernel functionsk, and k;, with feature transformations was built from the original UCLA video textures. Each
o(y) and ¥(y), i.e. ko(y1,y2) = (P(y1),o(y2)) and video texture was generated by panning)ax< 40 window
Eo(y1,12) = (¥(y1),¥(y2)), which share the same inner- across the original UCLA video. Four pans (two left and
product and feature-spaces. Running KPCA on each of thetwo right) were generated for each video sequence, result-
data-sets with their kernels yields the KPCA weight matri- ing in a database of 800 panning textures, which we call the
cesa andg, respectively. The c-th and d-th KPCA compo- UCLA-pan database. The motion in this database is com-
nents in each of the feature-spaces are given by, posed of both video textures and camera panning, hence the
; : dynamic texture is not expected to perform well on it. Ex-
U = Z i cd(y?), - Z Bi.ab(yh). 8) amples of the UCLA-pan database appear in Figure 3, and

p video montages of both databases are available from [18].



5.2. Experimental setup Database KDT-MD DT-MD DT-KLO

_ . UCLANN 0.895 (20) 0.890 (15) 0.365 (2)

A kernel dynamic texture was learned for each video in ;| A syMm 0.975 (20)  0.965 (15) 0.725 (2)
the database using Algorithm 1 and a centered Gaussian UCLA-pan NN | 0.898 (30) 0.843 (30) 0.816 (5)
kernel with bandwidth parameter?, estimated for each UCLA-pan SVM | 0.943 (30)  0.928 (25) 0.920 (5)

video as Table 1. Classification results for the UCLA and UCLA-pan
databasesn is the number of principal components.

1 .
o> = smedian{|ly: - y;[*}i 1.5 (11)

) N zero-mean data (DT-KLO). The best performance for DT-
Both nearest neighbor (NN) and SVM classifiers [26] were k| occurs whenn = 0, i.e. the video is simply modeled
trained using the Martin distance for the kernel dynamic 55 the mean image with some i.i.d. Gaussian noise. On the
texture. The SVM used an RBF-kernel based on the Martin giher hand, when the mean is ignored in DT-KLO, the per-

. 1 2
distance fima(Oa, ©p) = e 22 (9192) A one-versus-  formance of the classifier drops dramatically (from 94% to
all scheme was used to learn the multi-class SVM problem, 1 5o, accuracy fon = 0). Hence, much of the discrimina-
and theC' andy parameters were selected using three-fold tjye power of the KL-based classifier comes from the simi-
cross-validation over the training set. We usedithesvm larity of image means, not from video motion. Because the
package [27] to train and test the SVM. Martin distance does not use the image means, we present

For comparison, a NN classifier using the Martin dis- the classification results for DT-KLO to facilitate a fairme

tance on the standard dynamic texture [3] was trained, alongyarison between the classifiers. The DT-KLO NN classifier
with a corresponding SVM classifier. NN and SVM clas- performed worse than both KDT-MD and DT-MD, as seen
sifiers using the image-space KL-divergence between dy-jn Figures 4 (a) and (c). The SVM trained on DT-KLO im-
namic textures [4] were also trained. Finally, experimenta proved the performance over the DT-KLO NN classifier, but
results were averaged over four trials, where in each tr@lt s still inferior to the KDT-MD SVM classifiers. A sum-

databases were Spllt diﬁerently with 75% of data for train- mary of the results on the UCLA and UCLA_pan databases
ing and cross-validation, and 25% of the data for testing.  js given in Table 1.

Finally, Figure 5 shows the distance matrix for DT-
5.3. Results MD and KDT-MD for three classes from UCLA-pan: two
classes of water falling from a ledge, and one class of boil-
ing water (see Figure 5 (right) for examples). The DT-MD

mance versus, the number of principal components (or
the dimension of the state space). While the NN classi- performs paorly on many of these sequences because the
water motion is chaotic, i.e. there are many discontinsiitie

fier based on the kernel dynamic texture and Martin dis- . .
tance (KDT-MD) performs similarly to the dynamic texture n thg plxe|.Va.|l.JeS. On the other hand_, KD.T'MD models
(DT-MD) on the UCLA database, KDT-MD outperforms the discontinuities, and hence can distinguish between the
DT-MD for all values ofn on the UCLA-pan database. different types of chaotic water motion.

The best accuracy increases frém3% to 89.8.% on the

UCLA-pan database when using KDT-MD instead of DT- Acknowledgments
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the UCLA-pan database is not well modeled by the dynamic yatapase from [3]. This work was partially funded by NSF
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cess. The performance of the SVM classifiers is shown

in Figures 4 (b) and (d). The dynamic texture and kernel
dynamic texture perform similarly on the UCLA database,
with both improving over their corresponding NN classi- [1] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamikttees,”
fier. However, the KDT-MD SVM outperforms the DT-MD Ind. J. Computer Visiopvol. 51, no. 2, pp. 91-109, 2003.
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. 0y .

When looking at the performance of the KL-based clas- 3]
sifiers, we note that for the UCLA databases the mean-
|mage O_f the video is h_lghl_y discriminative for classifica- fication of auto-regressive visual processes CMPR 2005.
tion. This can be seen in Flgur.e.s 4 .(a)' where the accuracy [5] S. V. N. Vishwanathan, A. J. Smola, and R. Vidal, “Binetuchy
of the KL-divergence NN classifier is plotted for dynamic kernels on dynamical systems and its application to theyaisabf
textures learned from the normal data (DT-KL) and from dynamic scenesJJCV, vol. 73, no. 1, pp. 95-119, 2007.

Figures 4 (a) and (c) show the NN classifier perfor-
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