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Abstract. A solution to the problem of image retrieval based on query-
by-semantic-example (QBSE) is presented. QBSE extends the idea of
query-by-example to the domain of semantic image representations. A
semantic vocabulary is first defined, and a semantic retrieval system is
trained to label each image with the posterior probability of appearance
of each concept in the vocabulary. The resulting vector is interpreted as
the projection of the image onto a semantic probability simplex, where
a suitable similarity function is defined. Queries are specified by ex-
ample images, which are projected onto the probability simplex. The
database images whose projections on the simplex are closer to that of
the query are declared its closest neighbors. Experimental evaluation
indicates that 1) QBSE significantly outperforms the traditional query-
by-visual-example paradigm when the concepts in the query image are
known to the retrieval system, and 2) has equivalent performance even
in the worst case scenario of queries composed by unknown concepts.

1 Introduction

Content-based image retrieval (CBIR), has been the subject of a significant
amount of computer vision research in the recent past [6]. Two main retrieval
paradigms have evolved over the years: one based on visual queries, here re-
ferred to as query-by-visual-example (QBVE), and the other based on text, here
denoted as semantic retrieval . Under the QBVE paradigm, each image is de-
composed into a number of low-level visual features (e.g. a color histogram) and
image retrieval is formulated as the search for the best database match to the
feature vector extracted from a user-provided query image. It is, however, well
known that strict visual similarity is, in most cases, weakly correlated with the
measures of similarity adopted by humans for image comparison. This motivated
the more ambitious goal of designing retrieval systems with support for seman-
tic queries [4]. The basic idea is to annotate images with semantic keywords,
enabling users to specify their queries through a natural language description of
the visual concepts. Because manual image labeling is a labor intensive process,
the goal of semantic retrieval generated significant interest in the problem of
the automatic extraction of semantic descriptors, by the application of machine
learning algorithms. Early efforts targeted the extraction of specific semantics,

H. Sundaram et al. (Eds.): CIVR 2006, LNCS 4071, pp. 51–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



52 N. Rasiwasia, N. Vasconcelos, and P.J. Moreno

more recently there has been an effort to solve the problem in greater generality,
through techniques capable of learning relatively large semantic vocabularies
from informally annotated training image collections with resort to unsuper-
vised [1,2,5] and weakly supervised learning [9].

When compared to QBVE, semantic retrieval has the advantages of 1) image
similarity at a higher level of abstraction, and 2) support for the natural lan-
guage queries. However, the performance of semantic retrieval systems tends to
degrade for semantic classes that were not identified as potentially interesting
during training, and can lead to less intuitive interaction with retrieval systems
(especially during query refinement) than QBVE. In this work, we show that it
is possible to combine the advantages of the two formulations by extending the
query-by-example paradigm to the semantic domain. We refer to the combina-
tion of the two paradigms as query-by-semantic-example (QBSE), and compare
its performance to QBVE. Our results indicate that QBSE can perform signifi-
cantly better for queries composed of concepts known to the semantic retrieval
system, and achieves equivalent performance in the worst case scenario of queries
composed by concepts outside of the semantic vocabulary.

2 Motivation

2.1 Generalization

In terms of generalization, the performance of QBVE and semantic retrieval
systems can be quite distinct. On one hand, natural language queries enable a
much higher level of query abstraction, and therefore exhibit much better gen-
eralization along the dimension of image similarity. For example, a query for
“sky” will return scenes of both daytime (where sky is mostly blue) and sunsets
(where sky tends to be orange) with equal ease. QBVE can be quite limited in
this respect, since most concepts of interest exhibit a great diversity of visual
appearance. It is usually quite difficult to design a set of visual features that
captures all the relevant dimensions of image variability (e.g. that sky can be
both blue or orange). On the other hand, semantic retrieval can be quite brit-
tle, due to the need to pre-learn appearance models for all visual concepts of
interest [8]. Learning large vocabularies is a difficult task, which requires large
corpuses of manually labeled data that are usually not available. In result, it
is not uncommon to find scenes for which the most obvious semantic classes
are not even defined in the supported semantic vocabulary. For these queries,
the performance of semantic retrieval systems can degrade quite dramatically.
Other problems include the fact that many scenes do not have a unique inter-
pretation1 (e.g. a picture of a lake may evoke the “fishing” descriptor for fishing
aficionados, the “wind-surfing” label for fans of this sport, and the simple “lake”
characterization for most other users), and the fact that it is possible to miss
images that use different synonyms in their descriptions (e.g. when faced with a
query for “sea”, the retrieval system must assign a non-zero relevance to classes
1 It is commonly said that “a picture is worth a thousand words”.



Query by Semantic Example 53

such as “ocean”, “shore”, “waves”, “coast”, or “beach”). None of these problems
affect QBVE, which places very few constraints on the supported queries and,
therefore, generalizes much better along the dimension of query diversity.

2.2 User Interaction

A second metric of retrieval system performance where QBVE and semantic re-
trieval differ significantly, is that of user-interaction. Natural language queries
are the easiest form of query specification for most naive users. By definition,
QBVE requires an example similar to the desired image, which is typically not
easy to find. Furthermore, due to the different measures of similarity imple-
mented by users and retrieval system, there can be a significant difference in
the retrieval efficiency achieved by power and naive users. Successful interaction
with a QBVE system typically requires some ability, by the user, to “think” in
terms of low-level properties such as color or texture. On the other hand, QBVE
systems tend to enable a more intuitive user interaction. This is particularly true
when the desired image is not immediately found, and there is a need for query
refinement . The refinement of a natural language query is usually not trivial,
and can be particularly challenging when the supported semantic vocabulary
is small. In QBVE systems, interaction proceeds by 1) visual inspection of the
top results to the current query and 2) selection of a number of examples for
the subsequent query. This builds on the ability of the human visual system
to quickly scan through a screen of images and select those that are most like
the image of interest. Furthermore, assuming that the database is large enough,
there is never a shortage of subsequent examples with which to refine the query.

2.3 Query by Semantic Example

From the discussion above, it follows that QBVE and semantic retrieval are,
in many respects, complementary. While semantic retrieval generalizes better
along the dimension of image similarity, QBVE supports a much broader query
diversity. While the former enables easier query specification, the latter allows
more intuitive interaction. In fact, the advantages of each paradigm are not
mutually exclusive: while those of semantic retrieval are indisputably connected
to the semantic representation, the limitations of this paradigm are mostly due
to the desire for an unambiguous query specification, as a short natural language
description. Let us assume, for an instant, that instead of a few keywords, 1) the
user specifies the query as a vector of weights for all the keywords in the semantic
vocabulary supported by the retrieval system, and 2) each weight represents the
relevance, to the query, of the associated keyword.

Clearly, because the representation is still of semantic level, none of the ad-
vantages of semantic retrieval are compromised. On the other hand, most of its
limitations are eliminated. First, synonyms are no longer a problem, since all the
semantic classes that could be relevant receive a non-zero weight. Second, even
if the semantic class of interest is not part of the semantic vocabulary, there may
still be various semantic concepts that are relevant for the query. For example,
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“fishing” images are likely to be returned in response to a query composed of
fishing-related terms, e.g. “lake”, “boats”, “nets”, “water”, and “people”, even
if an appearance model for the fishing class has never been explicitly learned.
Finally, it may suffice to specify the weights qualitatively, by equating the rele-
vance weights with the probability of the concept appearing in the desired image
Given that concepts of small weight will penalize potential false-positives (e.g.
a zero weight for “beach” scenes will filter out a large number of possible false-
positives for the “fishing” query), it may not be necessary to specify the concept
probabilities with great accuracy.

2.4 Implementation

It is obviously not feasible to ask a user to explicitly provide all the probabilities
required to make this type of query practical. The user can, nevertheless, pro-
vide these probabilities indirectly, through the adoption of the query-by-example
paradigm. The basic idea is to, as in QBVE systems, let users specify the query
in visual terms, by providing query images. These images are then classified by
the semantic retrieval system which returns a vector of probabilities, where each
component is the posterior probability of a semantic concept satisfying the query.
This probability vector is then compared to the set of similar probability vectors
previously computed for each of the images in the database, in the standard
query-by-example fashion. Note that, because from the user point of view the
interaction really occurs at the visual level, this shares all the user-interaction
advantages of QBVE. In fact, the combination of query by example with the
semantic representation even allows a combination of the interaction modes, e.g.
user starts with a traditional natural language query and switches to QBSE for
query refinement.

An interesting interpretation QBSE, is that of query-by-example on a se-
mantic feature space. The space is the simplex of posterior concept probabili-
ties, and each image is represented as a point in this simplex, as illustrated by
Fig. 1 a). Image similarity is measured by evaluating distances in this space.
When the user selects a query image, the computation of the posterior prob-
abilities for that image can be seen as a (highly non-linear) projection of the
image into this semantic space. Each probability can be thought of as a se-
mantic feature. Features (semantic concepts) that are not part of the semantic
vocabulary define directions that are orthogonal to the semantic space. While it
is impossible to recover their values exactly, they can still be approximated by
their closest projection in the space. The traditional specification of the query
by a short natural language description can also be mapped to the space: it
is equivalent to the adoption of a binary probability vector where a few con-
cepts are assigned non-zero posterior probabilities and all other probabilities are
set to zero. This restricts the area populated by the images to the sides, and
most frequently the corners, of the simplex, as illustrated by Figure 1 b). Under
QBSE, images can be projected onto the entire simplex, enabling a much richer
representation.
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Fig. 1. Semantic image retrieval. a) Under QBSE the user provides a query image,
posterior probabilities (given the image) are computed for all concepts, and the image
represented by the concept probability distribution. b) Under the traditional semantic
retrieval paradigm, the user specifies a short natural language description, and only a
small number of concepts are assigned a non-zero posterior probability.

3 Query by Semantic Example

3.1 Definitions

The starting point for the design of a QBSE retrieval system is the combination
of an image database I = {I1, . . . , ID} and a vocabulary L = {w1, . . . , wL} of
semantic labels or keywords wi. All database images are annotated with a caption
composed of words from L, i.e the caption ci that (in the judgment of a human
labeler) best describes image Ii is available for all i. Note that ci is a binary
L-dimensional vector such that ci,j = 1 if the ith image was annotated with the
jth keyword in L. The training set D = {(I1, c1), . . . , (ID, cD)} of image-caption
pairs is said to be weakly labeled if the absence of a keyword from caption ci

does not necessarily mean that the associated concept is not present in Ii. This is
usually the case in practical scenarios, since each image is likely to be annotated
with a small caption that only identifies the semantics deemed as most relevant
to the labeler. We assume weak labeling in the remainder of this work.

The design of a QBSE retrieval systems requires two main components. The
first is a semantic image labeling system that, given a novel image I, produces
a vector of posterior probabilities π = (π1, . . . , πL)T for the concepts in L. This
can be seen as a feature transformation, from the space of image measurements
X to the L-dimensional probability simplex SL, i.e. a mapping Π : X → SL

such that Π(I) = π. Each image can, therefore, be seen as a point π in SL,
i.e. the probability distribution of a multinomial random variable defined on
the space of semantic concepts. We will refer to this representation as the se-
mantic multinomial (SMN) that characterizes the image. The second compo-
nent is a query-by-example function on SL. This is a function that, given the
SMN that characterizes a query image, returns the most similar SMN among
those derived from all database images, i.e. f : SL → {1, . . . , D} such that
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f(π) = arg maxi s(π, πi) where π is the query SMN, πi the SMN that char-
acterizes the ith database image, and s(·, ·) an appropriate similarity function.
Given that SMNs are probability distributions, a natural similarity function is
the Kullback-Leibler divergence

s(π, π′) = KL(π||πi) =
L∑

i=1

πi log
π′

i

πi
, (1)

which we adopt in this work. We next present our implementation of Π.

3.2 Image Labeling

The mapping Π can be implemented with any semantic labeling system that pro-
duces posterior probabilities for the concepts in L given an image I. We build
on our previous work in the area, by adopting the weakly supervised method
of [9], briefly reviewed in the remainder of this section. This method formulates
semantic image labeling as an L-ary classification problem. Images are repre-
sented as bags of localized measurements I = {x1, . . . ,xn}, where xi ∈ X is
a vector of image measurements (or visual features), and semantic labeling is
achieved through the introduction of 1) a random variable W , which takes val-
ues in {1, . . . , L}, so that W = i if and only if x is a sample from the concept
wi, and 2) a set of class-conditional distributions PX|W (x|i), i ∈ {1, . . . , L} for
visual features given the semantic class.

For all i, the semantic class density PX|W (x|i) is learned from a training set
Di of images labeled with the annotation wi, using a hierarchical estimation
procedure first proposed, in [7], for image indexing. This procedure is itself com-
posed of two steps. First, a Gaussian mixture model is learned for each image in
Di, using the classical expectation-maximization (EM) algorithm.This originates
a sequence of mixture density estimates PX|L,W (x|l, i) =

∑
k πk

i,lG(x, µk
i,l, Σ

k
i,l),

where πk
i,l is a probability mass function such that

∑
k πk

i,l = 1, G(x, µ, Σ) a
Gaussian density of mean µ and covariance Σ, and L a hidden variable that in-
dicates the image number. Omitting, for brevity, the dependence of the mixture
parameters on the semantic class i, and assuming that each mixture has K com-
ponents, this produces DiK mixture components of parameters {πk

j , µk
j , Σk

j }, j =
1, . . . , Di, k = 1, . . . , K. The second step is an extension of the EM algorithm,
which clusters the Gaussian components into a T -component mixture, where T
is the desired number of components at the semantic class level. Denoting by
{πt

c, µ
t
c, Σ

t
c}, t = 1, . . . , T the parameters of the class mixture, this algorithm

iterates between the following steps.

E-step: compute

ht
jk =

[
G(µk

j , µt
c,Σ

t
c)e

− 1
2 trace{(Σt

c)
−1Σk

j }
]πk

j N

πt
c

∑
l

[
G(µk

j , µl
c,Σl

c)e
− 1

2 trace{(Σl
c)−1Σk

j }
]πk

j N

πl
c

, (2)

where N is a user-defined parameter (see [7] for details).
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M-step: set

(πt
c)

new=

∑
jk ht

jk

PK
(3)

(µt
c)

new=
∑
jk

wt
jkµk

j , where wt
jk =

ht
jkπk

j∑
jk ht

jkπk
j

(4)

(Σt
c)

new=
∑
jk

wt
jk

[
Σk

j + (µk
j − µt

c)(µ
k
j − µt

c)
T
]
. (5)

Notice that the number of parameters in each image mixture is orders of mag-
nitude smaller than the number of feature vectors in the image itself. Hence the
complexity of estimating the class mixture parameters is negligible when com-
pared to that of estimating the individual mixture parameters for all images in
the class. It follows that the overall training complexity is equivalent to that
required to train a QBVE retrieval system based on the minimum probability
of error cost [10].

4 Experimental Evaluation

In this section we present results of an evaluation of QBSE on a number of
databases. The goal is to answer two main questions. The first is how well QBSE
performs, comparatively to QBVE, in the standard scenario where the queries
are from classes which belong to the semantic space on which the system was
trained. The second deals with generalization, namely how well QBSE performs
on images from classes outside this space.

4.1 Experimental Protocol

In all experiments the semantic feature space was learned from the Corel data-
base used in [3,5]. This database, henceforth called Corel50, consists of 5, 000
images from 50 Corel Stock Photo CDs, divided into a training set of 4, 500, and
a test set of 500 images. Each CD includes 100 images of the same topic, and
each image is labeled with 1-5 semantic concepts. Overall there are 371 keywords
in the data set, leading to a 371-dimensional semantic simplex. In terms of image
representation, all images were normalized to size 181 × 117 or 117 × 181 and
converted from RGB to the YBR color space. Image observations were derived
from 8× 8 patches obtained with a sliding window, moved in a raster fashion. A
feature transformation was applied to this space by computing the 8×8 discrete
cosine transform (DCT) of the three color components of each patch. The pa-
rameters of the semantic class mixture hierarchies were learned in the subspace
of the resulting 192-dimension feature space composed of the first 21 DCT co-
efficients from each channel. For all experiments, the SMN associated with each
image was computed with these semantic class distributions.

To evaluate retrieval performance, we relied on the standard precision/recall
(PR) curves and carried out tests on three databases Corel50, Flickr18 and
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Fig. 2. Left: average PR for QBSE and QBVE on Corel50. Right: Precision for 50
classes of the Corel50 database.

Corel15. In all cases there is a clear ground truth regarding which images are
relevant to a given query (e.g., images labeled as belonging to the same Topic
on Corel50 data set.). The first set of experiments were done using the 500 test
images of Corel50 as the query database and the 4500 training images as the re-
trieval database. The closest match in the retrieval database was found for each
image in the query database, PR measured, and averaged over all queries. Note
that, in this experiment, the query images belong to the semantic classes that
the system was trained to recognize, i.e. they are in the semantic simplex. This
is the usual evaluation scenario for semantic image retrieval [3,5]. To analyze
the generalization ability of QBSE, we have also used two completely new im-
age databases. The first, Flickr18, was built with 1, 800 images from 18 classes
downloaded from www.flickr.com. These were classified according to the man-
ual annotations provided by the online users. The second, Corel15, consisted
of 1, 500 images from another These were classified based on the CD themes,
which were non-overlapping with the semantic class learned from Corel50 . For
both databases, 20% of randomly selected images served as the query database
and the remaining 80% as the retrieval database.

4.2 Performance Within the Semantic Simplex

Figure 2 a) presents the PR curves obtained on Corel50 with QBVE and QBSE.
It can be seen that the precision of QBSE is significantly higher than that of
QBVE at most levels of recall. QBVE performs well at low-levels of recall, con-
firming its well known ability to generalize along the dimension of query diver-
sity, i.e. to find most images that are visually similar to the query. However, its
performance is dramatically inferior to that of QBSE, which is able to generalize
much more broadly along the dimension of image similarity. Figure 2 presents
a comparison of the relative performance for individual classes, namely the pre-
cision at 0.33 recall. It is clear that QBSE outperforms QBVE for almost all
classes. In 5 classesthe absolute precision gain is greater than 0.30. The benefits
of QBSE are illustrated in Fig. 3, where we present the results for some queries
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Query Image Top 5 retrieved images using QBVE

Top 5 retrieved images using QBSE

Fig. 3. QBVE and QBSE retrieval from Corel50. The first column shows the query
image and columns 2 − 6 the top 5 database matches.

under both QBVE and QBSE. Note, for example, that for the query image con-
taining yellow airplanes and a large area of blue sky, QBVE tends to retrieve
images with yellowish foregrounds, against a the backdrop of blue, that have
little connection to the airplane theme. Due to its higher level of abstraction,
QBSE is successfully able to generalize the main semantic concepts of airplanes,
ground and sky.

4.3 Semantic Simplex Mismatch

One question which is always of relevance for semantic retrieval systems is that
of how well they generalize for image classes not seen during training. QBVE
is obviously not affected by this problem, and provides a good comparative
benchmark. To address this question, we tested QBSE on two other image sets
(Flickr18 and Corel15) with a significant number of semantic classes that are
not covered by Corel50. Note that this is true for both the query and retrieval
databases constructed. While there is a semantic space associated with these
databases, and this space necessarily has some overlap with that of Corel50
(e.g., all databases contain images with “sky”), these two datasets were explicitly
constructed to minimize this overlap insofar as possible. Figure 4 presents the
PR curves obtained in Flickr18 and Corel15. It can be seen that, in both cases,
the performance of QBSE is equivalent to that of QBVE. This indicates that
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QBSE has good generalization: in the worst case its performance drops to the
levels that were possible with visual similarity.
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