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Abstract— We propose to model the traffic flow in a video
using a holistic generative model that does not require segmen-
tation or tracking. In particular, we adopt the dynamic texture
model, an auto-regressive stochastic process, which encodes the
appearance and the underlying motion separately into two
probability distributions. With this representation, retrieval of
similar video sequences and classification of traffic congestion
can be performed using the Kullback-Leibler divergence and
the Martin distance. Experimental results show good retrieval
and classification performance, with robustness to environmental
conditions such as variable lighting and shadows.

I. INTRODUCTION

In recent years, the use of video systems for traffic monitor-
ing has shown promise over that of traditional loop detectors.
The analysis of traffic video can provide global information,
such as overall traffic speed, lane occupancy, and individual
lane speed, along with the capability to track individual cars.
Because video systems are less disruptive and less costly to
install than loop detectors, interest has grown in building and
using large camera networks to monitor different aspects of
traffic, such as traffic congestion.

Most of the existing work in monitoring traffic uses a
vehicle segmentation and tracking framework. First, a potential
vehicle is segmented from the scene using motion cues [1] [2],
or through background subtraction [3]. Once segmentation is
performed, the objects are tracked between frames using rule-
based systems [1], Kalman filters, or Condensation [4]. In [3],
object trajectories are represented as polynomial curves, which
are used for video retrieval. The vehicle tracking framework
has the disadvantage that its accuracy is dependent on the
quality of the segmentation. The segmentation task becomes
more difficult with the presence of adverse environmental con-
ditions, such as lighting (e.g. overcast, glare, night), shadows,
occlusion, and blurring. Furthermore, segmentation cannot
be performed reliably on low resolution images where the
vehicles only span a few pixels. Tracking algorithms also have
problems when there are many objects in the scene, which is
typically the case for highways scenes with congestion.

Several recent methods finesse the problems associated with
vehicle tracking by analyzing the low-level motion vectors
provided by MPEG video compression. In [5], the MPEG
motion vector field is filtered to remove vectors that are not
consistent with vehicle motion, and traffic flow is estimated by
averaging the remaining motion vectors. The work of [6] uses
a probabilistic approach that models each category of traffic as
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a Gaussian-mixture hidden Markov model (GM-HMM), which
is learned from feature vectors extracted from the MPEG video
stream. Classification is performed by selecting the category
corresponding to the GM-HMM of largest likelihood for the
query video. While these two methods do not rely on vehicle
tracking, they depend on the estimation of motion vectors,
which may be subject to noise when there are many vehicles
in the scene.

Since most of the information required for the classification
of traffic video is contained in the interaction between the
many motions that it contains, a holistic representation can
be used to capture the variability of the motion field without
the need for segmenting or tracking individual components.
In this paper, we propose to model the entire motion field
as a dynamic texture, which is an auto-regressive stochas-
tic process with both a spatial and a temporal component
[7]. Distances between dynamic textures can be computed
using either information theoretical measures of divergence
(e.g. the Kullback-Leibler divergence) between the associated
probability distributions, or through geometric measures based
on their observable space (e.g. the Martin distance). Using
these distance measures, traffic videos similar to a query can
be retrieved, or the traffic congestion of the query can be
classified using the nearest neighbors classifier or a support
vector machine (SVM) [8] based on the Kullback-Leibler
kernel [9]. The probabilistic SVM framework combines the
generalization guarantees of the large-margin SVM method,
with the robustness of the underlying probabilistic models,
and has been successfully applied to object [10] and speech
[9] recognition.

Since only the motion is modeled, the proposed framework
is inherently invariant to lighting changes. In addition, because
the model does not rely on a dense motion field based on
pixel similarity (e.g. correlation or optical flow), it is robust
to occlusion, blurring, image resolution, and other image
transformations. While the system proposed in this work was
trained and tested on a single camera view, it can be augmented
to handle multiple camera views by transforming the video
from each camera view into a common frame of reference.

The paper is organized as follows. In Section Il we discuss
the dynamic texture model. The Kullback-Leibler divergence
and the Martin distance between dynamic textures are in-
troduced in Section Ill. Finally, Section 1V presents results
from a video retrieval experiment and a traffic congestion



Fig. 1. Frames from a video of highway traffic. (courtesy Washington State
Department of Transportation)

time

Fig. 2. Dynamic texture model for Figure 1: (left) the first three principal
components; (right) the state space trajectory of the corresponding coefficients.

classification experiment.

Il. MODELING MOTION FLOW

Various representations of a video sequence as a spatio-
temporal texture have been proposed in the vision literature
over the last decade. Early methods were based on motion
features extracted from the video, e.g. the statistics of the
normal flow [12]. More recently, temporal textures have been
modeled as generative processes, such as the multi-resolution
analysis tree [13] or the spatio-temporal autoregressive (STAR)
model [11]. The temporal texture model adopted in this work
is the dynamic texture model of [7], an auto-regressive random
process (specifically, a linear dynamical system) that includes
a hidden state variable and an observation variable. The motion
flow is captured by a dynamic generative model, from which
the hidden state vector is drawn. The observation vector is then
drawn from a second generative model, conditioned on the
state variable. Both the hidden state vector and the observation
vector are representative of the entire image, enabling a
holistic characterization of the motion for the entire sequence.

A. The Dynamic Texture Model
The dynamic texture model [7] is defined by
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where z; € R" is a sequence of n-dimensional hidden (state)
random variables, y; € R™ a m-dimensional sequence of
observed (video frame) random variables, v; ~,;, N(0,1I,)
a n-dimensional driving process (typically n < m), and
wy ~q N(0,R) an observation noise process. The model
is parameterized by © = (A4,B,C,R,z), where A €
R B e RV".C € R™" R € R™"™, and z, is a
known initial state. Note that Bv, ~ AN(0,Q) where Q =
BBT. The covariance of the observation noise is assumed to
be i.id, i.e. R = o21,,.

The sequence {y:} encodes the appearance component of
the video frames, and the motion component is encoded into

the state sequence {z:}. The hidden state is modeled as a
first-order Gauss-Markov process, where the future state x;4
is determined by the transition matrix A, the current state x;,
and the driving process v;. The image frame y, is a linear
combination of the principal components of the entire video
sequence, stored in the columns of C, with each component
weighted by the corresponding coefficient in the state vector
x;. Figure 1 and 2 show an example of a traffic sequence, its
first three principal components, and the corresponding state
space coefficients.

B. Parameter Estimation

In general, the parameters of an autoregressive process
can be learned by maximum likelihood (e.g. N4SID [14]).
However, these solutions are infeasible for dynamic texture
models, due to the high dimensionality of the observed image
space. A suboptimal (but tractable) alternative [7] is to learn
the spatial and temporal parameters separately. If YN =
[y1,...,yn] € R™* is the matrix of observed video frames,
and Y;¥ = UZVT is the singular value decomposition (SVD)
this leads to
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where XN = [y, ..., &y] is a matrix of state estimates, Mt
is the pseudo-inverse of M, and vy = @411 — AZy.

I1l. DISTANCE MEASURES BETWEEN DYNAMIC TEXTURES

Since the dynamic texture model provides a probabilistic
description in both the state and the image space, two dynamic
textures can be compared in either of these spaces. In the
former case, the distribution of the first state space is pro-
jected into the second state space, and the Kullback-Leibler
(KL) divergence is computed between the two distributions.
In the latter, the KL divergence is computed between the
observed distributions in image space. In addition to these two
information theoretic measures, dynamic textures can also be
compared using the Martin distance, which is a metric based
on the angles between the observable linear subspaces. In
the remainder of this section, we discuss these three distance
measures.

A. Probability Distributions

The state of the dynamic texture is a Gauss-Markov process
[15], where the conditional probability of state x; given state
41 IS Gaussian
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where G(z, 1, Q) = ((27)" |Q))* exp(—1 & — %), and
||:z:||2Q = 2T Q~'z. Recursively substituting into (1), we obtain
the probability of a single state x;

p(ze) = G(x, e, St) (7



with mean u; = A’z and covariance S, = Zt LAIQ(ANT,
Let 27 = (z1,...,z,) be a sequence of T state vectors then
the probability of a state sequence is also Gaussian
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The image sequence y7 is a linear transformation of the state
sequence, and is thus given by

G(yi,v, )

where v = Cpand @ = CXCT + R, and C and R. are block
diagonal matrices formed from C and R respectively.

p(y1) = (10)

B. Projection between State Spaces

The KL divergence between state spaces cannot be com-
puted directly because each dynamic texture uses a different
PCA space. Instead, the original state space x; must be pro-
jected into the second state space xo using the transformation
# = CTCyzy. If 21 is the state space with parameters
(A1, B1,x01), then the transformed 2, will have parameters
given by A, = (CfC1)A1(C3C1)~Y, B = (CF C1)By, and
%01 = (CTC1)zo1. The KL divergence between state spaces
can now computed with this transformed state model.

C. KL Divergence between State Spaces

The KL divergence rate between two random processes
with distributions, p(X) and ¢(X) over X = (z1,22,...),
is defined as

D(p(X
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where D(p|lq) = [, p(x)log E”)dm is the KL divergence
between the two pdfs p(x) and q(z). If p(z]) and g¢(z7)
are the state pdfs of two dynamic textures parameterized by
(A1,Q1,z01) and (Ag, Q2,x02), the KL divergence on the
RHS of (11) is given by [16],
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where A = A; — Ay, and S,_; and p;_; are the covariance
and mean associated with the state z;_; of the first dynamic
texture.

D. KL Divergence in Image Space

The KL divergence rate between image probabilities is
found by noting that p(y]) ~ N(y1,®1) and q(y]) ~
N (72, ®2) and hence,
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Direct computation of (13) is intractable since the covariance
matrices have (m7)? elements. By using several matrix iden-
tities, (13) can be rewritten into a computationally efficient
recursive form [17].

E. Martin Distance

The Martin distance [21], introduced in [18] as a distance
metric between two dynamic textures, is based on the principal
angles between the subspaces of the extended observability
matrices of the two textures [22]. Formally, let ©®; and O,
be the parameters representing two dynamic textures, then the
Martin distance is defined as,

= log H 0052 0;

where 6, is the i-th principal angle between the extended
observability matrices Of° and O$°, defined as O° =
[ cf ATcT (AT . 1" Itis shown in [22]
that the principal angles can be computed as the solution to
the following generalized eigenvalue problem:
X
I[V]
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subject to 270 x =1 and yT OS5y = 1, where
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The first n largest eigenvalues are the cosines of the principal
angles, i.e. \; = cosf; fori =1,2,... n.

1V. EXPERIMENTAL EVALUATION

The proposed motion model was evaluated in a retrieval and
classification problem for traffic video sequences.

A. Traffic Video Database and Setup

The traffic video database consisted of 254 video sequences
(20 total minutes) of daytime highway traffic in Seattle,
collected from a single stationary traffic camera over two
days [19]. The database contains a variety of traffic patterns
and weather conditions (e.g. overcast, raining, sunny). Each
video clip was recorded in color at 10 fps with a resolution of
320 x 240 pixels and had 42 to 52 frames. A representative
video patch was created by converting the video to grayscale,
shrinking the resolution by 4, and selecting a 48 x 48 window
over the area with the most total motion. For each video patch,
the mean image was subtracted and the pixel intensities were
normalized to have unit variance.



Fig. 3. Examples of road patches used for retrieval and classification.
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Fig. 4. (left) Precision-recall curve for traffic video retrieval; (right) Accuracy
of congestion classification. The x-axis is the number of principal components
() used in the dynamic texture model.

The parameters of the dynamic texture model were learned
for each video patch using the method of Section I1-B. The
image KL between dynamic textures was computed using 7 =
25, and the state KL and Martin distance with 7 = 250. To
ensure that the KL divergence converged, the transition matrix
A was scaled so that the largest eigenvalues lie on the unit
circle. In addition, the covariance of the driving process was
regularized to prevent problems with singular matrices, i.e. we
set Q' =Q + 1I,.

The ground truth classification for each video clip was
determined by hand, and the database contained a total of
44 instances of heavy traffic (slow or stop and go speeds),
45 of medium traffic (reduced speed), and 165 of light traffic
(normal speed). Figure 3 shows a representative set of clips
from this database. All experimental results were averaged
over four trials, where in each trial the dataset was split
differently with 75% used for training and cross-validation,
and 25% reserved for testing.

B. Retrieval of Traffic Video

The motion model was tested in a video retrieval experiment
where the goal was to retrieve instances of traffic patterns that
were similar to the query video. For the experiment, dynamic
texture models with 15 principal components were used, and
the state KL divergence and Martin distance were used as
similarity measures. The precision-recall curve for traffic video
retrieval is presented in Figure 4 (left). The Martin distance
and state KL divergence perform similarly, with the state KL
distance performing slightly better. Figure 6 shows the results
of several queries for light, medium, and heavy traffic using
the state KL divergence. A query using nighttime sequences
outside of the original database is presented in Figures 6d, 6e,
and 6f, and shows that the retrieval system is robust to variable
lighting conditions. In addition the framework is robust to
occlusion and blurring due to raindrops on the camera lens,

PREDICTED

| heavy  medium light
w heavy 37 7 0
2 medium 4 39 2
[ light 0 1 164
TABLE |

CONFUSION MATRIX FOR CONGESTION CLASSIFICATION

as seen in the 3rd and 5th results of Figure 6e.

C. Classification of Traffic Congestion

The traffic congestion in a video clip was classified using
a nearest neighbors (NN) classifier with the image KL, state
KL, or Martin distances. Classification was also performed
using a support vector machine (SVM) with the Kullback-
Leibler kernel [9]. A one-versus-all scheme was used to
learn the multi-class problem, and the SVM parameters were
selected using 3-fold cross-validation over the training set.
The | i bsvmsoftware package [20] was used for training and
testing.

D. Classification Results

Figure 4 (right) presents the results obtained in the classifi-
cation experiment. It can be seen that the two state KL clas-
sifiers outperform the Martin NN classifier. In particular, the
state KL-SVM combination is consistently better, and the state
KL-NN combination is better for n > 15 and also achieves
a higher maximum accuracy. The SVM-KL achieves better
classification performance than NN-KL, and the robustness
of the SVM classifier to a poor selection of the number of
components indicates that it has better generalization ability.
The performance of the image KL classifiers drops as the
number of principal components increases. This is because
there is no abstraction of motion in the image space. Hence
as the amount of motion that can be modeled is increased, the
classification problem using this distance measure becomes
harder.

The best classifier, the state KL-SVM with 15 components,
has an overall accuracy of 94.5%. Table I shows its confusion
matrix, averaged over the four test trials. Figure 7 shows sev-
eral classification examples under different lighting conditions:
(@) sunny lighting, including strong shadows; and (b) overcast
lighting, including raindrops on the camera lens. Several night
time videos outside the original database were also fed through
the same classifier. Even though the classifier was trained with
video taken during the day, it is still able to correctly label
the nighttime video sequences. This is particularly interesting
since the visual appearance of a car during the day is vastly
different from its appearance at night. These results provide
evidence that the dynamic texture model is indeed extracting
relevant motion information, and that the SVM framework is
capable of using the motion model to discriminate between
motion classes.

A final experiment was conducted to identify the traffic
pattern of the highway during the day. The SVM and nearest
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Fig. 5. Classification of congestion in traffic sequences spanning 15 hours: (top to bottom) ground truth; classification using state KL SVM, state KL nearest
neighbors, and Martin distance nearest neighbors. Errors are hilighted with circles.

neighbor classifiers were trained using 61 sequences spanning
4 hours from the first day, and tested on 193 sequences
spanning 15 hours from the following day. The ground truth
classification and the outputs of the state-KL SVM, state-KL
NN, and Martin distance NN classifiers are shown in Figure 5.
The increase in traffic due to rush hour can be seen between
2:30 PM and 6:30 PM.

V. CONCLUSIONS

We presented a method for modeling traffic flow patterns
holistically using dynamic texture models. When compared to
previous solutions, the analysis of motion with these models
has several advantages: a) it does not require segmentation
or tracking of vehicles; b) it does not require estimation of
a dense motion vector field; and c) it is robust to lighting
variation, blurring, occlusion, and low image resolution. Ex-
perimental results using the holistic model show good perfor-
mance in the domains of video retrieval and classification of
traffic congestion.
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Fig. 6. Video retrieval results for (a) light traffic, (b) medium traffic, and (c) heavy traffic during the day. Retrieval using a night sequence outside the
original database for (d) light, () medium, and (f) heavy traffic shows robustness to lighting conditions.
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Fig. 7. Classification of traffic congestion in variable lighting conditions: (a) sunny, (b) overcast, and (c) nighttime.



