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Abstract the retrieval of database images based on semantic queries.

Current systems achieve these goals by training a classifier

We introduce a new method to automatically annotate that automatically labels an image with semantic keywords.
and retrieve images using a vocabulary of image seman- 1NiS can be posed as either a problem of supervised or un-
tics. The novel contributions include a discriminant formu  SUPervised learning. The earliest efforts focused on the su
lation of the problem, a multiple instance learning solutio  Pervised learning of binary classifiers using a set of trajni
that enables the estimation of concept probability distrib Images with and without the semantic of interest [6, 14].
utions without prior image segmentation, and a hierarchi- 1h€ classifier was then applied to the image database, and
cal description of the density of each image class that en-€ach image annotated with respect to the presence or ab-
ables very efficient training. Compared to current methods S€Nce of the concept. Since each cIasgﬂer is trained in the
of image annotation and retrieval, the one now proposed ©ne€ Vs all” (OVA) mode, we refer to this framework as-
has significantly smaller time complexity and better recog- P€rvised OVAMore recent efforts have been based on un-
nition performance. Specifically, its recognition complex SUPervised learning [1, 2, 4, 5, 7, 8, 9], and strive to solve
ity is O(CxR), where C is the number of classes (or image the problem in its full generallty. The basic |glea is to in-
annotations) and R is the number of image regions, while troduce a set of latent variables that encode hidden sthtes o

the best results in the literature have complexity O(TxR), the world, where ea(_:h state defines a joint distribution on
where T is the number of training images. Since the numberth® space of semantic keywords and image appearance de-
of classes grows substantially slower than that of training SCriptors (in the form of local features computed overimage
images, the proposed method scales better during training,"€/ghborhoods). During training, a set of labels is assigne
and processes test images faster. This is illustrated ghou  [© €ach image, the image is segmented into a collection of
comparisons in terms of complexity, time, and recognition '€9ions, and an unsupervised learning algorithm is run over

performance with current state-of-the-art methods. the entire database to estimate the joint density of words
and visual features. Given a new image to annotate, visual
1. Introduction feature vectors are extracted, the joint probability maslel

_ _ _instantiated with those feature vectors, state variables a
Content-based image retrieval, the problem of searchingmarginalized, and a search for the set of labels that maxi-

large image repositories according to their content, heabe mize the joint density of text and appearance is carried out.
the subject of a significant amount of computer vision re- We refer to this framework as “unsupervised”.

search in the recent past [13]. While early retrieval asghit

tures were based on the query-by-example paradigm, whic
formulates image retrieval as the search for the best data
base match to a user-provided query image, it was quickly

h Both formulations have strong advantages and disadvan-
tages. Generally, unsupervised labeling leads to signifi-
cantly more scalable (in database size and number of con-

realized that the design of fully functional retrieval /st cepts of interest) training procedures, places much weaker

would require support for semantic queries [12]. These aredemands on the quality of the manual annotations required

systems where the database images are annotated with s&2 bootstrap Iearning_, and produces a natural ranking of key
mantic keywords, enabling the user to specify the queryWords for each new image to annotate. On the other hand,

through a natural language description of the visual con-it does not explicitly treat semantics as image classes and,

cepts of interest. This realization, combined with the cost therefore, provides little guarantees that the semantioan

of manual image labeling, generated significant interest in tations are optimal in a recognition or retrieval sense.tTha

the problem of automatically extracting semantic descrip- "> instead of annotations that achieve the smallest pibbab
tors from images ity of retrieval error, it simply produces the ones that have

The two goals associated with this operation are: a) theIargestjomt likelihood under the assumed mixture model.
automatic annotation of previously unseen images, and b) In this work we show that it is possible to combine the



advantages of the two formulations through a slight refor- w; which are not explicitly annotated with this concept are
mulation of the supervised one. This consists of defining anincorrectly assigned t®, and can compromise the classi-
M-ary classification problem where each of the semantic fication accuracy. In this sense, the supervise OVA formu-
concepts of interest defines an image class. At annotationation is not amenable to weak labeling. Furthermore, the
time, these classes all directly compete for the image to an-setDy is likely to be quite large when the vocabulary size
notate, which no longer faces a sequence of independent. is large and the training complexity is dominated by the
binary tests. Thisupervised\/-ary formulation obviously =~ complexity of learning the conditional density fr= 0.
retains the classification and retrieval optimality of supe Applying (2) to the query imagé, produces a sequence
vised OVA, but 1) produces a natural ordering of keywords of labels@; € {0,1},7 € {1,..., L}, and a set of poste-

at annotation time, and 2) eliminates the need to compute aior probabilitiesPy,x (1|x) that can be taken as degrees of
“non-class” model for each of the semantic concepts of in- confidence on the annotation. Notice, however, that these
terest. Inresult, it has learning complexity equivalerihtat are posterior probabilities relative to different classifion

of the unsupervised formulation and, like the latter, ptace problems and do not establish a natural ordering of impor-
much weaker requirements on the quality of manual labelstance of the keywords); as descriptors of. Neverthe-
than supervised OVA. The method now proposed is com- less, the binary decision regarding whether each concept is
pared to the state-of-the-art methods of [5, 8] using the ex-present in the image or not is a minimum probability of er-
perimental setup introduced in [4]. The results show thatth ror decision.

approach now proposed has advantages not only in terms of ] )

annotation and retrieval accuracy, but also in terms of effi- 2.2. Unsupervised L abeling

cency. The basic idea underlying the unsupervised learning for-

2. Semantic Labeling mulation [1, 4, 2, 5, 7] is to introduce a variahlethat en-

o o ) codes hidden states of the world. Each of these states then
~ The goal of semantic image labeling is to, given an gefines a joint distribution for keywords and image features
image Z, extract, from a vocabularf of semantic de-  The various methods differ in the definition of the states of
scriptors, the set of keywords, or captions, that best  the hidden variable: some associate a state to each image in
describesZ. Learning is based on a training sBt = the database [5, 8], others associate them with image clus-
{(Z1,w1),...,(Zp,wp)} of image-caption pairs. The ierg[1, 4, 2]. The overall model is of the form
training set is said to be weakly labeled if the absence of s
a keyword fromw,; does not necessarily mean that the asso- o
ciated concept is not presentdi. This is usually the case P w (%, w) = zz; Pxwir (6 wiDPL(D) - (3)

iven the subjectivity of the labeling task.
v HPISCIVIY g where S is the number of possible states bf X the set

2.1. Supervised OVA Labeling of feature vectors extracted frofh and W the vector of
keywords associated with this image. Since this is a mix-
Let £L = {ws,...,wr} be the vocabulary of semantic ture model, learning is usually based on the expectation-

labels, or keywordsy;. Under the supervised OVA formu- maximization (EM) [3] algorithm, but the details depend on
lation, labeling is formulated as a collection bfdetection the particular definition of hidden variable and probabdis
problems that determine the presence/absence of the commodel adopted foPx w(x, w).

ceptsw; in the imageZ. Consider thé'” such problem and The simplest model in this family [5, 8], which has also
the random variabl&; such that achieved the best results in experimental trials, makes eac
1, if Z contains concep; image in the trainin_g_ datapase a state of the Iatenft variable
Y, = { 0. otherwise. 1) and assumes conditional independence between image fea-
’ tures and keywords, i.e.

Given a collection of image featur&sextracted front,
the goal is to infer the state &f with smallest probability of -
error, for alli. This can be solved by application of standard Pxw(x,w) = > P (x)) P (WD Pr()  (4)
Bayesian decision theory, namely by declaring the concept =1

D

as present if whereD is the training set size. This enables individual es-
timation of Px | (x|l) and Py, (w|l), as is common in the
Pxy; (x[1)Py; (1) = PxJy, (x]0) Py; (0) ) probabilistic retrieval literature [13], therefore elimaiting
where Px|y,(x[j) is the class-conditional density and the need to iterate the EM algorithm over the entire data-
Py, (j) the prior probability for clasg € {0, 1}. base (a procedure of large computational complexity). In
Training consists of assembling a training &t con- this way, the training complexity is equivalent to that of
taining all images labeled with the concept, a training learning the conditional densities féf = 1 in the super-

setDy containing the remaining images, and using some vised OVA formulation. This is significantly smaller than
density estimation procedure to estimatg,y, (x[j) from the learning complexity of that formulation (which, as dis-
D;, j € {0,1}. Note that any images containing concept cussed above, is dominated by the much more demanding



task of learning the conditionals faf; = 0). The train- semantic densitieBx |y (x|i) with computation equivalent
ing of the Py (wll), I € {1,..., D} consists of a max-  to that required to estimate one density per image. Hence,
imum likelihood estimate based on the annotations asso-the supervised/-ary formulation has learning complexity
ciated with thel*” training image, and usually reduces to equivalent to the simpler of the unsupervised labeling ap-
counting [5, 8]. Note that, while the quality of the estingte proaches (4).
improves when the image is annotated with all conceptsthat  Second, theé* semantic class density is estimated from
it includes, it is possible to compensate for missing labels a training setD; containing all feature vectors extracted
by using standard Bayesian (regularized) estimates [5, 8].from images labeled with concept,. While this will be
Hence, the impact of weak labeling is not major under this most accurate if all images that contain the conceptinclude
formulation. w; in their captions, images for which this keyword is miss-
At annotation time, the feature vectors extracted from ing will simply not be considered. If the number of images
the queryZ are used in (3) to obtain a function ef that correctly annotated is large, this is likely not to make any
provides a natural ordering of the relevance of all possible practical difference. If that number is small, missing la-
captions for the query. This function can be the joint dgnsit beled images can always be compensated for by adopting

of (3) or the posterior density Bayesian (regularized) estimates. In this sense, the super
vised M -ary formulation is equivalent to the unsupervised
P Px w(x,w) . . ) )
wix (W[x) = —5———+= (5) formulation and, unlike the supervised OVA formulation,

Px(x) not severely affected by weak labeling.

Note that, while this can be interpreted as the Bayesian de-  Finally, at annotation time, the superviséfiary formu-
cision rule for a classification problem with the states of |ation provides a natural ordering of the semantic classes,
W as classes, such class structure is not consistent with thgy the posterior probabilityyx (w|x). Unlike the OVA
generative model of (3) which enforces a causal relation- case, under tha/-ary formulation these posteriors are rel-
ship from L to W. This leads to a very weak dependency ative to the same classification problem, a problem where
between the observatidd and classW variables, e.g. that  the semantic classes compete to explain the query. This or-
they are independent givenin the model of (4). Therefore,  dering is, in fact, equivalent to that adopted by the unsuper
in our view, this formulation imposes a mismatch between vised learning formulation (5), but now leads to a Bayesian
the class structure used for the purposes of designing thejecision rule that is matched to the class structure of the un
probabilistic models (where the states of the hidden vigiab derlying generative model. Hence, this concept ordering is
are the dominant classes) and that used for labeling (whichgptimal in a minimum probability of error sense.

assume the states W to be the real classes). This implies

that the annotation decisions are not optimal in a minimum 4. Estimation of Semantic Class Distributions
probability of error sense. '

3. Supervised M-ary Labeling Given the collection of semantic class-conditional den-
_ ) sities Py x (w|x), supervised\/-ary labeling is relatively
The supervised\/-ary formulation now proposed ex- trivial (it consists of a search for the solution of (6)). Two
plicitty makes the elements of the semantic vocabulary theinteresting questions arise, however, in the context of den
classes of th@/-ary classification problem. That is, by in- sty estimation. Hereafter, assume tikatonsists of a fea-
troducing 1) a random variablé”, which takes values in  tyre vector extracted from an image region of small spatial

{1,..., L}, sothatW =i if and only if x is a sample from  gypport.

the conceptw;, and 2) a set of class-conditional distribu- . . .
tions Px w (x|i),i € {1,..., L} for the distribution visual 4.1 Modeling Classes Without Segmentation

features given the semantic class. Similarly to supervised So far, we have assumed that all samples in the train-
OVA, the goal is to infer the state &¥ with smallest prob-  ing setD; are from concepty;. In practice, however, this

ability of error. Given a set of featurasfrom a queryimage  would require careful segmentation and labeling of alktrai
7 this is accomplished by application of the Bayes decision ing images. While concepts such as “Indoor”, “Outdoor”,
rule sy ax P (x]d) P () ©) “Coastline”, or “Landscape” tend to be holistic (i.e. the en

¢ T ars AR Exw X Fw tire image is, or is not, in the class), most concepts refer to
where Py, (i) is a prior probability for thei?” semantic  objects and other items that only cover a part of any image
class. The difference with respect to the OVA formulationis (e.g. “Bear”, “Flag”, etc.). Hence, most images contain a
that instead of a sequence bfbinary detection problems, combination of various concepts. The creation of a train-

we now have a singlé/-ary problem withZ classes. ing setD; of feature vectors exclusively drawn from té
This has several advantages. First, there is no longer aclass would require manual segmentation of all training im-
need to estimaté& non-class distributionst{ = 0 in (1)), ages, followed by labeling of the individual segments.

an operation which, as discussed above, is the computa- Since this is unfeasible, an interesting question is
tional bottleneck of the OVA formulation. On the contrary, whether it is possible to estimate the class-conditionat de
as will be shown in Section 4, it is possible to estimate all sity from a training set composed of images with a signifi-



cant percentage of feature vectors drawn from other classesof the feature space. For example, if all densities are his-
The answer to this question is affirmative, it is the basis of tograms defined on a partition of the feature spacimto
so-callednultiple instancéearning [10], where eachimage Q cells{X,},¢=1,---,Q, andh‘i{j the number of feature

is labeled positive with respect to a specific conaeejit at vectors from class that land on cellX, for imagey, then
least one of its region® is an exemplar of this concept, the average class histogram is simply

and labeled negative otherwise. While no explicit corre- . 1

spondence between regions and concepts is included in the hl = D Z h;?_’j.

training set, it is still possible to learn a probability tdilsu- J

tion for a concept by exploiting the consistent appearahce o Hgwever, when 1) the underlying partition is not the same
samples from this distribution in all images of the concept. o gl histograms or 2) more sophisticated models (e.g.
To see this, lef,, be the region of the feature space pop- mixture or non-parametric density estimates) are used,
ulated by the concept that appears in all positive images.  mdel averaging is not as simple.

Assume, further, that the remaining samples are uniformly  najve Averaging: consider, for example, the Gauss mix-
distributed. Since the probability of this uniform compo- {,re model

nent must integrate to one, it must necessarily have small _ i E <k

amplitude. Hence, the probability density of the image en- Pxjp,w(x[li) = Z TG (%, g, B (8)
semble is dominated by the probability massin. As the k

number of images goes to infinity, this property holds inde- where Wf,z is a probability mass function such that

pendently of how small the probability massmy, is for S, 7F, = 1. Direct application of (7) leads to
each image. "

1
4.2. Density Estimation Pxjw (xli) = D ;ﬁf’lg(x’ Hin ) )
Given the training seD; of images containing concept i.e. aD-fold increase in the number of Gaussian compo-
w;, the estimation of the densitx i (x|i) can proceed  nents per mixture. Since, at annotation time, this profgbil
in four different ways:direct estimationmodel averaging has to be evaluated for each semantic class, it is clear that
naive averaginghierarchical estimation straightforward model averaging will lead to an extremely
Direct Estimation: direct estimation consists of estimat- slow annotation process.
ing the class density from a training set containing all fea-  Mixture hierarchies. one efficient alternative to the
ture vectors from all images i®. The main disadvantage complexity of model averaging is to adopt a hierarchical
of this strategy is that, for classes with a sizable number of density estimation method first proposed in [15] for im-
images, the training set is likely to be quite large. This cre age indexing. This method is based on a mixture hierarchy
ates a number of practical problems, e.g. the requiremenwhere children densities consist of different combinadion
for large amounts of memory, and makes sophisticated den-of subsets of the parents components. A formal definition
sity estimation techniques unfeasible. One solution is to is given in [15], we omit the details for brevity. The impor-
discard part of the data, but this is suboptimal in the sensetant pointis that, when the densities conform to the mixture
that important training cases may be lost. hierarchy model, it is possible to estimate the paramefers o
Model Averaging: model averaging performs the esti- the class mixture directly from those available for the indi
mation of Px |y (x|7) in two steps. In the first step, a density vidual image mixtures, using a two-stage procedure. The
estimate is produced for each image, originating a sequencdirst stage, is the naive averaging of (9). Assuming that each
Px|p,w(x|l,i),l € {1,... D} whereL is a hidden variable mixture hask’ components, this leads to an overall mixture
that indicates the image number. The class density is therwith DK components of parameters
obtained by averaging the densities in this sequence {77;?, M?a E’j},j =1,....D,k=1,..., K. (10)

Pxw(x]i) = %ZPX|L7W(X|lvi)' (7) The second is an extension of the EM algorithm, which
! clusters the Gaussian components info-eomponent mix-
Note that this is equivalent to the density estimate obthine ture, whereT" is the number of components at the class
under the unsupervised labeling framework, if the text com- level. Denoting by{=., uil, X.},¢ = 1,...,T the parame-
ponent of the joint density of (3) is marginalized and the ters of the class mixture, this algorithm iterates betwéen t
hidden states are images (as is the case of (4)). The mairiollowing steps.
difference is that, while undel/-ary supervised labeling E-step: compute

the averaging is done only over the set of images that be- _ TN
. . . - k ,t $t\,—strace{(Zf)"Ixk}|TI t
long to the semantic class, under unsupervised labelisg it i [g(uj,uc, Xoe? ¢ I } Te
done over the entire database. This, once again, reflects the hj = - iR TN
lack of classification optimality of the later formulation. > [g(uf;, pil, oL )e ztracel () T1E }} il
The direct application of (7) is feasible when the densi- (11)

ties Px|z,w (x|l,4) are defined over a (common) partition

4
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whereN is a user-defined parameter (see [15] for details). 15
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ik Figure 1. Performance comparison of automatic annota-
tion on the Corel dataset.

Notice that the number of parameters in each image mix-
ture is orders of magnitude smaller than the number of fea-
ture vectors in the image itself. Hence the complexity of
estimating the class mixture parameters is negligible when
compared to that of estimating the individual mixture para-
meters for all images in the class. It follows that the oueral
training complexity is dominated by the latter task, i.elyon
marginally superior to that of naive averaging and signif-
icantly smaller than that associated with direct estinmatio
of class densities. On the other hand, the complexity of

eyz;ll:jz?\tlng likelihoods is e()j(af:ﬂy]}.he sz'l;\me as”tha';]achtg-:;/ab there ardwy | human annotated images with the descriptor
with direct estimation, and significantly smaller than tot i "the ‘test set, and the system annotates:| images

haive averaging. with that descriptor, wherguc| are correct, recall and pre-
One final interesting property of the EM steps above .ision are given byecall = lwe] precision = lwe]

is that they enforce a data-driven form of regularization " " "\ - results%gt‘éined on the_cgur#o‘llete set of
which improves generalization. This regularization is vis 9. P

ible in (14) where the variances on the left hand-size can 260 words that appear in the test set. The values of recall

never be smaller than those on the right-hand side. We haveand precision were averaged over the set of testing words,

observed that, due to this property, hierarchical class den as suggested by [8, 5]. Also presented are results (borrowed

sity estimates are much more reliable than those obtaineggme[%x‘r’]zaﬁg:g:}'}g?svéﬁ?nva”guse ((:)is‘?cearlImejvlogzﬁggg:-ﬂ:lhse
with direct learning. P g. Sp Y, :

Co-occurrence Model [11], the Translation Model [4],The
. Continuous-space Relevance Model (CRM-rect)[8, 5], and
5. Experimental Results the Multiple-Bernoulli Relevance Model (MBRM) [5]. The
method now proposed is denoted by 'Mix-Hier'. We also
In this section, we present experimental results on a dataimplemented the CRM-rect using tBex 8 DCT features,
set, Corel, that has been continuously adopted as a standanghich is denoted as 'CRM-rect-DCT’.
way to assess annotation and retrieval performance [4, 8,5] Overall, the method now proposed achieves the best per-
The Translation Model of [4] was the first milestone in the formance. When compared to the previous best results
area of semantic annotation, in the sense of demonstrat{MBRM) it exhibits a gain ofl6% in recall for an equiva-
ing results of practical interest. After various years of re lentlevel of precision. Similarly, the number of words with
search, and several other contributions, the best existingpositive recall increases ly%. Itis also worth noting that
results are, to our knowledge, those presented in [5]. Wethe CRM-rect model with DCT features, performs slightly
therefore adopt an evaluation strategy identical to thatlus worse than the original CRM-rect. This indicates that the
in this work. The data set used in all experiments consistsperformance of Mix-Hier may improve with a better set of
of 5,000 images fromb0 Corel Stock Photo CDs, and was features. We intent to investigate this in the future.
divided into two parts: a training set df 500 images and Another important issue is the complexity of the an-
a test set 0600 images. Each CD includes 100 images of notation process. The complexity of CRM-rectangles and
the same topic, and each image is associated with 1-5 keyMBRM is O(T R), whereT is the number of training im-
words. Overall there are 371 keywords in the dataset. Inages andr is the number of image regions. Compared to
all cases, the YBR color space was adopted, and the imag¢hose methods, Mix-Hier has a significantly smaller time
features were coefficients of tllex 8 discrete cosine trans-  complexity of O(C'R), where C is the number of classes
form (DCT). Note that this is a feature set different thattha (or image annotations). Assuming a fixed number of re-
used in [4, 8, 5], which consists of color, texture, and shapegionsR,Fig. 2 shows how the annotation time of a test im-
features. age grows for Mix-Hier and MBRM, as a function of the

5.1. Automatic Image Annotation

We start by assessing performance on the task of auto-
matic image annotation. Given an un-annotated image, the
task is to automatically generate a caption which is then
compared to the annotation made by a human. Similarly to
[8, 5] we define the automatic annotation to consist of the
five classes under which the image has largest likelihood.
We then compute the recall and precision of every word in
the test set. Given a particular semantic descriptpif
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Figure 2. Time complexity for annotating a test image of
the Corel data set.

Human: buildings,clothes,
shops,streets
Mix-Hier: buildings,street,

Table 1. Retrieval results on Corel. shops, people,skyline

Mean Average Precision for the Corel Dataset
Models | All 260 words | Words with recalt> 0
Mix-Hier 0.31 0.49
MBRM 0.30 0.35

Figure 3. Comparisons of annotations made by our sys-
tem and annotations made by a Human subject.

number of training images. In our experiments, over the
set of 500 test images, the average annotation time was 26§ S
seconds for Mix-Hier, and 371 seconds for CRM-rect-DCT. | [

5.2. Image Retrieval with Single Word Queries

Figure 4. First five ranked results for the queries 'tiger’
(first row) and 'mountain’ (second row) in the Corel data
set using our retrieval system.

In this section we analyze the performance of seman-
tic retrieval. In this case, the precision and recall measur
are computed as follows. If the most similar images to a
query are retrieved, recall is the percentage of all refevan [3] A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood
images that are contained in that set and precision the per-  from Incolmplete Data via the EM Algorithmd. of the Royal

i Statistical SocietyB-39, 1977.
oot e around-Tuth ammatation of the mage contaie toe 4 P DG e 1. Gyeet redriin as mactine traroda
. . ; Learning a lexicon for a fixed image vocabulary. BCCV,
query descriptor). Once again, we adopted the experimen-  5gg2.
tal setup of [5]. Under this set-up, retrieval performance [5] S.L.Feng, R. Manmatha, and V. Lavrenko. Multiple bertiou
is evaluated by the mean average precision. As can be sen relevance models for image and video annotation.|EBE

from Table 1, for ranked retrieval on Corel, Mix-Hier pro- [6] g.\/lfoﬁszﬁ?lgghd M. Fleck. Body Plans. IEEE CVPR1997,
7 , i

duces results superior to those of MBRM. In particular, it H. Kuck, P. Carbonetto, and N. Freitas. A Constrained
achieves a gain of0% mean average precision on the set Semi-Supervised Learning Approach to Data Association. In
of words that have positive recall. ECCV, 2004.

[8] V. Lavrenko, R. Manmatha, and J. Jeon. A model for leagnin

. the semantics of pictures. MIPS 2003. ] ]
5.3. Results: Examples [9] J. Liand J.Z. Wang. Automatic linguistic indexing of pices

béa statistical modeling approadEEE PAM|, 25(10), 2003.
In this section we present some examples of the anno-[10] O. Maron and A. Ratan. Multiple instance learning fot-na

tations produced by our system. Fig. 3 illustrates the fact ;) u\r(éll\/'lsgﬁ,nﬁ.C%?(Sé:ﬂggﬂic,ma:%'glfblk%?%}nage-to-word tramst

that, as reported in Table 1, Mix-Hier has a high level of re- mation based on dividing and vector quantizing images with
call. Frequently, when the system annotates an image with  words. InFirst International Workshop on Multimedia Intel-
a descriptor not contained in the human-made caption, this[lz] Iigent_StoragS_and Retrieval Managemget®

. |

99.
annotation is not necessarily wrong. Finally, Fig. 4 illus- i dFl)_Ig\?vr-?_é velg\lltglict_ébn?&?(::yfgggg Place for Higfetel
trates the performance of the system on one word queries. [13] A. Smeulders et al. Content-based image retrieval:eti

of the early yearslEEE PAMI, 22(12):1349-1380, 2000. )
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