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Introduction

» vision defines large scale-classification problems

» large # of classes, large amounts of data per class

» discriminant feature space Is a pre-requisite for success
» features are usually chosen according to intuitive, but not
provably optimal/discriminant, justifications:

 Dbiological plausibility: Gabor, wavelet, multiresolution
« optimality under non-classification criteria: PCA, ICA
» perceptual relevance: edginess, color, etc.

» classification-optimal methods (search, boosting, etc)
« do not scale well in the # of classes

o little insight on what are the constraints for “good features”
 large training complexity



Goals

» practical: classification-optimal FS algorithms that scale
» theoretical: the roles of discrimination and dependence

« discriminant feature is a great asset

« 2" highly discriminant that does not add much info about class
label (e.g. equal to 1%Y) is highly undesirable

e good features balance max discrimination with min dependence
» this trade-off is not well understood

* some solutions disregard dependencies (e.g. naive Bayes, FS
based on marginal distributions)

« others disregard discrimination (e.g. ICA, PCA, variance-based FS
methods)

 many are “black box” solutions (e.g. boosting, forward search, ...)



Optimal discrimination/dependence trade-off

» naturally formalized by information theory

» well known relationships between independence and information
* not-so-well known between information and discrimination

» given feature space X and set Y ={1,..., M}
of classes, classifier is map ¢g* : X — Y such

g* = arg min P(g(x) # y), VX, y.
error lower bounded by Bayes error (BE)
L* =1 — Ex[max P(y = i|x)]
1

» BE depends only on the feature space, not classifier
» feature selection as the search for the BE-optimal space



Infomax principle (Linsker, Kullback)

p classification: M-ary problem with observations Z € Z, best
feature transformation is

T* = arg mTax I(Y; X)
where
pX,Y(X7 Z)
px (x)py (2)

is the mutual information between X = T'(Z) and the class label
Y.

1(V;X) =Y / px v (%, 1) 10g

» since I(X;Y) = H(Y) — H(Y|X), this is the same as minimizing
the class-posterior entropy (CPE)

T = arg mjin H(Y|X)



Properties of Infomax (NIPS'02, CVPR'03)

» discriminant: letting (f(i))y = >; Py (4) f(4),
T* = arg max (KL {PX|y(X|73)HPX(X)}>Y
where K L[p||q] = [ p(x)log[p(x)/q(x)]dx.

» it IS possible to establish connection to Bayes error

» I heorem: for and M-class problem and feature space X

1 2M — 1
H(Y|X) — log +1
log M

L% >
A= log M

» Infomax minimizes a lower bound on BE!
» bound is tight for most problems of interest



Infomax vs Bayes error

» example:
M=2,
X,=1~N(O,1),
le:2~N(ﬂ,|)

» Infomax: natural formalism to analyze trade-off between
discriminantion and dependencies



Discrimination vs independence

» if Z is n-dimensional and X* = (X7,...,X%)
the optimal feature subset of size N, then
N /A

I(X*Y)= Y I(X},Y)

B
k=1
N /
— > (X XY 1) — I(X XY 1 Y]
=2

X —_ % %
where X7, 1 = 1X3,. . X5 4}
» A measures individual discriminant power of each feature

B penalizes combinations that are highly informative of
class label (zero when X, and X", , ; jointly indep of Y)



Interesting corollary

> if
N—lkgg (X 1,k_1)—N_1k§2 (Xpi X1 p—11Y),
then
N
I(X*Y)= > I(X}Y). (1)
k=1

l.e. all redundancy that does not carry information about
class label can be ignored

» independent modeling of highly correlated features not
necessarily sub-optimal!



Image statistics

» interesting condition: various studies reporting consistent
patterns of dependence for features of biologically
plausible transforms (Simoncelli et al, Mumford et al, etc.)

e although the fine details of
dependence vary from class to
class, the coarse structure of
dependence patterns is similar
for most image classes

» conjecture: maximization of marginal diversity is close to
optimal for visual recognition

» direct verification requires high-dimensional density
estimates, problematic. We follow alternative path.

10



Measuring the impact of dependencies

» strategy: sequentially relax assumption that feature
dependencies are not informative about class label

« feature set grouped into exclusive subsets of I'" order
» features within subsets arbitrarily dependent, no constraints
» dependence between subsets not informative about image class
» extend (1) for each dependency order and obtain
associated optimal algorithm
» interesting in two ways

* by measuring error rate we can determine order at which
dependencies do become non-informative

o if this order is small we have an optimal FS algorithm of reduced
complexity
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Why should this work?

» while (1) may be too restrictive, assumption should hold

eIl

for some order < full space dimension

» If the assumption of non-informative
dependences holds at order |, we
have |-decomposability

» €.g. dependencies between wavelet
coefficients well known to be localized
In both space and image scale

» co-located coefficients of equal orientation
can be arbitrarily dependent on the class

e average dependence between such sets of coefficients does not
depend on the image class (strong vertical frequencies < weak
horizontal frequencies)

» even if it does not, resulting family of algorithms allows
continuous trade-off between complexity and optimality
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l-decomposabillity

» Definition: X = (X4,...,Xy) isl-decomposable
iif there 3 mutually exclusive subsets C = {Cy,...,Crn/}

C. = { {X(i_l)l‘|‘1" - 7Xil}7 |f 1 < (N/l—l,
Z {X(i—l)l+17"'7XN}7 if ¢+ = |_N/l_|

and, for all k€ {2,...,N},

[k—1/1] i
Z [I(Xk1 ’Lk'cla"'aci—l) —I(Xk,c,b’k)} —
=1
[k—1/1] ~
) [I(inci,ﬂcla--- Ci—1,Y) — I(Xy; Z;€|Y)}
1=1

where éi,k = {Xj|Xj € C;,7 <k}
» for example, “ <

when N=12, [ = 4, k=11 W%lo;ll;ﬂ
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l-decomposability

» from (A, B) jointly independent of C < I(A, B|C) =
I(A, B) it follows that
1 [k_l/”
CESYIEPS
measures average redundancy between C,;.

S~

(X CiglC1, ..., Cin1) — I(X4: Cyp)|

» X |-decomposable if this average redundancy is non-
Informative about the class label

» note that |-decomposability does not impose constraints
on dependencies within the subsets C.

» next we see that when arbitrary dependencies of order |
are allowed, the optimal infomax solution only requires
density estimates on subspaces of dimension |+1
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Properties of I-decomposability

» Theorem: Let X* = (X7,...,X}%) betheinfomax-
optimal set of size N. If X* is [-decomposable
into C = {Cl, ce e C(N/ﬂ} then

N
I(X%Y) = ) I(X5Y) (1)
k=1
N [k—1/1] ~ ~
— > > (X5 Cup) — I(XE; Cy il Y
k=2 =1

where éz’,k = {Xj|Xj c C;,5 <k}.

» this suggests a family of FS algorithms, parameterized by
|, that trades optimality for complexity
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A family of algorithms

» natural extension to traditional FS by sequential search

o start from optimal set of cardinality 1
» sequentially add feature that most increases the cost

» discriminant cost for selecting “next best” feature

|_k ~1/1
Cr

» O: favors features that are discriminant (large 1(X;;Y))
 O: penalizes features redundant with previously selected (I(X;; C;))
* O: unless redundancy provides information about Y (I(X; C;,|Y)).
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Feature selection algorithm

p Algorithm 1 Given a set of n features X = (X1,...,Xn), the or-
derl, the target number of features N, and denoting the marginal
diversity of X, I1(X.,Y), by mdy.

1. set X* = Cy = {X]} where X] € X is the feature of largest
marginal diversity, set k =2, and 1 = 1.

2. foreach X, & X*, compute 6, = Z}f?k:—ll/ﬂ I(Xy; @p’k|Y)—I(XT; @p,k).

3. let r* = arg max, md, + 6. If k—1 is not a multiple of | make
C,=C,UuX,«. Else, seti=1i+4 1, and let C; = X,.«. In both
cases make X* =U;C;, k=k+ 1, and goto 2 ifk < N.

» what | is needed to capture all significant dependencies?
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Experimental set-up

» TwoO databases

* Brodatz: texture, 112 classes, 1008 images
o Corel: natural images, 15 classes, 1500 images

» recognition: 20% testing, 80% training

 training images as DB, test images as queries

» precision/recall measured for each query, averaged over all
gueries

PR curve summarized by its integral PR Area (PRA)
« 8x8 image neighborhoods, GMM classifier
 various feature transforms: DCT, wavelet, PCA, and ICA

» Evaluation: PRA vs number of selected features
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Results

» question: how large
does | have to be?

50_ 4

» compared ITFS with

lin {0,1,2} and L A SN TN NS SN SN N

variance compaction

» PRA shown for . 40_

Corel and DCT &

» similar results on
Brodatz & with other
feature sets
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—— ITFS 2™rder |

» Main observations:

Dimension

e ITFS can significantly outperform variance-based methods (10 vs
30 features for equivalent PRA)

o for ITFS there is no noticeable gain for | > 1!
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Results

» guestion: how
accurate do the
density estimates
have to be?

» compared ITFS with
| =1 and various
histogram sizes

» PRA shown for
Corel and DCT
features

» similar results on
Brodatz & with other
feature sets

» Main observations:

PRA

55
45
iy Filsn i) R b R s G R s A ]
| : : . ___ Variance
_, ITFS 1% order — 4 bins
. : : : _4 ITFS 1% order - 8 bins
: : f . ITFS 1% order — 16 bins
a0kl P— - SO—— S— S S [— _
20 I I I | I |
0 10 20 30 40 50 60 70

Dimension

« ITFS Is quite insensitive to the quality of the estimates (no
noticeable variation above 8 bins per axis, small degradation for 4)

« always significantly better than variance
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ITFS vs variance

ITFS:
(I=1)

Var:
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ITFS vs variance

ITFS:
(I=1)

Var:
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ITFS vs variance

ITFS:
(I=1)

Var:
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ITFS vs variance

ITFS:
(I=1)

Var:
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ITFS vs variance

ITFS:
(I=1)

Var:
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Conclusions

» feature selection: search for the Bayes error-optimal
space of a given classification problem

» relationships between BE and infomax, make latter
natural formalism to understand trade-off between
dependence and discrimination

» introduced the concept of I-decomposability

» family of FS algorithms that trade-off infomax optimality
for complexity

» second-order dependencies seem to be sufficient to
achieve near-optimal performance

» optimal/discriminant FS with reduced complexity
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