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Abstract

We have recently shown that 1) the infomax principle for the
organization of perceptual systems leads to visual recog-
nition architectures that are nearly optimal in the mini-
mum Bayes error sense, and 2) a quantity which plays
an important role in infomax solutions is the marginal
diversity(MD): the average distance between the class-
conditional density of each feature and their mean. Since
MD is a discriminant quantity and can be computed with
great efficiency, the principle of maximum marginal diver-
sity (MMD) was suggested for discriminant feature selec-
tion. In this paper, we study the optimality (in the infomax
sense) of the MMD principle and analyze its effectiveness
for feature selection in the context of visual recognition.
In particular, 1) we derive a close form relation between
the optimal infomax and MMD solutions, and 2) show that
there is a family of classification problems for which the two
are identical. Examination of this family in light of recent
studies on the statistics of natural images suggests that the
equivalence conditions are likely to hold for the problem of
visual recognition. We present experimental evidence sup-
porting the conclusions that 1) MD is a good predictor for
the recognition ability of a given set of features, 2) MMD
produces features that are more discriminant than those ob-
tained with currently predominant criteria such as energy
compaction, and 3) the extracted features are detectors of
visual attributes that are perceptually relevant for low-level
image classification.

1 Introduction

It has long been recognized that a good selection of vi-
sual measurements, usually known as features, is an impor-
tant requirement for successful recognition systems. Given
a feature space

�
, the goal of feature selection is to find

the best projection � into a lower dimensional subspace �
where learning is easier (e.g. can be performed with less
training data). The only constraint on � is that the compo-
nents of a feature vector in � are a subset of the components

of the associated vector in
�

. Formally, this problem can be
formulated as an optimization task, where the objective is to
find the projection matrix that best satisfies a given criteria
for “feature goodness”.

In the context of visual recognition, various such crite-
ria have been proposed throughout the years, the most pop-
ular of which is arguably energy compaction [12, 8], i.e.
the best features are those that contain the largest fraction
of the total energy. However, adopting the energy com-
paction principle neglects the fact that, for recognition, the
best feature spaces are those that maximize discrimination,
i.e. the separation between the different image classes to
recognize. This has motivated vision researchers to revisit
classical discriminant criteria, such as the ratio of between
to within-class scatter behind classical linear discriminant
analysis [2]. While an improvement over energy com-
paction, such criteria make very specific assumptions re-
garding class densities, e.g. Gaussianity, that are unrealis-
tic for most problems involving image data. More recently,
some interesting ideas have been advanced under the prin-
ciple that feature selection and classifier design should be
solved concurrently [15, 16]. While traditionally viewed as
problematic, due to the fact that the space in which training
takes place becomes high-dimensional, this approach has
been made feasible by powerful learning techniques, such
as boosting or support vector machines, that are quite in-
sensitive to the curse of dimensionality. Nevertheless, there
are still some significant limitations, such as the fact that
these techniques do not scale well in the number of image
classes, or the fact that they lead to highly intensive training.

In the speech and learning communities, various authors
have advocated the use of information theoretic measures
for feature extraction or selection [10, 1]. These can be seen
as instantiations of the the infomax principle of neural orga-
nization1 proposed by Linsker [7], which also encompasses
information theoretic approaches for independent compo-

1Under the infomax principle, the optimal organization for a complex
multi-layered perceptual system is one where the information that reaches
each layer is processed so that the maximum amount of information is
preserved for subsequent layers.
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nent analysis and blind-source separation [3]. In the classi-
fication context, infomax recommends the selection of the
feature transform that maximizes the mutual information
(MI) between features and class labels. While searching
for the features that preserve the maximum amount of in-
formation about the class is, at an intuitive level, an appeal-
ing discriminant criteria, the infomax principle does not es-
tablish a direct connection to the ultimate measure of clas-
sification performance - the probability of error (PE). An
alternative, that has received some attention in the speech
literature [11], is to minimize Bayes error (BE), the tightest
possible classifier-independent lower-bound on the PE.

We have recently shown that the two strategies (infomax
and minimum BE) are very closely related. In particular,
infomax has been shown to be equivalent to the minimiza-
tion of a lower bound on BE that is tight and whose extrema
are co-located with those of the BE. It follows from these
results that infomax solutions are very close to optimal in
the minimum BE sense, providing a formal justification for
the use of infomax as a discriminant criteria. The analysis
of some simple classification problems also revealed that a
quantity which plays an important role in infomax solutions
is the marginal diversity: the average distance between each
of the marginal class-conditional densities and their mean.
This inspired a generic principle for feature selection, the
principle of maximum marginal diversity (MMD), that only
requires marginal density estimates and can therefore be im-
plemented with extreme computational simplicity.

In this paper, after reviewing these results, we character-
ize the problems for which the MMD principle is guaran-
teed to be optimal in the infomax sense. We derive a set of
sufficient conditions for the equality of marginal diversity
and the infomax cost and study their implications for visual
recognition. These conditions turn out to be supported by
evidence from various recent studies on the statistics of bi-
ologically plausible image transformations [9, 5]. This sug-
gests that in the context of visual recognition, MMD feature
selection will lead to solutions that are optimal in the info-
max sense. Given the computational simplicity of the MMD
principle, this is quite significant. We present the results of
various experiments that 1) demonstrate the superiority of
marginal diversity over energy compaction as a cost func-
tion for feature selection, and 2) provide evidence that fea-
tures extracted through MMD can correlate well with those
deemed as perceptually relevant for low-level image classi-
fication.

2 Infomax vs minimum Bayes error

We start by reviewing the relationships between the info-
max cost and BE.

Theorem 1 Given a classification problem with � classes

in a feature space � , the decision function which mini-
mizes the probability of classification error is the Bayes
classifier �������	��

������������������� ���� "! �#� , where $ is a ran-
dom variable that assigns � to one of � classes, and
 &%('*)�+-,.,-,"+/�
0 . Furthermore, the PE is lower bounded
by the Bayes error

1 � 
2)43654798 ������ ���:� �;�� "! �#�=<>+ (1)

where 5?7 means expectation with respect to � � ���#� .
Proof: see the appendix for all proofs.

Principle 1 (infomax) Consider an � -class classification
problem with observations drawn from random variable@ % �

, and the set of feature transformations �BA �DC
� . The best feature space is the one that maximizes the
mutual information EF�G$IH�JK� where $ is the class indica-
tor variable defined above, JL
 �;� @ � , and EF�G$IH�JK�M
N �PO�Q �SR � �G��+T U�WVYX��[Z"\9] ^�_ 7 R �a`Z"\b_ 7 ` Z.^b_ �a`.c � the mutual information
between J and $ .

It is straightforward to show that EF�GJdH/$e�f
hgi�G$;�e3
gi�G$K! Jj� , where gi�GJj�I
k3 OlQ � �G�#�WVaX*� Q � ���#� c � is the
entropy of J . Since the class entropy gm�G$e� does not de-
pend on � , infomax is equivalent to the minimization of
the the posterior entropy gi�G$I! JK� . Combining this with
the following result shows that infomax minimizes a lower
bound on BE.

Theorem 2 The BE of an � -class classification problem
with feature space � and class indicator variable $ , is
lower bounded by

1 �n �o�p��q )
VYX���� gi�G$j! Jj��3 VYX��F�or*�s3t)u�

VaX*�v� w )�+ (2)

where Jx% � is the random vector from which features are
drawn. When � is large ( � Csy

) this bound reduces to1 �n �>�p��q z{ |�}F~ gm�G$K! JK� .
In fact, the proof of this theorem shows that the LHS of (2)
is a good approximation to its RHS. It follows that info-
max solutions will, in general, be very similar to those that
minimize the BE . We omit the details here (see [13] for a
complete derivation) but illustrate this fact by a simple ex-
ample in Figure 1. Notice that the approximation is partic-
ularly good for optimization purposes since the extrema of
the two functions are co-located.

2.1 Feature selection

Because the possible number of feature subsets in a feature
selection problem is combinatorial, feature selection tech-
niques rely on sequential search methods [6]. These meth-
ods proceed in a sequence of steps, each adding a set of
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Figure 1: The LHS of (2) as an approximation to (1) for a two-class
Gaussian problem where ����� ���	��
 ��
�������������
 and ����� ���	��
 ��
������������
 . All plots are functions of � . Left: surface plot of (1). Right:
surface plot of the LHS of (2).

features to the current best subset, with the goal of optimiz-
ing a given cost function2. We denote the current subset
by J! , the added features by J#" and the new subset by
J%$�
[�oJ&"P+�J! � .
Theorem 3 Consider an � -class classification problem
with observations drawn from a random variable

@ % �
,

and a feature transformation � A � C � . � is a infomax
feature space if and only if ' �)(+*
 �
,.- 10/ �	�?� �l���:!  U�.!Y! � � �G�#�2143 � q ,.- 10/ �	��5o� �����:!  =�-!a! � � 5 �G�#�2163 �

(3)
where J 
 �;� @ � , J%(b
 �7(o� @ � , 8�9��� U�;: � 
 N � � � �� U��9��� U�
denotes expectation with respect to the prior class proba-
bilities and

- 1 8 Q !Y! <u<#
 O Q ���#� VaX*� Z�_ 7 `= _ 7 ` c � is the Kullback-
Leibler divergence between Q and < . Furthermore, if J#$�

�GJ " +/J  � , the infomax cost function decouples into two
terms according to
,>- 10/ �	��?�� �?��� $ !  U�.!Y! � � ? �G� $ �2163 � 


 , - 1 / �	��@�� ��A/R �����B"�! �B -+T U�.!Y! �b��@�� ��A ���B"�! �B � 163 �
w

,.- 10/ �	� A � �?�G�  !  U�.!Y! � ��A �G�  �2163 � , (4)

Equation (3) exposes the discriminant nature of the infomax
criteria. Noting that � � ���#��
DC[�b�?� �l���:!  =�FE � , it clearly
favors feature spaces where each class-conditional density
is as distant as possible (in the KL sense) from the aver-
age among all classes. This is a sensible way to quantify
the intuition that optimal discriminant transforms are the
ones that best separate the different classes. Equation (4), in
turn, leads to an optimal rule for finding the features J " to
merge with the current optimal solution J  : the set which
minimizes

,>- 10/ �b� @ � � A R �?�G� " ! �  +� =�-!a! �b� @ � � A �G� " ! �  �G163 � .

2These methods are called forward search techniques. There is also an
alternative set of backward search techniques, where features are succes-
sively removed from an initial set containing all features. We ignore the
latter for simplicity, even though all that is said can be applied to them as
well.

These observations have motivated the introduction of the
principle of feature selection by maximum marginal diver-
sity in [13].

2.2 Maximum marginal diversity

The simplest solution to (4) is to consider the situation in
which the set of added features J " has cardinality one, i.e.
features are added one at a time. This leads to the notion of
marginal diversity,

Definition 1 Consider a classification problem on a fea-
ture space � , and a random vector Jh
 �IH z +-,.,-,"+;HJ$��
from which feature vectors are drawn. Then, KMLv�IH&N���
DC- 1 8 �+OQP�� �?�SRb!  =�-!a! � OTP �IR � <UE � is the marginal diversity of
feature H�N .
Comparing to (3), it is clear that MD is equivalent to the
infomax cost for one-dimensional problems, i.e. the selec-
tion of the best feature. For higher dimensional problems,
the principle of maximum marginal diversity advocates the
approximation of the infomax cost by the sum of marginal
diversities.

Principle 2 (Maximum marginal diversity) The best so-
lution for a feature selection problem is to select the subset
of features that leads to a set of maximally diverse marginal
densities.

A significant advantage of optimizing MD rather than the
infomax cost (3) is computational. In fact, it is straightfor-
ward to implement the MMD principle with the following
algorithm.

Algorithm 1 (MMD feature selection) For a classifica-
tion problem with V features J 
[�IH z +.,-,.,"+�HW$�� , � classes
$ %M'P)�+-,.,., + �
0 and class priors � � �G U�:
 Q � the following
procedure returns the top X MMD features.

- foreach feature YK% 'P)�+.,-,.,"+�V�0 :
* foreach class  :%M'P)�+-,.,., + �
0 ,

compute an histogram estimate ZQN R � of �+O P � �?�SRb!  U� ,
* compute ZTN�
 z~ N �\[ N R � ,
* compute the marginal diversity
KML �SH N �:
 N � Q � Z+]N R � VYX��F�SZ N R � ,_^6Z N � , where both the`Sa � and division ,_^ are performed element-wise,

- order the features by decreasing diversity, i.e. find
'bY z +-,.,.,.+.Y $ 0 such that KML:�IH N>c ��q0KMLv�IH N>c	d�e �

- return 'fH N�e +-,.,-,.+;H Nhg 0 .
An important point is that simplicity is not achieved by
relaxing the requirement that a good feature transforma-
tion should be inherently discriminant. By recommending
the elimination of the dimensions along which the projec-
tions of the class densities are most similar, MMD clearly
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Figure 2: Gaussian problem with two classes ����� �h����� , in the two-
dimensions, �	� ��

����
��h
 . Left: contours of ����� probability. Middle:
marginals for 
 � . Right: marginals for 
 � . In this problem, PCA se-
lects 

� as the most important feature, despite the fact that the marginals��� e � ������
 ��
 and ��� e � ������
 ��
 are equal and feature 

� does not contain
any useful information for classification. The MMD principle correctly
selects feature 
�� .

satisfies this requirement. This is unlike feature extrac-
tion/selection methods based on principles such as decor-
relation or energy compaction, e.g. principal component
analysis (PCA), that are prevalent in the vision literature. It
is not hard to find examples where the latter can lead to the
worst possible solution while the former is still able to reach
optimal decisions (see Figure 2 for one such example).

3 MMD vs Infomax

While, as seen above, MMD feature selection is guaranteed
to find the optimal infomax solution for one-dimensional
problems, no such guarantees exist in higher dimensions.
In this section we seek a precise understanding of the rela-
tionships between MMD and infomax. These relationships
are summarized by the following result.

Theorem 4 Consider a classification problem with class
labels drawn from a random variable $ and features drawn
from a random vector J 
k�IH z +-,.,.,-+;H $ � and let J&� 

�IH �z +.,.,-,.+�H �� � be the optimal feature subset of size X in
the infomax sense. Then

, - 1 / �	�?� �l���:!  U�.!Y! � � �G�#� 143 � 

�
�

N�� z
KML:�SH �N � w

w
�
�

N���� E �SH �N H/J �z R N�� z ! $ ��3
�
�

N���� EF�IH �N H/J �z R N�� z � (5)

where J&�z R N�� z 
p'fH6�z +.,-,.,"+�H �N�� z 0
Equation (5) establishes three requirements for the optimal
set of features: they must have 1) large marginal diversity,
2) low mutual information, and 3) high mutual information
given the image class. These requirements can seen as en-
forcing three very intuitive principles.

1. Discrimination: each feature in the optimal set must
be discriminant.

2. Feature diversity: the features in the optimal set must
not be redundant.

3. Reinforcement : the only important dependencies be-
tween features are those that carry information about
the class $ .

Notice that feature diversity is different from marginal di-
versity, the driving principle for MMD. While the latter
guarantees discrimination, it does not necessarily lead to
a compact code. For example, two features that are ex-
act replicas of each other will exhibit the same marginal
diversity and will therefore be simultaneously selected or
rejected by MMD. This is not desirable, since the selec-
tion of two features that are equivalent represents a waste of
the available space dimensions. On the other hand, simply
penalizing mutual dependencies is overkill since such de-
pendencies may be crucial for fine discrimination between
otherwise similar classes. In this sense, the third principle
guarantees that the whole is more than the sum of the parts.

While this three-factor decomposition of the infomax
cost is conceptually interesting, it suffers from the practical
limitation that it is usually difficult to evaluate mutual infor-
mation in high dimensions. It is therefore not clear that, in
practice, relying on the infomax cost will guarantee better
solutions than those made available by MMD. An alterna-
tive path of interest is to seek a precise characterization of
the problems where MMD is indeed equivalent to infomax.
Such characterization is provided by the following Corol-
lary of the theorem above.

Corollary 1 Consider a classification problem with class
labels drawn from a random variable $ and features drawn
from a random vector J 
k�IH z +.,.,-,"+;HJ$�� and let J&�M

�IH �z +.,-,.,.+�H �� � be the optimal feature subset of size X in
the infomax sense. If

EF�IH �N H�J �z R N � z � 
 EF�IH �N H�J �z R N � z ! $;�"+G' Y % '*)*+.,-,., +�X 0(6)
where J �z R N�� z 
 'fH �z +.,-,.,.+�H �N�� z 0 , the set J � is also the
optimal subset of size X in the MMD sense. Furthermore,

, - 1 / �b�"!u� �l���:!  =�-!a! � � ! ���#� 163 � 

�
�

N�� z
KMLv�IH �N � , (7)

The corollary states that the MMD and infomax solu-
tions are identical when the mutual information between
features is not affected by knowledge of the class label.
Or, in other words, when the dependence between features
is not class-dependent. This is an interesting condition in
light of various recent studies that have reported the ob-
servationof consistent patterns of dependence between the
features of various biologically plausible image transforma-
tions [9, 5]. For example, spatially co-located wavelet coef-
ficients at adjacent scales tend to be dependent, exhibiting
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Figure 3: a) Curves of PRA as a function of the number of features used for retrieval. b) Curves of MD as a function of the same number (left) and
magnitude of the slope of the MD curve for each of the feature transformations considered (right).

the same pattern dependence (bow-shaped conditional den-
sities) across a wide variety of imagery [9]. Even though the
fine details of feature dependence may vary from one image
class to the next, these studies suggest that the coarse struc-
ture of the patterns of dependence between such features
follow universal statistical laws that hold for all types of im-
ages. The potential implications of this conjecture are quite
significant. First it implies that, in the context of visual pro-
cessing, (6) will be approximately true and the MMD prin-
ciple will consequently lead to solutions that are very close
to optimal, in the minimum BE sense. Given the simplicity
of MMD feature selection, this is quite remarkable. Second,
it implies that when combined with such transformations,
the marginal diversity is a close predictor for the infomax
cost (and consequently the BE) achievable in a given fea-
ture space. This enables quantifying the goodness of the
transformation without even having to build the classifier,
and leading to further computational simplicity.

4 Experimental results

In this section we report on experiments designed to quan-
tify the effectiveness of MMD as a feature selection tech-
nique for visual recognition. These experiments were con-
ducted in the context of texture classification and retrieval
using the Brodatz database3. The experimental set up is ba-
sically the same as that reported in some of our previous
work (e.g. see [14]) and the reader is referred to those refer-
ences for more details. In a nutshell, the database is divided
into a training and test set, the training set used for all the
learning and the test set for evaluation. There are a total of

3We are currently performing the same type of experiments for object
recognition on the COIL database, and image retrieval on Corel. The re-
sults of the complete evaluation will be included in the final paper.

)�) r image classes, each containing � images, � of which are
used for training. Features are extracted from random �����
image neighborhoods and all classification/retrieval results
are obtained with classifiers based on Gaussian mixtures.
Three feature transformations were considered, building
on previous experience that space/space-frequency trans-
forms tend to work well for this task [14]: the discrete co-
sine transform (DCT), a wavelet representation (WAV), and
principal component analysis (PCA).

4.1 MD as a predictor of feature goodness

The first experiment was designed to evaluate how the
MMD rankings relate to the actual retrieval/recognition per-
formance of various feature sets. For this, we designed a re-
trieval experiment where the images in the training set were
considered as a visual database, and the images in the test
set as a set of visual queries. A set of )*+������ feature vectors
was extracted from each of the images in the training set to
create a sample with ��+������ vectors per class. The result-
ing )�) r samples were then fed to the MMD algorithm in
order to find the most discriminant features for the retrieval
problem. The process was repeated for each of the three fea-
ture transformations and, for each subspace dimension, the
query images ranked according to their class-posterior prob-
abilities. Precision/recall (PR) curves were then measured
for all subspace dimensions. To simplify the presentation,
we summarize each PR curve by its integral, i.e. the area
under the PR curve, which we denote by precision/recall
area (PRA).

Figure 3 a) presents the curve of PRA, as a function of
the number of features used in the retrieval operation, for
the three feature transformations. It is safe to conclude
that the DCT achieves the best performance, followed by
PCA, and that the wavelet is the worst performer. Figure 3
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b), presents the equivalent curves for the MD, i.e.the MD
as a function of subspace dimension, as well as the abso-
lute value of the slope of the line that best fits (in the least
squares sense) each of the MD curves. It is clear that rank-
ing the MD curves by the magnitude of this slope leads to
a ranking identical to that obtained by the actual measure-
ment of the PRA curves. This makes intuitive sense since,
while a large slope indicates that the features range from
highly discriminant to poorly discriminant, a small slope is
indicative of an an homogeneous set of features that are all
equally discriminant. Therefore, when only a small percent-
age of the features is used, the retained subset will be more
discriminant for transformations of the former type. Or, in
other words, MD curves of larger slope indicate more com-
paction of the discriminant power into a small subset of the
features.
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Figure 4: Curve of feature variance as a function of subspace dimension
(features ordered by decreasing variance).

For completeness, we also show in Figure 4 the curves of
feature variance as a function of subspace dimension (when
the features are ordered by decreasing variance). Note that,
unlike MD, it is quite hard to infer from these plots which
transformation will lead to better recognition. In fact, the
variance curves for the DCT and PCA transforms are vir-
tually indistinguishable! This observation (and the fact that
PCA, which is theoretically optimal from an energy com-
paction point of view, performs worse than the DCT!), are
further evidence that energy compaction is a poor metric for
feature selection.

4.2 Perceptual relevance

The second experiment was designed to evaluate if the fea-
tures extracted by MMD would correlate with image prop-
erties that are deemed perceptually relevant. Once again, we
extracted ��+ ����� feature vectors from each class, but now the
)�)ur samples were combined in order to find the features that

best discriminate between a given class (the target class)
and everything else in the database. For this, we grouped
all the feature vectors from classes other than the target in
a large sample. This and the sample from the target class
were then fed to the MMD algorithm. The procedure was
repeated for all classes in the database, each taking its turn
as the target class. The goal was to identify the most dis-
criminant features for each image class, and evaluate if they
correlate with perceptually salient features of the images in
that class. Note that the objective was not to make sweep-
ing claims about the role of MMD in human perception,
but simply to investigate if MMD could extract meaningful
features from classes that contain local visual attributes of
obvious perceptual relevance (e.g. bars, lines, corners, and
so forth). We believe that the ability to do so is an important
step towards recognition/retrieval systems capable of image
similarity judgments that mimic those made by humans.

Figure 5: Representative images from
�

texture classes on Brodatz (left)
and the corresponding � � most discriminating features as determined by
the MMD algorithm (right).

As Figures 5 and 6 illustrate, the results were highly en-
couraging. Each picture in Figure 5 presents a representa-
tive image from a texture class (on the right) and blown-up
replicas of the )�� top features selected by MMD as most
discriminant for that class (on the left). For calibration, the
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images on the left have size ) r � � )ur�� while each of the
features is of size � � � . One interesting observation that
can be made from the figure is that the extracted sets of fea-
tures are stable with respect to perturbations such as scaling
or figure-ground reversal. In particular, even though there
is a variation in scale of about r to ) between the top two
images (and the texture is not even exactly the same!) the
corresponding sets of optimal features share � out of the �
top elements and )�� out of the top )�� . Similarly the optimal
sets for the last two images share � of the top � and )�� of
the top )�� . This stability is interesting in the sense that it in-
dicates invariance of the representation to non-trivial image
transformations. The question of invariance is one that we
intend to study more systematically in future work.

A second interesting observation is that the perceptually
most salient aspects of each texture class seem to be covered
by the extracted features. In particular, 1) the optimal set
for the two top images includes corner, line, and t-junction
detectors and all of the these appear high up in the list (after
the mean and horizontal gradient); 2) the optimal features
for the third image are similar to those of the first two, but
of higher frequency; 3) image four originates detectors of
horizontal lines that are closely spaced vertically; and 4) the
fifth image results in detectors of high-frequency patterns.
This is also illustrated by Figure 6 where we show the image
responses of the � most discriminant features (other than the
mean) for the two image classes at the top of Figure 5. Once
again, it is visible that the features are basically detectors for
the presence of bars, corners and t-junctions.

Appendix
For the proofs of Theorems 1-3 see [13].

A Proof of Theorem 4

Applying (4), with J!" 
 H6�� and J& �
 J&�z R � � z leads to
, - 1 / �	� ! � �l���:!  U�.!Y! � � ! �G�#� 163 � 
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� �
w

� - 1 � �b� !e ] g	�\e � �?���:!  U�.!Y! � � !e ] g	�\e �G�#� 
�� � +
and, by repeating this procedure recursively,, - 1 / �	� ! � �l���:!  U�.!Y! � � ! �G�#� 163 � 
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letting J " 
 H �N and and J  
[J&�z R N�� z , this equality can
also be written as

, - 1 / �b� ! � �l���:!  U�.!Y! � �"! ���#� 163 � 




�
�

N�� z
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� �

3
�
�

N����
/ EF�IH �N H�J �z R N � z ��3 EF�IH �N H�J �z R N � z ! $ � 1

and the theorem follows.

B Proof of Corollary 1

From Theorem 4, if (6) holds,

,>- 10/ �b� ! � �l���:!  U�.!Y! � �"! ���#�G163 � 




�
�

N�� z
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�
�

N�� z
� - 1 � � O !P � R �?�SRb!  U�.!Y! � O !P �IRF� 

� � ,

Since, from the properties of the KL divergence [4],
the terms

,>- 10/ �+O � R �?�IR�!  U�-!a! � O �SRF�21 3 � are always non-
negative, the sum is maximized when each of the terms is
maximum. It follows that the optimal infomax features are
the ones with maximum marginal diversity and infomax is
therefore equivalent to MMD.
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Figure 6: Two textures from Brodatz (top) and the corresponding re-
sponses of the � most discriminant features for the class of each image.
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