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ABSTRACT

Most image retrieval systems perform a linear search over the database
to find the closest match to a query. However, databases usually
exhibit a natural grouping structure into content classes that can be
exploited to improve retrieval precision and speed. We investigate
methods that enable search at both the class and image level. It
is shown that, through the combination of Bayesian averaging and
hierarchical density estimation, it is possible to achieve significant
gains in retrieval accuracy and speed, at the cost of a marginal
increase in training complexity. The technique is also shown to
enable the efficient design of semantic classifiers.

1. INTRODUCTION

The problem of content-based retrieval from image or video databases
is naturally formulated as one of statistical classification. Given a
query feature space

�
, the design of a retrieval system consists of

finding a map
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from
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to the set
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of image classes in the database. When the
goal is to minimize the probability of error it is well known that
the optimal solution is given by the Bayes classifier [1]
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The simplest way to define the image classes in the database is to
assume that each image is a class on its own. This definition is
implicitly adopted by any retrieval system that compares the query
against all images in the database, and is therefore prevalent today.

However, it is usually the case that databases exhibit a natu-
ral grouping structure which can be exploited to improve retrieval
precision and speed. For example, an object database may con-
tain images of each object at different poses or scales, a database
of scenic imagery may contain replicas of the same location shot
at different times of the year, a database of industrial parts may
contain images of several variations on each canonical part, and a
video database typically contains many images for each shot. In
all these examples, the database can be thought of as composed by
a number of canonical image classes (objects, locations, canonical
parts, and shots), each imaged under variable conditions (pose and
scale, time of the year, part revision, and location within the shot).

Given a query image, searching for the closest canonical class
is faster than searching for the closest image (because there are
significantly less classes than images) and can also be more accu-
rate (by reducing the probability of false positives). If the classi-
fication structure can be extended to multiple levels, i.e. classes

grouped into meta-classes and so forth, the gains in retrieval speed
can be quite significant [2]. On the other hand, there are appli-
cations where retrieving one representative image from the same
class as the query is not satisfactory, e.g. an object recognition
task where, in addition to the object, it is important to recognize
its pose. Hence, retrieval systems should be able to support both
types of search and, ideally, image-level searches should be an ex-
tension of class-level ones (by finding the best image match within
the best class match).

The straightforward manner to enable searches at the class
level is to rely on Bayes rule

� � ���.� �/�0��!1"$�0%&(' ��� , �)�+* � ' � �2��* � (2)

and direct estimation of the canonical class densities ' ��� , �3�4* �
(using for each class a training set consisting of all the feature vec-
tors extracted from all the images in that class). This approach has
two limitations. First, assuming that queries at the image level also
have to be supported, the retrieval system needs to estimate both
the class density and the density of each of its images. This means
that there will be a significant increase in training cost over that
required by image-level search only. Second, the resulting class
densities cannot be updated incrementally, whenever images are
added to or deleted from the database. While these are not over-
whelming problems for histogram-based estimates, they can be a
major hurdle when more sophisticated density models are used.
We have previously shown that the use of these more sophisticated
models, namely Gauss mixtures, can lead to significant improve-
ments in retrieval accuracy over that achieved with histograms [3].

In this paper, we investigate more efficient solutions to enable
searches at both the class and image level. One possibility is to
introduce a hidden variable 5 that accounts for each of the possible
imaging hypotheses within a class. Bayesian principles can then
be used to fuse information from the various hypotheses, when
searching at the class level. In this way, densities only need to be
estimated once, at the image level, and there is no training cost
associated with class-level search. We will see, however, that this
solution leads to an increase in the evaluation of (2) that cancels
the computational savings of class-level search. Or, in other words,
improving the training efficiency destroys that of retrieval.

To achieve simultaneous training and retrieval efficiency, the
density model must reflect the hierarchical structure inherent to the
fact that images are feature subsets of image classes. In any sensi-
ble feature space, this implies that image densities from the same
class will have shared components, and the overall class density
will be the mixture of all such components. Such structure can
be represented formally as a mixture hierarchy [2]. We show that
combining Bayesian fusion with mixture hierarchies restores the
computational savings of class-level search, with a minimal in-
crease in training complexity over that of simple Bayesian fusion.



Furthermore, due to a data-driven form of regularization inherent
to hierarchical density estimation, hierarchical estimates have bet-
ter generalization and lead to higher retrieval accuracy than simple
fusion. Finally, because hierarchical estimation is very efficient, it
provides a practical solution for the design of semantic classifiers
in the context of large image databases.

2. BAYESIAN HYPOTHESIS FUSION

We denote by 5 the hidden variable whose states are associated
with different hypothesis for image interpretation. For example, in
the case of an object database where each object appears in one of
' poses, 5�� ��

��������� ' �

. The posterior probabilities of (1) can
then be written as
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where 
 ��� & � ' � 5 ��� , � � * � and the normalization constant
' ���.� is irrelevant for all purposes related to (1), since it does not
depend on

*
. It is, therefore, clear that the optimal way to integrate

the information from the different hypothesis is to take a weighted
average of the likelihood of the query � under each of them. This is
to be contrasted to the standard linear search for the closest image
in the database, that can be expressed as
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In terms of practical implementation, (3) can be computed in
two ways. The first is to compute the likelihood of the query under
each of the individual image models ' ��� , �$�	*�� 5 ��� � and then
average across hipothesis. Like (4), this has computational cost� � � ' � , i.e. linear in the size of the database. The second is to
compute, off-line, the average model for each class
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and then apply (2) directly. Under this implementation the search
complexity is

� � � � and can be significantly smaller, depending
on the number of hipotheses ' , than (4). Hence, model averaging
is the most appealing solution from a computational standpoint.

3. MODEL AVERAGING

Model averaging according to (5) can be performed in several
ways. The direct application of (5) is feasible when the densi-
ties ' ��� , � �4*�� 5 ��� � are defined over a (common) partition of
the space. For example, if all densities are histograms defined on a
partition of

�
into � cells
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However, when 1) the underlying partition is not the same for all
histograms or 2) more sophisticated models (e.g. mixture or kernel
density estimates) are used model averaging is not as simple.

3.1. Naive averaging

Consider, for example, the Gauss mixture model
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where

�
��� ��! �#" � is a Gaussian probability density function with

mean
!

and covariance $ , and
� �&�� � a probability mass function

such that % � � �&�� � ��

. Direct application of (5) leads to
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i.e. a ' -fold increase in the number of Gaussian components per
mixture that cancels the computational reduction from

� � � ' � to� � � � achieved by model averaging. We denote this solution by
naive averaging, since it has no real advantage over evaluating the
query likelihood for each individual image model and then averag-
ing the resulting likelihoods.

3.2. Mixture hierarchies

The problem of naive model averaging is that there is no explicit
modeling of the relationships between image densities in the same
class. Consider the trivial example of Figure 1, where we present
the densities associated with three images of an object with four
faces, each textured in a way that gives rise to a Gaussian in fea-
ture space. Due to the geometry of the object, only three of the
four faces are visible in any image. The effective number of com-
ponents at the class level is therefore ( (the total number of faces
in the object) and significantly smaller than the total number of
components in all images, which is



)
. By failing to take this

into account, (7) requires the evaluation of


)

components, most
of which are replicas of each other.

We will refer to a model that captures the relationships exem-
plified in Figure 1 as a mixture hierarchy. Roughly speaking, this
is a collection of mixtures, organized hierarchically, where chil-
dren densities consist of different combinations of subsets of the
parents’ components. A formal definition is also possible [4], but
we omit the details for brevity. The important point is that, when
the densities conform to the mixture hierarchy model, it is possible
to estimate the parameters of the class mixture directly from those
available for the individual image mixtures, using a two-stage pro-
cedure. The first stage, is the naive averaging of (7). Assuming
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Fig. 1. A simple mixture hierarchy with three images. The class model is
shown at the top, image models are shown at the bottom.

that each image mixture has � components, this leads to an over-
all mixture with ' � components and parameters1
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The second is an extension of the EM algorithm, which clusters the
Gaussian components into a � -component mixture [5, 2], where� is the number of components at the class level. Denoting by� ���� ��! �� �'" �� ������� 

��������� � the parameters of the class mixture,
this algorithm iterates between the following steps.
E-step: compute
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where / is a user-defined parameter (see [5] for details).
M-step: set
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Notice that the number of parameters in each image mixture is or-
ders of magnitude smaller than the number of feature vectors in the
image itself. Hence the complexity of estimating the class mixture
parameters is negligible when compared to that of estimating the
individual mixture parameters for all images in the class. It fol-
lows that the overall training complexity is dominated by the latter
task, i.e. only marginally superior to that of naive averaging and
significantly smaller than that associated with direct estimation of
class densities. On the other hand, the retrieval complexity is ex-
actly the same as that achievable with direct estimation, and sig-
nificantly smaller than that of naive averaging. This is quantified
on Table 1.

1Note that this notation is the same as that of (6) with the class index <
omitted.

Table 1. Time complexity of class-level parameter estimation vs. retrieval
complexity for the methods discussed in the paper. All times are per class,
i.e. must be multiplied by the number of classes = to obtain total costs. >
is the number of image mixtures per class, ? the number of components
in each of these mixtures, @ the number of feature vectors per image, andA

the number of class mixture components. Typically,
A3B ?DCE@ .

Training time Retrieval time
Linear search - O(PK)
Naive averaging - O(PK)
Direct estimation O(TPS) O(T)
Mixture hierarchy O(TPK) O(T)

One final interesting property of the EM steps above is that
they enforce a data-driven form of regularization which improves
generalization. This regularization is visible in (12) where the vari-
ances on the left hand-size can never be smaller than those on the
right-hand side. We will see in the next section that, due to this
property, hierarchical class density estimates are much more reli-
able than those obtained with direct learning.

4. EXPERIMENTAL EVALUATION

In this section we present results of an experimental comparison
of the four retrieval methods discussed above: linear search, class
search with naive averaging, class search with direct density es-
timation, and hierarchical class search. The evaluation was per-
formed on the the Columbia object database (COIL-100), which is
a common benchmark for object recognition and image retrieval.
Our version of the database is a set of images from


-FGF
objects

each shot in H different views obtained by rotating the object inIGJ
in steps of ( FLK . This subset was split into two subgroups, a

query database containing the first image of each object and a re-
trieval database containing the remaining M . In all cases, the YBR
color space was used, and the image features were the coefficients
of the M � M discrete cosine transform. Standard EM was then used
to estimate a Gaussian mixture for each image. For the class-based
searches, each object was considered as a different class.
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Fig. 2. Training complexity as a function of the number of class-level
mixture components.

Figure 2 presents the times required to learn the class models
with direct and hierarchical density estimation. While the compu-



Table 2. Confusion matrix for Corel. Entry <�� � gives the fraction of the queries in which a query from class < was assigned to class
�

.
AH AR O R S SG SS C D E EG Fw GM MR OP

AH 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AR 0 96 0 0 0 0 0 0 0 0 4 0 0 0 0
O 0 0 88 0 0 0 0 0 0 0 0 0 0 12 0
R 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 91 0 3 0 0 0 3 0 0 3 0
SG 0 0 0 0 0 72 6 0 6 5 0 1 1 0 0 0
SS 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 90 0 0 0 0 10 0 0
D 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
E 4 0 0 0 0 0 4 4 0 64 0 0 f

¯
4 17 3

EG 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0
Fw 0 0 7 0 0 0 0 0 0 7 0 80 0 0 6
GM 0 0 0 0 0 0 0 13 0 0 0 0 47 40 0
MR 0 0 0 0 0 0 0 0 0 5 0 0 0 95 0
OP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

tational savings depend on factors such as the number of images
per class and the number of mixture components (see table 1) it is
clear that the gains of the hierarchical approach can be quite signif-
icant even when these numbers are small. For example, its cost is
about ( F times smaller than that of direct estimation (

) 

� 

seconds

per model for the former vs.

 ( � ) minutes for the latter) when the

class model has ��( components and there are only M images per
class.
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Fig. 3. Retrieval accuracy as a function of the number of class-level mix-
ture components.

On the other hand, Figure 3 shows that, given enough mix-
ture components, the retrieval performance achieved with mixture
hierarchies is clearly superior to that of direct estimation. The im-
provements can be quite significant: while the latter achieves H����
accuracy but is very sensitive to variations in the number of mix-
ture components, the former achieves HLH�� accuracy and is very
robust. The figure also shows that queries using mixture hierar-
chies perform significantly better than the significantly more com-
plex linear searches or class searches based on naive averaging.
The high accuracy and robustness of searches based on mixture
hierarchies are a consequence of more accurate density estimates,
due to the data-driven regularization discussed in section 3.2.

5. SEMANTIC CLASSIFIERS

We finalize, by discussing the use of mixture hierarchies as a means
to design semantic classifiers [6, 7]. This design can be carried out
in two steps. The first is to estimate a mixture density for each
image in the database. Since such estimates are required for ele-
mentary retrieval operations it does not add any complexity to a
retrieval system. Given a labeled collection of images (e.g. out-

doors vs. indoors), the second step is then to estimate class models
directly from the associated image models. Due to the efficiency
of hierarchical estimation this step can be performed very quickly.
Hence, once the individual image densities are available, it is al-
most trivial to add higher-level classifiers to the retrieval system2.

To evaluate the feasibility of this idea, we tried it on

 � classes3

from the Corel image database, with

 FGF

images each. Once again
we created a query and retrieval database, this time by assigning
each image to the query set with a probability

F � )
. All other pa-

rameters were the same as in the experiments of the previous sec-
tion. Table 2 presents the resulting confusion matrix. For





of

the

 � classes4, the recognition accuracy was MGM�� or better and M

of these had accuracy of H���� or better. Errors in high error-rate
classes usually coincided with queries that, from the standpoint of
visual appearance, were similar to two or more classes. Typically,
higher-level forms of scene interpretation would be required to cor-
rect these errors. For example, pictures of Egyptian monuments
were frequently confused for pictures of Mayan monuments, pic-
tures of religious stained glass were sometimes confused for pic-
tures of fireworks, and pictures of glaciers and mountains were
commonly mistaken for scenes of coasts or landscapes containing
Mayan monuments.
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Class labels are AH for Arabian horses, AR for Auto racing, O for Owls, R for Roses, S for Ski scenes, SG for
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