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Abstract

We pose the content-based retrieval problem as a problem of statistical
inference and develop a Bayesian framework for indexing and retrieval in the
context of large multimedia databases. All the indexing is carried out in the
compressed domain and leads to efficient retrieval without compromise of the
compression efficiency. The framework allows the integration of information
from different sources and modalities as a way to eliminate some of the most
significant limitations of the query by ezample search paradigm, and all the
model parameters can be learned from training examples.

1 Introduction

The advent of a fully digital communications landscape, characterized by fast net-
working, ubiquitous computing and storage, and absence of barriers to the publica-
tion and access to information, poses new challenges to communication devices. In
particular, it is no longer enough to guarantee robust and bandwidth efficient com-
munication links between source and decoder which, under the new communications
paradigm, becomes much more of an information seeking device than the traditional
information sink. Given the massive amounts of choice made available by the new
modes of communication, it is also necessary to equip decoders with tools to filter,
sort, summarize, retrieve, and manipulate content.

While relatively sophisticated architectures are already available to perform these
operations over text, little is known on how to extend their principles to visual in-
formation, i.e. to images or video. In this area, a significant amount of work has
recently started to appear in the context of content-based retrieval, under the query
by example search paradigm [5, 7, 8, 3]. Here, the user supplies the retrieval system
with some sort of example of what he/she is looking for (e.g. an image) and the
system then retrieves, from an image or video database, the items that are closest to
the submitted example.

One of the important requirements for practical retrieval systems is the ability
to jointly address the issues of indexing and compression. By formulating query
by example as a problem of Bayesian inference [2] and establishing a link between



probability density estimation and vector quantization, we have recently introduced
a representation that leads to very efficient procedures for indexing and retrieval
directly in the compressed domain without compromise of the coding efficiency [10].

In this paper, we build on the potential of the Bayesian formulation to support
sophisticated inference, to incorporate this representation in a very flexible indexing
and retrieval framework that 1) leads to intuitive retrieval procedures, 2) can integrate
different content modalities and, therefore, eliminate some of the strongest limitations
of the query by example paradigm, and 3) supports statistical learning of all the model
parameters and can, therefore, be trained automatically.

2 A Bayesian retrieval framework

In order to formulate retrieval as a problem of Bayesian inference, we assume that
the items in the content database are a set of observations drawn from a set of M
content sources. We next assume that the query Q submitted to the retrieval system
is also an observation from one of the M sources, and define an indicator variable
S =(S1,...,Su)T, where S = e; if Q was drawn from the i'h source, and e; is the 7
vector of the standard basis of RM (i.e. contains a one in the i*" position and zeros
in the remaining ones).

We then define a Bayesian criteria for retrieval, where finding the closest match
to the query Q in the database corresponds to finding the source S* such that

S* = argmax P(S; = 1|Q), (1)
13
which by simple application of Bayes rule is equivalent to

S* = arngaXP(Q|SZ- =1)P(S;=1) (2)
= argmzax{logP(Q|Sz- =1)+logP(S;=1)}. (3)

2.1 Probabilistic model

To define a probabilistic model for the observed data, we assume that each observation
X from a given source is composed by K attributes X = {X(l), .. .,X(K)} which,
although marginally dependent, are independent given the knowledge of which source

generated the query, i.e.
P(X[S) = [ P(xP]s)). (4)
k

Each attribute is simply a unit of information that contributes to the characteriza-
tion of the source. Possible examples include image features, audio samples, or text
annotations.

This probabilistic model can be expressed graphically as a Bayesian network [6],
according to Figure 1. The source state variable S takes the value of any of the
vectors in the standard basis of RM according to the prior probabilities P(S; = 1)



of equation (2). Associated to each of the links from the source state variable to the
indicator variables S;, is a conditional probability density

P(S;=1|S)=0(S—e;), P(S;=0|S)=1-P(S; =1|S);

where

5(x):{ 1, ifr=0 (5)

0, otherwise.

Finally, associated with the links from each of the indicator variables S; to each of
the attribute variables X*) is the conditional density P(X*)|S;).

Source state

Attribute variables

Figure 1: A graphical representation of the probabilistic model for the observations in the database.

2.2 Retrieval as Bayesian inference

In the Bayesian context, retrieval corresponds to finding the source which maximizes
equation (2) in response to the instantiation, by the user, of a subset of K content
attributes. This instantiation depends on the nature of the attributes themselves.
While a keyword attribute is instantiated by the specification of that keyword to the
search engine (as is common in text retrieval systems), pictorial attributes can be
instantiated by example.

Borrowing the terminology from the Bayesian network literature, we define, for a
given query, a set of observed attributes O = {X®|X®) = Q®} and a set of hidden
attributes H = {X®|X®) is not instantiated by the user}, where Q = {Q®|k is
instantiated} is the query provided by the user. The likelihood of this query is then
given by

P(Q|S;) = _ P(O,H]S)), (6)
H
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where the summation is over all possible configurations of the hidden attributes!.
Using equation (4) and the fact that >y P(X]S;) = 1,

P(Q|S) = POIS)Y. I PEWIS)
H glx®cH

= POls) I > Px®Wis)
kI X®ecH X (k)

= P(0]5), (7)

i.e. the likelihood of the query is simply the likelihood of the instantiated attributes.
Or, in terms of the graphical model of Figure 1, the non-observed attribute nodes
of the network can simply be disregarded during retrieval. In addition to being
intuitively correct, this result is also of considerable practical significance. In practice,
it means that the complexity of retrieval grows with the number of attributes specified
by the user and not with the number of attributes known to the system, which can
therefore be made arbitrarily large.

3 Combining different content modalities

One requirement of sophisticated indexing systems is the ability to integrate infor-
mation from different content modalities, namely text, audio, and video. This is a
consequence not only of the fact that, for most modern multimedia applications, the
content is, in fact, multimodal?, but also of the fact that the integration of informa-
tion from different sources is a way to eliminate some of the strongest limitations of
the query by example paradigm. For example, text annotations enhance the perfor-
mance of image retrieval systems by allowing the user to express queries in terms of
semantic attributes that cannot be easily inferred from the visual properties of the
images themselves, e.g. “images of patriotism” or “pictures of vacation spots”.

Because there is no constraint for the attributes X*) in the model of the previ-
ous section to be of the same type, the Bayesian framework can naturally integrate
different modalities. Consider, for example, a database of HTML pages containing
both text and images. For such a database, some of the attributes in the model could
be textual and the remainder visual. Suppose that keywords are used to characterize
the text and some compact visual description used to characterize the images. Then,
assuming that those visual descriptions can be expressed probabilistically (an issue
to which we will get back in section 4), the set of attributes X in the model of Fig-
ure 1 can be decomposed into two subsets X = T UV, the subset T containing the
keywords understood by the retrieval system, and the subset V containing the visual
attributes.

A natural probabilistic representation for the text attributes is to rely on a

!The formulation is also valid in the case of continuous variables with summation replaced by
integration.
2The World Wide Web being the most proeminent example of this phenomena.



Bernoulli distribution for the conditional probabilities P(T™|S;), i.e. to choose
P(T(k)wi —1) = 91(;—5(7’@)))(1 _ gik)é(T(k)), (8)

where d(z) is defined in equation (5) and 6; is the prior probability that the user will
specify the keyword T*) given that he/she is looking for the database entry drawn
from source S;.

Assuming a query instantiating both text and visual attributes, Q = {Qs, Qv },
and using equations (4) and (7)

P(Q|Si) = P(QV|Si)HP(Qt(k)|Si)a (9)

from which equation (3) becomes

§* = argmax{log P(Qu[S; = 1) + " log P(QV|S; = 1) +log P(S; = 1)} (10)
¢ k

The comparison of this equation with equation (3) reveals an alternative interpre-
tation for the Bayesian integration of the information from several sources: that the
optimal source is the one which would result from the visual query alone but with
a prior consisting of the combination of the second and third terms in the equation.
L.e. the text attributes instantiated in the query simply reflect the prior belief, by the
user, of which source is most likely to originate the best match to the visual query
submitted to the retrieval system. Or, in other words, the text attributes provide a
means to constrain the visual search.

Similarly, the second term in the equation can be considered the likelihood func-
tion, with the combination of the first and the third forming the prior. In this
interpretation, the visual attributes constrain what would be predominantly a text-
based search. Both interpretations illustrate the power of the Bayesian framework to
integrate information from different sources in a natural and meaningful way.

Consider the first interpretation and assume, for simplicity, that P(S; = 1) is
equal for all sources and can, therefore, be dropped from the summation. Then,
using equation (8), the optimal source becomes

S* = argmax{log P(Qy|S; = 1) + Z(l — 6(T(k))) log 01, + Z(S(T(k)) log(1 — 6i)}.
' k k
(11)

The prior (second and third terms) can be seen as a sum of weights, to which each
text attribute instantiated with yes (T®) = 1) contributes with log(f;;) and each
instantiated with no (T*) = 0) contributes with log(1 — ;).

These functions are plotted in Figure 2, showing that the process is, indeed, very
intuitive. In particular, for a given source, attributes which were a priori expected to
be set to yes during retrieval (€ large), originate a small penalty if instantiated with
yes and a large penalty if instantiated with no. Similarly, attributes which were a
priori expected to be set to no (€ small), originate a large penalty if instantiated with
yes and a small penalty if instantiated with no. The exact amount of the penalty is
a function, for each source 7 and each attribute k, of the Bernoulli parameter 6;,. We
will see in section 5 that this is an interesting property in itself.
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Figure 2: Contribution to the overall prior of attributes instantiated with yes (left) and no (right)
as a function of the Bernoulli parameter 6.

4 Characterizing audio-visual content

One of the challenges of characterizing audio-visual content for the purposes of in-
dexing and retrieval is the sheer amount of data originated by content sources in this
category. Due to the magnitude of this problem, virtually every picture or audio sam-
ple produced digitally is, sooner or later, stored in some form of compressed format.
While compression provides significant savings in terms of storage requirements, it
poses new challenges to indexing systems.

In particular, if the compression algorithm does not generate a bitstream already
formated in a way that is suitable for retrieval, there is a need for an indexing mecha-
nism that will, for each entry to archive: 1) decode it, 2) reconstruct the compressed
images or audio, 3) compute the set of features or content descriptors on which the re-
trieval system relies, and 4) store those features. This is clearly an inefficient process
as it implies a significant amount of duplication of resources in terms of both com-
putation and storage. There is, therefore, a need for coding representations capable
of providing support, directly in the compressed domain, for indexing and retrieval
without sacrifice of the compression efficiency.

From the point of view of the Bayesian retrieval framework discussed in this paper,
this support consists of incorporating in the compressed bit-stream a compact and
explicit description of the likelihood function, P(X,y|S; = 1), for the audio-visual
attributes used for retrieval. In [10] we have introduced one such representation,
Library-based Coding. The main idea is to model the probability density of each
source S; as a mixture of Gaussians

C
P(V|S;=1) = 3 pPe-s(V-u) =) (v (12)

)
k=1

which is compactly described by the set of parameters u; = {ugl), e ,MEC)}, 3, =
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{ZEI), e ZEC)}, and p; = {pgl), e ,pgc)}, and where V is a vector of audio-visual
features and C is the number of components in each mixture. These parameters can
then be estimated from the images or audio observations drawn from .S;, which con-
stitute the entries to archive in the database, through the Expectation-Maximization
(EM) algorithm [1].

Even though the representation is generic and applicable to any feature space,
we have worked mostly in the space of image blocks (where V is a vector of pixel
intensities) to achieve compatibility with current coding standards such as JPEG or
MPEG. In fact, it turns out, that the EM algorithm is very close to the generalized
Loyd algorithm [4] for vector quantizer (VQ) design, and the parameters above can
be seen as those of an entropy-constrained VQ under the Mahanolabis distance [10].
Therefore, in addition to providing support for retrieval, the representation is also
nearly optimal from a compression standpoint. In practice, the model of equation (12)
can be simplified by assuming equally likely Gaussians with identity covariance, in
which case, the remaining parameter p; becomes a standard VQ codebook.

Each of the entries in this codebook can thus be seen as a probabilistic annotation
of the content, and the codebook (or block library) is all that must be decoded for
purposes of indexing and retrieval. Indexing and retrieval can, therefore, be performed
very efficiently and embedded in hierarchical structures that have various interesting
properties [9].

5 Learning the model parameters

One of the interesting properties of Bayesian inference is that it only requires the
specification of local probabilities (the conditional probabilities associated with the
links in Figure 1), global (or joint) probabilities being inferred by the integration of
information from all the variables in the model (e.g. equation (11)). This opens up
the possibility for the manual specification of the model parameters, which would be
infeasible at the global level.

Consider, for example, the text attributes of equation (8). For a given source i
and a given keyword k, the optimal value for the parameter #;; is nothing more than
the answer to the question “given that the user is looking for picture ¢ what is the
likelihood that he/she will specify keyword £7”. This, in addition to being intuitive,
provides a great flexibility with respect to the categorization of the content in the
database, by allowing keywords with variable weights.

Imagine a picture of a beach in the Caribbean. A user interested in such a pic-
ture is, with high likelihood, looking from pictures of “vacation spots”, “beach”,
“Caribbean” or “water sports”. It can also be the case, even though much less likely,
that he/she is simply looking for images of “palm trees”, “water”, or “boats”. Under
the Bayesian framework, these different levels of relevance can be easily incorporated
in the model by simply assigning a larger # to the former attributes and a smaller
to the latter ones.

In this case, as seen in section 3 (see Figure 2), the picture would be more penalized
in response to the instantiation with yes, during retrieval, of the “water” keyword



than in response to the instantiation with yes of the “Caribbean” keyword. Assuming
both € parameters to be larger than 0.5, the penalty would be even larger for the
instantiation of “water” with no, and largest for that instantiation of the “Caribbean”
attribute. I.e. the image is very unlikely to be returned by the retrieval system if
either “Caribbean” or “water” are instantiated with no, has a better chance if “water”
is instantiated with yes, and an even better chance if the user is looking for pictures
taken in the “Caribbean”. This is a much more flexible indexing paradigm than
keyword search with equally weighted attributes.

However, because the framework is probabilistic, it also supports probabilistic
learning of the model parameters. Suppose that, instead of setting parameters man-
ually, one would like to estimate them from a training set composed of F examples,
each example e consisting of an image (video sequence) V, and a set of U instanti-
ations of the text attributes understood by the system T, = {T.,,...,T.y}. For a
system with K such attributes, T, ; would be the binary vector of length K obtained
by asking one of U test subjects to categorize the i** image (sequence) in the training
set.

The likelihood of the test set would thus be given by

P(V,T,S|®, 71, u, X, 1), (13)
where V.={Vy,...,Vg}, T={Ty,...,Tg}, S ={Sy,...,Sg} is the set of indicator
vectors assigning each of the examples to each of the M sources, ® = {6y, ...,0,,} the

set of Bernoulli parameter vectors associated with equation (8) for each of the sources,
= A{m,...,mmt, o= {p, . pmt, X = {2,..., Xy} the sets of parameters
of the mixture models for the image sources (equation (12)), and 7 = {P(S; =
1),..., P(Sy = 1)} the set of prior source probabilities. Usually, E = M and S, = e.,
i.e. each of the images (sequences) would be considered a sample from a different
source, but it is equally possible to have multiple examples drawn from the same
source.

Defining ® = {©, 7, 1, ¥, 7}, using the independence relations in the model and
assuming that the examples in the training set are independent

P(V,T,8|®) = P(V,T[S,0,r,u 2)P(S|r)
= P(V|S,m,u, X)P(T[S,©)P(S|7),
= T[P(VelSe,, 1, %) [[ P(T.|S., ©) ] P(S.|7),

= TTIIP(VeplSe, 7, 11, ) ITTI P(TeulSe, ©) [T P(Selr),
e b e u e

where the second product in the first term is over all image blocks in example V,,
and the second product in the second term is over all U subjects. The maximum
likelihood estimates of the model parameters are then

®* = arg mq&}x{log P(V,T,S|®)},
and can be obtained by decomposing the maximization into the following sub-problems,

{m*, pn*, X"} = arg {max} Z Z log P(Vep|Se, T, 11, X)
b

T2} g
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O = arg max z@: zu: log P(T..u|Se, ©)

7" = argmax > log P(S.|7).

Using
P(VeplSe,m 1, 8) = [[IP(VeslSe = e, mi, i, B,)]° e )
Se? 6) = H[P(Te,u|se =€, ®z')]5(S67ei),

i

P(T.,

the optimal parameters for the characterization of the i* source, S;, become

{ﬂ-:aufa E:} = arg max Z Zlogp(ve,b|se = €, Ty, Uy, 21) (14)

{miopi, 2i} e|Sc=e; b

©; = argmax > Y log P(T..|S. = e;,©)) (15)

¢ e|Se=e; U

T = arngaleogP(Se = e;|1;). (16)

The first sub-problem is simply the density estimation discussed in section 4 and can
be solved by EM. Using equations (4) and (8), the second sub-problem becomes

©; = argmaxd 313 (1 - (L)) logbhy + 353 3 6(TL) log(1 — i)
= Dloghi > 3 (1= 0(T5)) + D log(L — 0) D30 6(TL),

where the summation over e is restricted to the set {e|S. = e;}. Taking derivatives
with respect to 6;;, and setting them to zero, we obtain

* Ze\Se:ei Zu(l - 6(Te(z]f)))
k Ze\Se:ei Zu 1 ’
i.e. the optimal € is simply the ratio between the number of times the corresponding

attribute was instantiated with yes and the total number of instantiations it received.
Similarly

(17)

T = % > (S —ei), (18)

i.e. the optimal estimate for the prior probability of source ¢ is simply the ratio
between the number of examples from that source and the total number of examples.

These equations have important practical implications. First, because the param-
eters associated with the different attributes are learned independently, learning is
efficient and the model can be easily updated. Consider for example an HTML page.
The fact that the keywords need to be recomputed whenever the text is modified does
not imply that the probabilistic description of the images also has to be re-estimated.
In fact, the keywords do not even need to be defined in the page itself by the content
provider, but can be defined by some other entity located elsewhere on the network.

9



For maximum efficiency, the provider simply needs to include the probabilistic
image description in the encoded bitstreams available from the page, a task which is
automatically carried out by the encoder during the process of compressing those im-
ages. The Bayesian framework thus allows efficient indexing over distributed networks
such as the Internet.
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