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Abstract

Current systems for content filtering, browsing, and
retrieval rely on low-level image descriptors which are
unintuitive for most users. In this paper, we pro-
pose an alternative framework that exploits the struc-
tured nature of most content sources to achieve seman-
tic content characterization, and lead to much more
meaningful user interaction. Computationally, this
framework is based on the principles of Bayesian infer-
ence and can be implemented efficiently with Bayesian
networks. As an illustration of its potential we apply
it to the domain of movie databases.

1 Introduction

Given the massive amounts of imagery characteris-
tic of modern multimedia applications, there has re-
cently been a growing interest in the formulation of
sophisticated algorithms for browsing, filtering, and
retrieving content from image and video databases.
Unfortunately, the majority of current content char-
acterization frameworks rely on very low-level image
descriptions (e.g. image color and texture), which
limit their capability to support meaningful interac-
tion with users that are not experts in the inner work-
ings of the resulting systems.

The ability to infer semantic descriptions from im-
ages has, on the other hand, proven to be an elusive
goal to attain. While significant progress has occurred,
over the last decades, in the areas of segmentation,
object recognition, and 3D scene understanding, it is
relatively clear that approaches based on these prin-
ciples will have limited success for the problems of
information filtering, retrieval, classification, or sum-
marization. The traditional approach of building a
model of the world and/or imaging process, mapping
the image observations into that model, and finally
using it to infer the desired world or scene attributes
is simply too complex for these problems, where there
is no control over the scene or imaging set ups, and no
model is generic enough to account for all the possible
scene variability.

In this paper, we investigate an alternative path to-

wards the semantic characterization of visual content
where, instead of trying to interpret all the visual in-
formation, we use this information only as means to
disambiguate conflicting scene interpretations. The
fundamental assumption is that the process of con-
tent creation is not random but, instead, obeys a se-
ries of well established codes and conventions. These
codes in turn impose a significant amount of structure
on the content itself, originating characteristic visual
patterns whose detection is sufficient to disambiguate
the various possible semantic interpretations.

This leads us to formulate the problem of content
characterization as one of sensor fusion, consisting of
the design of 1) a set of sensors tuned to the relevant
patterns, and 2) an architecture for the integration of
all the sensory data and inference of the desired se-
mantic attributes. Computationally, we pose sensor
fusion as a problem of Bayesian inference and intro-
duce a Bayesian framework, based on belief propaga-
tion with Bayesian networks, for content characteriza-
tion. As an illustration of the potential of this frame-
work, we apply it to the characterization of movies, a
generic domain that exhibits a significant amount of
structure.

2 Content structure

The fundamental assumption underlying our frame-
work is that the bulk of the the content that one would
care to store in, or retrieve from, video databases ex-
hibits a significant amount of structure, that can be
exploited for content characterization.

2.1 Natural modes

The assumption of structured content is an in-
stantiation of the more general principles of natural
modes [1, 4], and non-accidental properties [5]. The
basic idea is that for a perceiver to develop the inferen-
tial leverage necessary to disambiguate among several
conflicting configurations of the world, the world must
behave regularly. In particular, it must evolve towards
a discrete sampling along the dimensions that are im-
portant for the interaction of the diverse organisms
with their environment, leading to the realization of



emergent [1] or modal properties [4] that allow per-
ceivers to make sense of it.

These principles are illustrated in [1] with examples
from the biological world, where this clustering is due
to two fundamental forces: physical constraints (e.g.
it is physically impossible to build a flying elephant),
and the pressures of evolution (e.g. if two organisms
are only marginally different, and that difference is
along a direction that is important to their survival,
one will be fitter than the other and eliminate it).

2.2 Content production codes

Like biological processes, content production is sub-
ject to two fundamental forces: constraints in form
and function, and evolutionary pressures. The con-
straints in form and function are imposed by physical
limitations of the medium, limitations on the amount
of cognitive resources that content consumers will de-
vote to this task, and limitations on the amount of
resources available for the content production itself.
Evolutionary pressures are a consequence of the eco-
nomics of content production.

It is well known that content consumption is mostly
an informal activity, usually performed in parallel with
other tasks that require a share of the consumer’s cog-
nitive resources (e.g. people customarily watch the
news over breakfast, listen to the radio while driving,
or watch movies while talking on the phone) [8]. In
result, the message must be laid out in a way that
minimizes the effort required for decoding it. Further-
more, because there is typically a limited amount of
resources available for content production, it is impor-
tant to standardize this process, so that the efficiency
of the production is maximized.

Thus, while there are clear incentives for innova-
tion, content production evolves by building on pre-
viously developed formulas that have sustained the
testing of both time and the market. In result, sophis-
ticated content production codes or languages have
evolved over time, becoming second nature to most of
us. These languages are particularly evident in do-
mains such as information delivery, where newscast
present an impressive uniformity of structure across
media, geographical locations, and even countries.
Their scope is, however, much broader than these re-
stricted domains and, even though not always obvious
to the unatentive eye, they command the production
of virtually all forms of content targeted to mass con-
sumption. We next analyze in more detail the domain
of film.

2.3 Structure in movies

It is well known in film theory that the stylistic el-
ements of a movie are closely related to the message

conveyed in its story. Historically, these stylistic ele-
ments have been grouped into two major categories:
montage and mise-en-scene [7]. While montage refers
to the aspects of film editing, mise-en-scene consists
of the elements used in the composition of each shot:
type of set, placement of the actors on the scene, light-
ing, camera angles, etc.

From the content characterization perspective, the
important point is that while both elements of mon-
tage and mise-en-scene can be used to manipulate the
emotions of the audience (this manipulation is, after
all, the ultimate goal of the director), there are some
very well established codes or rules to achieve this. For
example, a director trying to put forth a text deeply
rooted in the construction of character (e.g. a drama
or a romance) will necessarily have to rely on a fair
amount of facial close-ups, as close-ups are the most
powerful tool for displaying emotion!, an essential re-
quirement to establish a strong bond between the au-
dience and the characters in the story.

If, on the other hand, the same director is trying to
put forth a text of the action or suspense genres, the
elements of mise-en-scene become less relevant than
the rhythmic patterns of montage. In action or sus-
pense scenes it is imperative to rely on fast cutting,
and manipulation of the cutting rate is the tool of
choice for keeping the audience “at the edge of their
seats”. Directors who exhibit supreme mastery in the
manipulation of the editing patterns are even referred
to as montage directors®.

Obviously, the structure due to the stylistic con-
ventions is complemented by that due to the, more
generic, production codes discussed above. For ex-
ample, most Hollywood productions rely on a fun-
damental plot line which consists of 1) establishing
main characters, 2) setting their goals, 3) introduc-
ing evil forces that pose a barrier to these goals, and
4) the “great finale” where good forces overcome evil
forces [2]. Typically, these steps even occur at more or
less standardized time intervals, allowing the attentive
viewer to predict what will happen next.

There is, therefore, plenty of structure in most con-
tent to believe that it is possible for a machine to make
semantic inferences about it, based on the analysis of
the visual patterns and knowledge about the codes
that determine its composition. We next introduce a
computational framework to achieve that.

IThe importance of close-ups is best summarized in the
quote from the great Charles Chaplin: “Tragedy is a close-up,
comedy a long shot”.

2The best known example in this class is Alfred Hitchcock,
who relied intensively on editing to create suspense in movies
like “Psycho” or “Birds”.



3 A Bayesian framework for semantic
characterization

Our framework relies on the the principles of
Bayesian inference through belief propagation. Com-
putationally, this translates into the use of a Bayesian
Network as the core of our content characterization
architecture.
3.1 Bayesian networks

Given a set of random variables X, a fundamental
question in probabilistic inference is how to infer the
impact on a set of variables of interest U C X of the
observation of another (non-overlapping) set of vari-
ables O C X in the model, i.e. the ability to compute
P(U|O = o). While this computation is, theoretically,
easy to perform using

_ >uP(U,HO =0)
B ZOZHP(UaHaO)’

where H = X — {U U O}, and the summations are
over all the possible configurations of the sets H and
O; in practice, the amount of computation involved
in the evaluation of these summations makes the so-
lution infeasible even for problems of relatively small
size. A better alternative is to explore the relation-
ships between the variables in the model to achieve
more efficient inference procedures. This is the essence
of Bayesian networks.

A Bayesian network for a set of variables X =
{X1,...,X,} is a probabilistic model composed by 1)
a graph G, and 2) a set of local probabilistic relations
P. The graph consists of a set of nodes, each node
corresponding to one of the variables in X, and a set
of links (or edges), each link expressing a probabilis-
tic relationship between the variables in the nodes it
connects. Together, the graph G and the set of prob-
abilities P define the joint probability distribution for
X. Denoting the set of parents of the node associated
with X; by pa;, this joint distribution is

P(U|O = o) 1)

P(X) = [[ P(Xilpay). @

The ability to decompose the joint density into a
product of local conditional probabilities allows the
construction of efficient algorithms where inference
takes place by propagation of beliefs across the nodes
in the network [9, 10].

3.2 Bayesian content characterization

Figure 1 presents a Bayesian network that naturally
encodes the content characterization problem. The set
of nodes X is the union of two disjoint subsets: a set
S of sensors containing all the leafs (nodes that do

not have any children) of the graph, and a set A of
semantic content attributes containing the remaining
variables. The set of attributes is organized hierar-
chically, variables in a given layer representing higher
level semantic attributes than those in the layers be-
low.
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Figure 1: A generic Bayesian architecture for content char-
acterization. Even though only three layers of variables are
represented in the figure, the network could contain as many as
desired.

The visual sensors are tuned to certain visual fea-
tures deemed relevant for the semantic content char-
acterization. The network infers the presence/absence
of the semantic attributes given these sensor measure-
ments, i.e. P(a|S), where a C A.

3.3 Semantic modeling

One of the strengths of the Bayesian framework is
that the sensors in Figure 1 are not required to do a
perfect job of identifying the desired image features.
Reasons for this are the fact that 1) the model can
account for the sensor precision, and 2) the network
can integrate the sensor information to disambiguate
conflicting hypothesis.

Consider, for example, the task of detecting sky in
a sports database containing pictures of both skiing
and sailing competitions. One way to achieve such
goal would be to rely on a pair of sophisticated water
and sky detectors to discriminate between water and
sky. The underlying strategy is to interpret the images
first and then decide on the characterization according
to this interpretation.

While such strategy could be implemented under
the Bayesian framework, a more efficient alternative
would be to rely on the model of Figure 2. Here, the
network consists of five semantic attributes and two
simple sensors for large white and blue image patches.
In the absence of any measurements, the variables
satling and skiing are independent. However, when-
ever the sensor of blue patches fires up, they do be-
come dependent (or, in the Bayesian network lingo,
d-connected [9]) and, the knowledge of the output of



the sensor of white patches is sufficient to perform the
desired inference.

Figure 2: A simple Bayesian network for the classification of
sports.

This effect is known as the “explaining away” ca-
pability of Bayesian networks [9]. Although there is
no direct connection between the white sensor and
the sailing variable, the observation of white reduces
the likelihood of the sailing hypothesis and this, in
turn, reduces the likelihood of the water hypothesis.
So, if the blue sensor is active, the network will infer
that this is a consequence of the presence of sky, even
though we have not resorted to any sort of sophisti-
cated sensors for image interpretation. Le. the white
sensor explains away the firing of the blue sensor.

This second strategy relies more in modeling the
semantics and the relationships between them, than
in the interpretation of the image itself. In fact, the
image measurements are only used to discriminate be-
tween the different semantic interpretations. This has
two practical advantages. First, a much smaller bur-
den is placed on the sensors which, for example, do
not have to know that “water is usually more tex-
tured than sky”, and are therefore significantly easier
to build. Second, as a side effect of the sky detection
process, we obtain a semantic interpretation of the im-
ages which, in this case, is sufficient to classify them
into one of the two classes in the database.

4 Characterizing movies

In this section we introduce a content characteriza-
tion system, BMoViES®, which exploits the structure
inherent to the domain of film to achieve semantic
characterization of movies.

BMoViES consists of two major modules. The
first [11] relies on a Bayesian model of montage to
segment the movie into its component shots. Each
shot is then analyzed by the second module which in-
fers the semantic content attributes. This module is
an instantiation of the generic Bayesian framework of
Figure 1.

3BMOoViES stands for Bayesian Modeling of Video Editing
and Structure.

4.1 The attributes

In the current implementation of BMoViES, the
system recognizes four semantic shot attributes: the
presence/absence of a close-up, the presence/absence
of a crowd in the scene, the type of set (nature vs. ur-
ban), and if the shot contains a significant amount of
action or not. These attributes can be seen as a min-
imalist characterization of mise-en-scene which, nev-
ertheless, provides a basis for categorizing the video
into relevant semantic categories such as “action vs
dialog”, “city vs country side”, or combinations of
these. Also, as the discussed in section 2.3, it cap-
tures the aspects of mise-en-scene that are essential
for the inference of higher level semantic attributes
such as suspense or drama.

4.2 The sensors

Currently, the sensor set consists of three sensors
measuring the following properties: shot activity, tex-
ture energy, and amount of skin tones in the scene.

The shot activity [11] is computed by measuring the
energy left after the frames in the shot are registered
and subtracted. The registration is based on an affine
transformation, making the measurements immune to
most of the variation due to camera motion.

The texture energy sensor performs a 3-octave
wavelet decomposition of each image, and measures
the ratio of the total energy in the high-pass hori-
zontal and vertical bands to the total energy in all
the bands other than the DC. It produces a low out-
put whenever there is a significant amount of vertical
or horizontal structure in the images (as is the case
in most man-made environments) and a high output
when this is not the case (as is typically the case in
natural settings).

Finally, the skin tones sensor identifies the regions
of each image which contain colors consistent with hu-
man skin, measures the area of each of these regions
and computes the entropy of the resulting vector (re-
garding each component as a probability). This sensor
outputs a low value when there is a single region of skin
and high values otherwise. The situation of complete
absence of skin tones is also detected, the output of
the sensor being set to one.

Sensor measurements are integrated across each
shot by averaging the individual frame outputs. In
order to quantize the sensor outputs, their range was
thresholded into three equally sized bins. In this way,
each sensor provides a ternary output corresponding
to the states no, yes, or maybe.

4.3 The network

The Bayesian network implemented in BMoViES is
presented in Figure 3. The parameters of this model



can either be learned from training data [3] or set
according to expert knowledge. In the current im-
plementation, we followed the latter approach. Both
the structure and the probabilities in the model were
hand-coded, using common-sense (e.g. the output of
the skin tones sensor will be yes with probability 0.9
for a scene of a crowd in a man-made set). No effort
was made to optimize the overall performance of the
system by tweaking the network probabilities.

Motion
Energy

Figure 3: Bayesian network for content characterization.

To see how explaining away occurs in BMoViES,
consider the observation of a significant amount of skin
tones. Such observation can be synonymous with both
a close-up or a scene of a crowd. If a crowd is present,
though, there will also be a significant response by the
texture sensor, while the opposite will happen if the
shot consists of a close-up. Hence, the texture sensor
“explains away” the skin tones observation, and rules
out the close-up hypothesis, despite the fact that it is
not a crowd detector.

5 Applications and results

Due to the fact that Bayesian networks do not have
inputs and outputs, but only hidden and observed
variables, a node which acts as an input for a given
task can be used as an output for another. In result,
the Bayesian framework works in both directions (i.e.
given visual features, infer attributes that best clas-
sify them; or given attribute specifications, retrieve
the data that best satisfies them), providing a unified
solution to the problems of information filtering and
retrieval, and allowing the construction of very flexible
retrieval systems.

5.1 Classification

To evaluate the accuracy of the semantic classifica-
tion of BMoViES, we applied the system to a database
of about 100 video clips (total of about 3000 frames)
from the movie “Circle of friends”. The database is a
subsampling of approximately 25 minutes of film, and
contains a wide variety of scenes and high variation of
imaging variables such as lighting, camera viewpoints,
etc. To establish ground truth, the video clips were
also manually classified.

Attribute | Action | Close-up | Crowd | Set
% Accuracy | 90.7 88.2 85.5 | 86.8

Table 1: Classification accuracy of BMoViES.

Table 1 presents the classification accuracy
achieved by BMoViES for each of the semantic at-
tributes in the model. Overall the system achieved an
accuracy of 88.7%. Given the simplicity of the sensors
this is a very satisfying result. Some of the classifica-
tion errors, which illustrate the difficulty of the task,
are presented in Figure 4.

5.2 Retrieval

As aretrieval system, BMoViES supports two types
of queries. The first is the standard query by example,
where the user provides the system with a video clip
and asks it to “find all the clips that look like this”.
BMOoViES then classifies the example query and re-
trieves from the database the items that belong to the
same category.

The interesting point is that the retrieval criteria,
semantic similarity, is much more meaningful than the
standard visual similarity criteria. In fact, whenever
a user orders the machine to “search for a picture like
this”, the user is with high likelihood referring to pic-
tures that are semantically similar to the query image
(e.g. “pictures which also contain people”) but which
do not necessarily contain identical patterns of color
and texture.

Figure 5 presents an example of retrieval by seman-
tic similarity. The image in the top right is a key-frame
of the clip submitted as a query by the user, and the re-
maining images are key frames of the clips returned by
BMOoViES. Notice that most of the suggestions made
by the system are indeed semantically similar to the
query, but very few are similar in terms of color and
texture patterns.

5.3 Relevance feedback

The second query mode is even more intuitive than
the first and consists of simply specifying to the system
the desired semantic attributes. E.g. “show me all the
action clips shot in a urban set”. One of the problems
with this retrieval paradigm is, however, that for a
system with a large number of attributes it would be
tedious to instantiate all of them whenever a query
is formulated. Furthermore, it is not always the case
that the user knows exactly what he/she is looking for.
A more meaningful search strategy is, therefore, to
rely on relevance feedback [6] mechanisms, where the



Figure 5: Example based retrieval in BMoViES. The top left image is a key frame of the clip submitted to the retrieval system.
The remaining images are keyframes of the best seven matches found by the system.

user interacts with the system in order to accomplish
his/her goals.

These type of incremental queries are very natu-
ral in the Bayesian setting, where the fact that the
user provides more information at each iteration sim-
ply means that some of the attribute nodes change
from the hidden to the observed state. The corre-
sponding nodes of the network are then instantiated,
and beliefs propagated to find out the mostly likely
sensor configurations given those specifications. The
video clips originating these configurations are then
retrieved and presented to the user, which in response
can refine the retrieval attributes.

Figure 6 illustrates the ability of the Bayesian
framework to support meaningful user interaction.
The top row of the figure presents the video clips re-
trieved in a response to a query where the action at-
tribute was instantiated with yes, and the remaining
attributes with don’t care. The system suggests a shot
of ballroom-dancing as the most likely to satisfy the
query, followed by a clip containing some graphics and
a clip of a rugby match.

In this example, the user was not interested in clips
containing a lot of people. Specifying no for the crowd
attribute, lead to the refinement shown in the sec-

ond row of the figure. The ballroom shot is no longer
among the top suggestions, which tend to include at
most one or two people. At this point, the user spec-
ified that he was looking for scenes shot in a natural
set, leading the system to suggest the clips shown in
the third row of the figure. The clips that are most
likely to satisfy the specification contain scenes of peo-
ple running in a forest. Finally, the specification of no
for the close-up attribute, lead to the suggestion of the
bottom row of the figure, where the clips containing
close-ups were replaced for clips where the set becomes
predominant,.
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