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Abstract

This paper aims at addressing the problem of substantial
performance degradation at extremely low computational
cost (e.g. 5M FLOPs on ImageNet classification). We found
that two factors, sparse connectivity and dynamic activa-
tion function, are effective to improve the accuracy. The
former avoids the significant reduction of network width,
while the latter mitigates the detriment of reduction in net-
work depth. Technically, we propose micro-factorized con-
volution, which factorizes a convolution matrix into low
rank matrices, to integrate sparse connectivity into convo-
lution. We also present a new dynamic activation function,
named Dynamic Shift Max, to improve the non-linearity
via maxing out multiple dynamic fusions between an in-
put feature map and its circular channel shift. Building
upon these two new operators, we arrive at a family of
networks, named MicroNet, that achieves significant per-
formance gains over the state of the art in the low FLOP
regime. For instance, under the constraint of 12M FLOPs,
MicroNet achieves 59.4% top-1 accuracy on ImageNet clas-
sification, outperforming MobileNetV3 by 9.6%. Source
code is at https://github.com/liyunsheng13/micronet.

1. Introduction
Recent progress in efficient CNN architectures [16, 13,

31, 12, 47, 28, 34] successfully decreases the computational
cost of ImageNet classification from 3.8G FLOPs (ResNet-
50 [11]) by two orders of magnitude to about 40M FLOPs
(e.g. MobileNet, ShuffleNet), with a reasonable perfor-
mance drop. However, they suffer from a significant perfor-
mance degradation when reducing computational cost fur-
ther. For example, the top-1 accuracy of MobileNetV3 de-
grades substantially from 65.4% to 58.0% and 49.8% when
the computational cost drops from 44M to 21M and 12M
MAdds, respectively. In this paper, we aim at improving
accuracy at the extremely low FLOP regime from 21M to
4M MAdds, which marks the computational cost decrease
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Figure 1. Computational Cost (MAdds) vs. ImageNet Accu-
racy. MicroNet significantly outperforms the state-of-the-art effi-
cient networks at very low FLOPs (from 4M to 21M MAdds).

of another order of magnitude (from 40M).
The problem of dealing with extremely low computa-

tional cost (4M–21M FLOPs) is very challenging, consid-
ering that 2.7M MAdds are consumed by a thin stem layer
that contains a single 3 × 3 convolution with 3 input chan-
nels and 8 output channels over a 112×112 grid (stride=2).
The remaining resources are too limited to design the con-
volution layers and 1,000 class classifier required for effec-
tive classification. As shown in Figure 1, a common strat-
egy to reduce the width or depth of existing efficient CNNs
(e.g. MobileNet [13, 31, 12] and ShuffleNet [47, 28]) re-
sults in a severe performance degradation. Note that we fo-
cus on new operator design while fixing the input resolution
to 224×224 even for the budget of 4M FLOPs.

In this paper, we handle the extremely low FLOPs
from two perspectives: node connectivity and non-linearity,
which are related to the network width and depth. First,
we show that lowering node connectivity to enlarge net-
work width provides a good trade-off for a given compu-
tational budget. Second, we rely on improved layer non-
linearities to compensate for reduced network depth, which
determines the non-linearity of the network. These two fac-
tors motivate the design of more efficient convolution and
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activation functions.
Regarding convolutions, we propose a Micro-Factorized

convolution (MF-Conv) to factorize a pointwise convolution
into two group convolution layers, where the group number
G adapts to the number of channels C as:

G =
√
C/R,

where R is the channel reduction ratio in between. As an-
alyzed in Section 3.1, this equation achieves a good trade-
off between the number of channels and node connectivity
for a given computational cost. Mathematically, the point-
wise convolution matrix is approximated by a block matrix
(G×G blocks), whose blocks have rank-1. This guarantees
minimal path redundancy (with only one path between any
input-output pair) and maximum input coverage (per out-
put channel), enabling more channels implementable by the
network for a given computational budget.

With regards to non-linearities, we propose a new activa-
tion function, named Dynamic Shift-Max (DY-Shift-Max),
which non-linearly fuses channels with dynamic coeffi-
cients. In particular, the new activation forces the network
to learn to fuse different circular channel shifts of the in-
put feature maps, using coefficients that adapt to the input,
and to select the best among these fusions. This is shown to
enhance the representation power of the group factorization
with little computational cost.

Based upon the two new operators (MF-Conv and DY-
Shift-Max), we obtain a family of models, called Mi-
croNets. Figure 1 summarizes the ImageNet performance,
where MicroNets outperform the state-of-the-art by a large
margin. In particular, our MicroNet models of 12M and
21M FLOPs outperform MobileNetV3 by 9.6% and 4.5%
in terms of top-1 accuracy, respectively. For the extremely
challenging regime of 6M FLOPs, MicroNet achieves
51.4% top-1 accuracy, outperforming by 1.6% over Mo-
bileNetV3, which is twice as complex (12M FLOPs).

Even though MicroNet is manually designed for the-
oretical FLOPs, it outperforms MobileNetV3 (which is
searched over inference latency) with fast inference on
edge devices. Furthermore, our MicroNet surpasses Mo-
bileNetV3 on object detection and keypoint detection, but
uses substantially less computational cost.

2. Related Work
Efficient CNNs: MobileNets [13, 31, 12] decompose k×k
convolution into a depthwise and a pointwise convolution.
ShuffleNets [47, 28] further simplify pointwise convolution
by group convolution and channel shuffle. [35] uses Mix-
Conv to mix up multiple kernel sizes in a convolution. [38]
uses butterfly transform to approximate pointwise convolu-
tion. EfficientNet [34, 36] proposes a compound scaling
method to scale depth/width/resolution uniformly. Adder-
Net [2] trades massive multiplications for cheaper additions.

GhostNet [9] generates more feature maps from cheap lin-
ear transformations. Sandglass [48] alleviates information
loss by flipping the structure of inverted residual block.
[45, 1] train one network to support multiple sub-networks.
Dynamic Neural Networks: Dynamic networks improve
the representation capability by adapting architectures or
parameters to the input. [22, 26, 39, 41] perform dynamic
routing within a super-network. [39] and [41] use reinforce-
ment learning to learn a controller for skipping part of an ex-
isting model. MSDNet [15] allows early-exit for easy sam-
ples based on the prediction confidence. [46] searches for
the optimal MSDNet. [21] learns dynamic routing across
scales for semantic segmentation. [44] adapts image reso-
lution to achieve efficient inference. Another line of work
keeps the architectures fixed, but adapts parameters. Hy-
perNet [8] uses another network to generate parameters for
the main network. SENet [14] adapt weights over chan-
nels based on squeezing global context. SKNet [20] adapts
attention over kernels with different sizes. Dynamic convo-
lution [43, 4] aggregates multiple convolution kernels based
on their attention. Dynamic ReLU [5] adapts slopes and in-
tercepts of two linear functions in ReLU [29, 17]. [27] uses
grouped fully connected layer to generate convolutional
weights directly. [3] presents spatial-aware dynamic con-
volution. [32] proposes dynamic group convolution. [37]
applies dynamic convolution on instance segmentation.

3. Micro-Factorized Convolution
The goal of Micro-Factorized convolution is to optimize

the trade-off between the number of channels and node con-
nectivity. Here, the connectivity E of a layer is defined as
the number of paths per output node, where a path connects
an input node and an output node.

3.1. Micro-Factorized Pointwise Convolution

We propose the use of group-adaptive convolution to fac-
torize a pointwise convolution. For conciseness, we assume
the convolution kernel W has the same number of input and
output channels (Cin = Cout = C) and ignore bias terms.
The kernel matrix W is factorized into two group-adaptive
convolutions, where the number of groups G depends on
the number of channels C, according to

W = PΦQT , (1)

where W is a C×C matrix, Q is a C× C
R matrix that com-

presses the number of channels by a factor of R, and P is
a C × C

R matrix that expands the number of channels back
to C. P and Q are diagonal block matrices with G blocks,
each implementing the convolution of a group of channels.
Φ is a C

R ×
C
R permutation matrix, shuffling channels sim-

ilarly to [47]. The computational complexity of the factor-
ized layer is O = 2C2

RG . Figure 2-Left shows an example of
the factorization, for C = 18, R = 2 and G = 3.



Figure 2. Micro-Factorized pointwise and depthwise convolutions. Left: factorizing a pointwise convolution into two group-adaptive
convolutions, where the group number G =

√
C/R =

√
18/2 = 3. The resulting matrix W can be divided into G×G blocks, of which

each block has rank 1. Middle: factorizing a k × k depthwise convolution into a k × 1 and a 1 × k depthwise convolutions. Right: lite
combination of Micro-Factorized pointwise and depthwise convolutions.

The C
R channels of matrix Φ are denoted hidden chan-

nels. The grouping structure limits the number of these
channels that are affected by (affect) each input (output)
of the layer. Specifically, each hidden channel connects to
C
G input channels and each output channel connects to C

RG

hidden channels. The number E = C2

RG2 of input-output
connections per output channel denotes the connectivity E
of the layer. When the computational budget O = 2C2

RG and
the compression factor R are fixed, the number of channels
C and connectivity E change withG in opposite directions,

C =

√
ORG
2

, E =
O
2G

. (2)

This is illustrated in Figure 3. As the number of groups
G increases, C increases but E decreases. The two curves
intersect (C = E) when

G =
√
C/R, (3)

in which case each output channel connects to all input
channels exactly once (E = C). This guarantees that no
redundant paths exist between any input-output pair (mini-
mum path redundancy) while guaranteeing the existence of
a path between each pair (maximum input coverage). Eq. 3
is a defining property of micro-factorized pointwise convo-
lution. It implies that the number of groups G is not fixed,
but defined by the number of channels C and the compres-
sion factor R, according to a square root law that optimally
balances the number of channels C and input/output con-
nectivity. Mathematically, the resulting convolution matrix
W is divided into G×G rank-1 blocks, as shown in Figure
2-Left.

3.2. Micro-Factorized Depthwise Convolution

Figure 2-Middle shows how micro-factorization can be
applied to a k × k depthwise convolution. The convolution
kernel is factorized into a k × 1 and a 1 × k kernel. This
follows Eq. 1, with per channel k × k kernel matrix W ,
k × 1 vector P , 1 × k vector QT and Φ a scalar of value
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Figure 3. Number of Channels C vs. Connectivity E over num-
ber of groups G. We assume that the computational cost O and
the reduction ratio R are fixed. Best viewed in color.

1. This low rank approximation reduces the computational
complexity from O(k2C) to O(kC).
Combining Micro-Factorized Pointwise and Depthwise
Convolutions: Micro-Factorized pointwise and depthwise
convolutions can be combined in two different ways: (a)
regular combination, and (b) lite combination. The former
simply concatenates the two convolutions. The lite com-
bination, shown in Figure 2-Right, uses Micro-Factorized
depthwise convolutions to expand the number of channels,
by applying multiple spatial filters per channel. It then ap-
plies one group-adaptive convolution to fuse and squeeze
the number of channels. Compared to its regular coun-
terpart, it spends more resources on learning spatial filters
(depthwise) by saving channel fusion (pointwise) compu-
tations, which is empirically validated to be more effective
for implementation of lower network layers.

4. Dynamic Shift-Max

So far, we have discussed the design of efficient static
networks, which do not change their weights according to
the input. We now introduce dynamic Shift-Max (DY-Shift-
Max), a new dynamic non-linearity that strengthens con-
nections between the groups created by micro-factorization.
This is complementary to Micro-Factorized pointwise con-



M0 M1 M2 M3
Output Block k C C

R
Block k C C

R
Block k C C

R
Block k C C

R

112×112 stem 3 4 2 stem 3 6 3 stem 3 8 4 stem 3 12 4
56×56 Micro-A 3 16 8 Micro-A 3 24 8 Micro-A 3 32 12 Micro-A 3 48 16

Micro-A 3 32 12 Micro-A 3 32 16 Micro-A 3 48 16 Micro-A 3 64 24
28×28 Micro-B 3 144 24 Micro-B 3 144 24

Micro-B 5 64 16 Micro-B 5 96 16 Micro-C 5 192 32 Micro-C 3 192 32
Micro-C 5 128 32 Micro-C 5 192 32 Micro-C 5 192 32 Micro-C 5 192 32

14×14 Micro-C 5 384 64 Micro-C 5 384 64
Micro-C 5 480 80
Micro-C 5 480 80

Micro-C 5 256 64 Micro-C 5 384 64 Micro-C 5 576 96 Micro-C 5 720 120
7×7 Micro-C 3 384 96 Micro-C 3 576 96 Micro-C 3 768 128 Micro-C 3 720 120

Micro-C 3 864 144
1×1 avg pool→ 2fc→ softmax

4M MAdds, 1.0M Param 6M MAdds, 1.8M Param 12M MAdds, 2.4M Param 21M MAdds, 2.6M Param

Table 1. MicroNet Architectures. “stem” refers to the stem layer. “Micro-A”, “Micro-B”, and “Micro-C” refers to three Micro-Blocks
(see section 5.1 and Figure 4 for more details). k is the kernel size, C is the number of output channels, R is the channel reduction ratio in
Micro-Factorized pointwise convolution. Note that for “Micro-A” (see Figure 4a), C is the number of output channels in Micro-Factorized
depthwise convolution, C

R
is the number of output channels for the block.

volution, which focuses on connections within a group.
Let x = {xi} (i = 1, . . . , C) denote an input vector (or

tensor) with C channels that are divided intoG groups of C
G

channels each. The j-group circular shift (shifting j CG chan-
nels) of x is the vector x̂j such that x̂ji = x(i+j C

G ) mod C .
Dynamic Shift-Max outputs the maximum of K fusions,
each of which combines multiple (J) group shifts as:

yi = max
1≤k≤K

{
J−1∑
j=0

aki,j(x)x(i+j C
G ) mod C}, (4)

where aki,j(x) is a dynamic weight, i.e. a weight that de-
pends on the input x. It is implemented as a hyper-function
(withCJK output dimension) that consists of a sequence of
average pooling, two fully connected layers, and a sigmoid
layer, as in Squeeze-and-Excitation [16].

In this way, DY-Shift-Max implements two forms of
non-linearity: it (a) outputs the maximum of K fusions of
J groups, and (b) weighs each fusion by a dynamic param-
eter aki,j(x). The first non-linearity is complementary to
Micro-Factorized pointwise convolution, which focuses on
connectivity within each group, strengthening the connec-
tions between groups. The second enables the network to
tailor this strengthening to the input x. The two operations
increase the representation power of the network, compen-
sating for the loss inherent to the reduced number of layers.

DY-Shift-Max synthesizes CJK weights aki,j(x) from
input x. Its computational complexity is a sum of (a)
average pooling O(HWC), (b) generation of the aki,j(x)
weights O(C2JK), and (c) application of dynamic Shift-
Max per channel and spatial location O(HWCJK). This
leads to a light-weight model when J and K are small.
Empirically, a good trade-off between classification perfor-
mance and complexity is achieved when J = 2 and K = 2.

Micro-Block-CMicro-Block-A Micro-Block-B

Dynamic Shift-Max

Micro-Factorized 
Depthwise Convolution

Micro-Factorized 
Pointwise Convolution

(a) (b) (c)

Figure 4. Diagram of three Micro-Blocks. (a) Micro-Block-A
that uses the lite combination of Micro-Factorized pointwise and
depthwise convolutions (see Figure 2-Right). (b) Micro-Block-
B that connects Micro-Block-A and Micro-Block-C. (c) Micro-
Block-C that uses the regular combination of Micro-Factorized
pointwise and depthwise convolutions. See Table 1 for their usage.

5. MicroNet
Below we describe in detail the design of MicroNet, us-

ing Micro-Factorized convolution and dynamic Shift-Max.

5.1. Micro-Blocks

MicroNet models consist of three Micro-Blocks of Fig-
ure 4, which combine Micro-Factorized pointwise and
depthwise convolutions in different ways. All of the Micro-
Blocks use the dynamic Shift-Max activation function.
Micro-Block-A: The Micro-Block-A of Figure 4a, uses the
lite combination of Micro-Factorized pointwise and depth-
wise convolutions of Figure 2-Right. It expands the number
of channels with Micro-Factorized depthwise convolution,
and compresses them with a group-adaptive convolution. It
is best suited to implement lower network layers of higher
resolution (e.g. 112× 112 or 56× 56).
Micro-Block-B: The Micro-Block-B of Figure 4b is used
to connect Micro-Block-A and Micro-Block-C. Different
from Micro-Block-A, it uses a full Micro-Factorized point-



wise convolution, which includes two group-adaptive con-
volutions. Hence, it both compresses and expands the num-
ber of channels. All MicroNet models have a single Micro-
Block-B (see Table 1).
Micro-Block-C: The Micro-Block-C of Figure 4c imple-
ments the regular combination of Micro-Factorized depth-
wise and pointwise convolutions. It is best suited for the
higher network layers (see Table 1) since it assigns more
computation to channel fusion (pointwise) than the lite
combination. The skip connection is used when the input
and output have the same dimension.

Each micro-block has three hyper-parameters: kernel
size k, number of output channels C, compression factor
R of the bottleneck of Micro-Factorized pointwise convo-
lution. Note that the number of groups in the two group-
adaptive convolutions is determined by Eq. 3.

5.2. Architectures

All models are manually designed to optimize for
FLOPs, which is a theoretical and device independent met-
ric. We hope this can be leveraged by new hardware design
and optimization for edge devices. We aware that FLOPs is
not equivalent to inference latency at existing hardware and
will show in experiment that MicroNet also improves accu-
racy and latency. We propose four models (M0, M1, M2,
M3) of different computational cost (4M, 6M, 12M, 21M
MAdds) based on the Micro-Blocks above. Table 1 presents
their full specification. These networks follow the same pat-
tern from low to high layers: stem layer → Micro-Block-
A → Micro-Block-B → Micro-Block-C. All models are
handcrafted, without network architecture search (NAS).
The network hyper-parameters are selected based on sim-
ple rules: R is fixed (4 for M0, 6 for MicroNet-M1,M2,M3),
C increases from low to high levels, depth increases from
M0 to M3. For the deepest model (M3), we only use one
dynamic Shift-Max layer per block after the depthwise con-
volution. The stem layer includes a 3 × 1 convolution and
a 1× 3 group convolution, and is followed by a ReLU. The
second convolution expands the number of channels.

5.3. Relation to Prior Work

MicroNet has various connections to the recent deep
learning literature. It is related to the popular MobileNet
[13, 31, 12] and ShuffleNet [47, 28] models. It shares the
inverted bottleneck structure with MobileNet and the use of
group convolution with ShuffleNet. In contrast, MicroNet
differs from these models in both its convolutions and ac-
tivation functions. First, it factorizes pointwise convolu-
tions into group-adaptive convolutions, with the number of
groupsG =

√
C/R that is channel adaptive and guarantees

minimum path redundancy. Second, it factorizes depthwise
convolution. Third, it relies on a novel activation function,
dynamic Shift-Max, to strengthen group connectivity in a

Micro-Fac Conv Shift-Max
DW PW Lite static dynamic Param MAdds Top-1

Mobile 1.3M 10.6M 44.9
X 1.7M 10.6M 46.4
X X 1.7M 10.6M 50.0

Micro X X X 1.8M 10.5M 51.7
X X X X 1.9M 11.8M 54.4
X X X X 2.4M 12.4M 58.5

Table 2. The path from MobileNet to MicroNet evaluated on Im-
ageNet classification. Here, we modify MobileNet-V2 such that it
has similar FLOPs (about 10.6M) to three Micro-Factorized con-
volution options: depthwise (DW), pointwise (PW), and lite com-
bination at low levels (Lite). We also compare dynamic Shift-Max
with its static counterpart (static ak

i,j in Eq. 4).

non-linear and input dependent manner. Dynamic Shift-
Max itself generalizes the recently proposed dynamic ReLU
[5] (i.e. dynamic ReLU is a special case where J = 1 and
each channel is activated alone).

6. Experiments
We evaluate MicroNet on three tasks: (a) image classifi-

cation, (b) object detection, and (c) keypoint detection. In
this section, the baseline MobileNetV3-Small in [12] is de-
noted as MobileNetV3, for conciseness.

6.1. ImageNet Classification

We start by evaluating the four MicroNet models (M0–
M3) on the task of ImageNet [6] classification. ImageNet
has 1000 classes, including 1,281,167 images for training
and 50,000 images for validation.

All models are trained using an SGD optimizer with 0.9
momentum. The image resolution is 224×224. Data aug-
mentation of standard random cropping and flipping is used.
We use a mini-batch size of 512, and a learning rate of 0.02.
Each model is trained for 600 epochs with cosine learning
rate decay. The weight decay is 3e-5 and dropout rate is
0.05 for smaller MicroNets (M0, M1, M2). For the largest
model M3, the weight decay is 4e-5 and dropout rate is 0.1.

6.1.1 Ablation Studies

Several ablations were performed using MicroNet-M2. All
models are trained for 300 epochs. The default hyper pa-
rameters of DY-Shift-Max were set as J=2, K=2.

From MobileNet to MicroNet: Table 2 shows the path
from MobileNet to MicroNet. Both share the inverted bot-
tleneck structure. Here, we modify MobileNetV2 (with-
out SE [14]) such that it has complexity (10.6M MAdds)
similar to the static Micro-Factorized convolution variants
of row 2–4. The introduction of Micro-Factorized depth-
wise convolutions improves performance by 1.5%. Micro-
Factorized pointwise convolutions adds another 3.6% and
the lite combination at lower layers adds a final gain of



G Param MAdds Top-1

1 1.3M 10.6M 48.8
2 1.5M 10.5M 50.2
4 1.7M 10.6M 50.7
8 1.7M 10.6M 50.8

G =
√
C/R 1.8M 10.5M 51.7

(a) Fixed group number G.

λ = G√
C/R

Param MAdds Top-1

0.25 1.5M 10.5M 50.2
0.5 1.7M 10.6M 51.6

V 1.0 1.8M 10.5M 51.7
2.0 2.1M 10.5M 50.6
4.0 2.2M 10.7M 47.6

(b) Adaptive group number G.

Levels
low high Param MAdds Top-1

1.7M 10.6M 50.0
V X 1.8M 10.5M 51.7

X X 2.0M 10.6M 51.2

(c) Lite combination at different levels

Table 3. Ablations of Micro-Factorized convolution on ImageNet classification. V indicates the default choice for the rest of the paper.

1.7%. Altogether the three factorizations boost the top-1
accuracy of the static network from 44.9% to 51.7%. The
addition of static and dynamic Shift-Max further increases
this gain by 2.7% and 6.8% respectively, for a small in-
crease in computation. This demonstrates that both Micro-
Factorized Convolutions and Dynamic Shift-Max are effec-
tive and complementary mechanisms for the implementa-
tion of networks with extremely low computational cost.

Number of Groups G: Micro-Factorized pointwise con-
volution includes two group-adaptive convolutions, with
a number of groups equal to the integer closest to G =√
C/R. Table 3a compares this to networks of simi-

lar structure and FLOPs (about 10.5M MAdds), but us-
ing a fixed group cardinality. Group-adaptive convolution
achieves higher accuracy, demonstrating the importance of
its optimal trade-off between input/output connectivity and
the number of channels.

This is further confirmed by Table 3b, which compares
different options for the adaptive number of groups. This
is controlled by a multiplier λ such that G = λ

√
C/R.

Larger λ corresponds to more channels but less input/output
connectivity (see Figure 3). The optimal balance is achieved
when λ is between 0.5 and 1. Top-1 accuracy drops when
λ either increases (more channels but less connectivity) or
decreases (fewer channels but more connectivity) from this
optimal point. The value λ = 1 is used in the remainder
of the paper. Note that all models in Table 3b have similar
computational cost (about 10.5M MAdds).

Lite combination: Table 3c compares using the lite com-
bination of Micro-Factorized pointwise and depthwise con-
volutions (Figure 2-Right) at different layers. The lite com-
bination is more effective for lower layers. Compared to the
regular combination, it saves computations from channel fu-
sion (pointwise) to allow more spatial filters (depthwise).

Activation functions: Dynamic Shift-Max is compared to
three previous activation functions: ReLU [29], SE+ReLU
[14], and dynamic ReLU [5]. Table 4 shows that dynamic
Shift-Max outperforms all three by a clear margin (at least
2.5%). Note that dynamic ReLU is the special case of dy-
namic Shift-Max with J = 1 (see Eq. 4).

Location of DY-Shift-Max: Table 5 shows the top-1 ac-
curacy when dynamic Shift-Max is implemented in differ-

Activation Param MAdds Top-1 Top-5
ReLU[29] 1.8M 10.5M 51.7 74.3
SE[14]+ReLU 2.1M 10.9M 54.4 76.8
Dynamic ReLU [5] 2.4M 11.8M 56.0 78.0
Dynamic Shift-Max 2.4M 12.4M 58.5 80.1

Table 4. Dynamic Shift-Max vs. other activation functions on
ImageNet classification. MicroNet-M2 is used.

A1 A2 A3 Param MAdds Top-1 Top-5
ReLU – – – 1.8M 10.5M 51.7 74.3

X – – 2.1M 11.3M 55.9 77.9
– X – 2.0M 10.6M 53.3 76.0

Dynamic – – X 2.1M 11.2M 54.8 77.2
Shift-Max X X – 2.2M 11.5M 56.6 78.3

X – X 2.3M 12.2M 57.9 79.6
– X X 2.2M 11.4M 55.5 77.8
X X X 2.4M 12.4M 58.5 80.1

Table 5. Dynamic Shift-Max at different layers evaluated on Im-
ageNet. MicroNet-M2 is used. A1, A2, A3 indicate three activa-
tion layers sequentially in Micro-Block-B and Micro-Block-C (see
Figure 4). Micro-Block-A only includes A1 and A2.

J K Param MAdds Top-1 Top-5
1 1 2.1M 10.9M 54.4 76.8
2 1 2.2M 11.8M 55.9 78.2

V 2 2 2.4M 12.4M 58.5 80.1
2 3 2.6M 13.8M 58.1 79.7
1 2 2.2M 11.2M 55.5 77.6

V 2 2 2.4M 12.4M 58.5 80.1
3 2 2.6M 14.2M 59.0 80.3
3 3 2.8M 15.3M 59.1 80.3

Table 6. Ablations of two hyper parameters in dynamic Shift-
Max (J , K in Eq. 4) on ImageNet classification. V indicates the
default choice for the rest of the paper.

ent combinations of the three layers of the micro-blocks of
Figure 4. When used in a single layer, dynamic Shift-Max
should be placed after the depthwise convolution. This im-
proves the top-1 accuracy over a network with ReLU acti-
vations by 4.2%. Adding a Dynamic Shift-Max activation
at the Micro-Block output further improves performance by
2%. Finally, using three layers of Dynamic Shift-Max fur-
ther increases the gain over the ReLU network to 6.8%.

Hyper-parameters in DY-Shift-Max: Table 6 shows the
results of using different combinations of K and J in Eq. 4.
We add a ReLU when K = 1 as only one element is left in
the max operator. The baseline of the first row (J = 1,K =



1) is equivalent to SE+ReLU [14]. For fixed J = 2 (fusion
of two groups), the best of two fusions (K = 2) is better
than a single fusion (K = 1), but adding a third fusion does
not help, since it only adds path redundancy. When K is
fixed at K = 2 (best of two fusions), fusing more groups
J is consistently better but requires more FLOPs. A good
tradeoff is achieved with J = 2 and K = 2, enabling a gain
of 4.1% over the baseline, for an additional 1.5M MAdds.

6.1.2 Comparison to Prior Networks

Table 7 compares MicroNet to the state-of-the-art models,
which have complexity less than 24M FLOPs. As the prior
works lack of reported results within 10M FLOPs budget,
we extend the popular MobileNetV3 to 6M and 4M FLOPs
as baseline, by using width multiplier 0.2 and 0.15 respec-
tively. They share the same training setup with MicroNet.

To make comparison fair, two variations of M1–M3 (e.g.
M3# and M3) are used. The former (M3#) requires simi-
lar model size to but fewer FLOPs than the baseline (Mo-
bileNetV3 0.5×). The latter (M3) requires similar FLOPs
but allows more parameters (up to 1M), best serving scenar-
ios that FLOPs is more critical than memory. This is due to
the difficulty to match both model size and FLOPs, except
for the smallest model (M0). Note that M3# has similar
structure to M3, only shrinking the model size by reducing
network width and parameters in dynamic Shift-Max.

In all cases, MicroNet outperforms all prior networks by
a clear margin. For instance, MicroNet-M1#, M2#, M3#

outperform their MobileNetV3 counterpart by 8.3%, 8.4%,
and 3.3%, respectively. Given another 1M budget on model
size, MicroNet-M1, M2, M3 increase these gains by 2.0%,
1.2% and 1.2%, respectively. MicroNet-M0 outperforms
MobileNetV3 0.15× by 12.9% (46.6% vs. 33.7%), demon-
strating its better handle of cutting computational cost from
6M to 4M MAdds. In particular, the top-1 accuracy drops
by 4.8% from MicroNet-M1 to M0, while the accuracy de-
grades by 7.4% from MobileNetV3 ×0.2 to ×0.15. When
compared to recent MobileNet and ShuffleNet improve-
ments, such as ButterflyTransforms [38] and TinyNet [10],
MicroNet models have gains of more than 2.6% top-1 accu-
racy but use less FLOPs. This demonstrates the effective-
ness of MicroNet at extremely low FLOPs.

6.1.3 Inference Latency

We also measure the inference latency of MicroNet on an
Intel(R) Xeon(R) CPU E5-2620 v4 (2.10GHz). Follow-
ing the common settings in [31, 12], we test under single-
threaded mode with batch size 1. The average inference
latency of 5,000 images (with resolution 224×224) is re-
ported. Figure 5-Right shows the comparison between Mi-
croNet and MobileNetV3-Small. To achieve similar perfor-
mance, MicroNet clearly consumes less runtime than Mo-
bileNetV3. For example, MicroNet with 55% accuracy has

Model #Param MAdds Top-1 Top-5
MobileNetV3 0.15×† 1.0M 4M 33.7 57.2
MicroNet-M0 1.0M 4M 46.6 70.6
MobileNetV3 0.2×† 1.2M 6M 41.1 65.2
MicroNet-M1# 1.2M 5M 49.4 72.9
MicroNet-M1 1.8M 6M 51.4 74.5
ShuffleNetV1 0.25× [47] – 13M 47.3 –
MobileNetV3 0.35× [12] 1.4M 12M 49.8 –
HBONet (96×96) [19] – 12M 50.3 73.8
MobileNetV3+BFT 0.5× [38] – 15M 55.2 –
MicroNet-M2# 1.4M 11M 58.2 80.1
MicroNet-M2 2.4M 12M 59.4 80.9
HBONet (128×128) [19] – 21M 55.2 78.0
ShuffleNetV2+BFT [38] – 21M 57.8 –
MobileNetV3 0.5× [12] 1.6M 21M 58.0 –
TinyNet-E (106×106) [10] 2.0M 24M 59.9 81.8
MicroNet-M3# 1.6M 20M 61.3 82.9
MicroNet-M3 2.6M 21M 62.5 83.1

Table 7. ImageNet [6] classification results. # stands for the Mi-
croNet variation that has similar model size to but fewer MAdds
than the corresponding MobileNetV3-Small baseline. † indicates
our implementation under the same training setup with MicroNet.
“–”: not available in the original paper. Note that input resolu-
tion 224×224 is used for MicroNet and related works other than
HBONet/TinyNet, whose input resolution is shown in the bracket.
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Figure 5. Evaluation on ImageNet classification. Left: top-1 accu-
racy vs. FLOPs. Right: top-1 accuracy vs. latency. Note that Mo-
bileNetV3 ×0.75 is added to facilitate the comparison. MicroNet
outperforms MobileNetV3, especially at extremely low computa-
tional cost (more than 5% gain on top-1 accuracy when FLOPs is
less than 15M or latency is less than 9ms).

a latency less than 7ms, while MobileNetV3 requires about
9.5ms. The accuracy-latency curve is slightly degraded
when using MicroNet with fewer parameters (M1#, M2#,
M3#), but it still outperforms MicroNetV3. Although the
largest MicroNet model (M3) only slightly outperforms
MobileNetV3 for the same latency, MicroNet gains sig-
nificantly more improvement over MobileNetV3 when the
latency decreases. In particular, at a latency of 4ms, Mi-
croNet improves over MobileNetV3 by 10%, demonstrating
its strength at low computational cost.

6.1.4 Discussion

As shown in Figure 5, MicroNet clearly outperforms Mo-
bileNetV3 under the same FLOPs, but the gap shrinks un-
der the same latency. This is due to two reasons. First,



Backbone DET Framework MAdds mAP
MobileNetV3 ×1.0 56M 25.9

MicroNet-M3 R-CNN 21M 26.2
MicroNet-M2 12M 22.7

MobileNetV3 ×1.0 56M 24.0
MicroNet-M3 RetinaNet 21M 25.4
MicroNet-M2 12M 22.6

Table 8. COCO object detection results. All mod-
els are trained on train2017 for 36 epochs (3×)
and tested on val2017. MAdds is computed on
image size 224×224.

Backbone Head Param MAdds AP AP0.5 AP0.75 APM APL

MobileNetV3 ×1.0 Mobile-Blocks 2.1M 726.9M 57.1 83.8 63.7 55.0 62.2
MicroNet-M3 Micro-Blocks 2.2M 163.2M 58.7 84.0 65.5 56.0 64.2
MicroNet-M2 Micro-Blocks 1.8M 116.8M 54.9 82.0 60.3 53.2 59.6

Table 9. COCO keypoint detection results. All models are trained on
train2017 and tested on val2017. Input resolution 256×192 is used. The
baseline applies MobileNetV3-Small ×1.0 as backbone and the head structure in
[4] (which includes bilinear upsampling and inverted residual bottleneck blocks).
Compared to the baseline, MicroNet-M3 has similar model size, consumes signifi-
cantly less MAdds, but achieves higher accuracy.

different from MobileNetV3 that is optimized for latency
by search, MicroNet is manually designed based on theo-
retical FLOPs. Second, the implementation of group con-
volution and dynamic Shift-Max are not optimized (we use
PyTorch for implementation). We observe that the latency
of group convolution is not proportionally reduced as the
number of groups increases, and dynamic Shift-Max is sig-
nificantly slower than convolution with the same FLOPs.

We believe that the runtime performance of MicroNet
can be further improved by using hardware-aware architec-
ture search to find latency friendly combination of Micro-
Factorized convolution and dynamic Shift-Max. MicroNet
can also leverage the improvement of optimization in group
convolution [7] and dynamic Shift-Max to speed up. We
will investigate these in the future work.

6.2. Object Detection

We evaluate the generalization ability of MicroNet on
COCO object detection [25]. All models are trained on
train2017 and evaluated in mean Average Precision
(mAP) on val2017. Following [9], MicroNet is used as
a drop-in replacement for the backbone feature extractor in
both the two-stage Faster R-CNN [30] with Feature Pyra-
mid Networks (FPN) [23] and the one-stage RetinaNet [24].
All models are trained using SGD for 36 epochs (3×) from
ImageNet pretrained weights with the hyper-parameters and
data augmentation suggested in [40].

The detection results are shown in Table 8, where the
backbone FLOPs are calculated using image size 224 ×
224 as common practice. With significantly lower back-
bone FLOPs (21M vs 56M), MicroNet-M3 achieves higher
mAP than MobileNetV3-Small×1.0 both on Faster R-CNN
and RetinaNet frameworks, demonstrating its capability to
transfer to detection task.

6.3. Human Pose Estimation

We also evaluate MicroNet on COCO single person key-
point detection. All models are trained on train2017 that
includes 57K images and 150K person instances labeled
with 17 keypoints, and evaluated on val2017 that con-
tains 5000 images, using the mean average precision (AP)
over 10 object key point similarity (OKS) thresholds. Simi-

lar to object detection, two MicroNet models (M2, M3) are
considered. The models are modified for the keypoint de-
tection task, by increasing the resolution (×2) of a select
set of blocks (all blocks with stride of 32). Each model con-
tains a head with three micro-blocks (one of stride 8 and
two of stride 4) and a pointwise convolution that generates
heatmaps for 17 keypoints. Bilinear upsampling is used to
increase the head resolution, and the spatial attention mech-
anism of [5] is used. Both models are trained from scratch
for 250 epochs using Adam optimizer [18]. The human
detection boxes are cropped and resized to 256×192. The
training and testing follow the setup of [42, 33].

Table 9 compares MicroNet-M3 and M2 with a strong
efficient baseline, which only requires 726.9M MAdds and
2.1M parameters. The baseline applies MobileNetV3-Small
×1.0 as backbone and mobile blocks (inverted residual
bottleneck blocks) in the head (see [4] for details). Our
MicroNet-M3 only consumes 22% (163.2M/726.9M) of the
FLOPs used by the baseline but achieves higher perfor-
mance, demonstrating its effectiveness for low-complexity
keypoint detection. MicroNet-M2 provides a good handle
for even lower complexity (116.8M FLOPs).

7. Conclusion
In this paper, we have presented MicroNet to handle

extremely low computational cost. It builds on two pro-
posed operators: Micro-Factorized convolution and Dy-
namic Shift-Max. The former balances between the num-
ber of channels and input/output connectivity via low rank
approximations on both pointwise and depthwise convolu-
tions. The latter fuses consecutive channel groups dynami-
cally, enhancing both node connectivity and non-linearity to
compensate for the depth reduction. A family of MicroNets
achieve solid improvement for three tasks (image classifi-
cation, object detection and human pose estimation) under
extremely low FLOPs. We hope this work provides good
baselines for efficient CNNs on multiple vision tasks.
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