Microsoft Research

I. INTRODUCTION

• Motivations:

- The state-of-the-art neural networks have high computational complexity (billions of FLOPs) and large model size (hundreds of MB).
- Binary neural network (BNN) theoretically enables $64 \times$ model size reduction and $64 \times$ computational speeds-up.
- BNN has significant accuracy drop from the full-precision neural network.

• Contributions:

- An half-wave Gaussian quantization (HWGQ) is proposed as forward approximation of the effective non-linear ReLU function. - HWGQ has efficient implementation, by exploiting the statistics of of network activations and batch normalization.
- To overcome the problem of gradient mismatch, due to the use of different forward and backward functions, several effective piece-wise backward approximators are investigated and they successfully suppress the mismatch.
- HWGQ-Net achieves much closer performance to full precision networks, such as AlexNet, ResNet, GoogLeNet and VGG-Net, than previously available low-precision networks, with 1-bit binary weights and 2-bit quantized activations.

II. BINARY NEURAL NETWORK

- Goals
 - unit dot-product

$$z = g(\mathbf{w}^T \mathbf{x})$$

- large memory footprint required to store weights w. - high computational complexity required to compute large numbers of fullprecision dot-products $\mathbf{w}^T \mathbf{x}$.
- Weight Binarization

ly 21-26 2017

- multiplication-free convolution

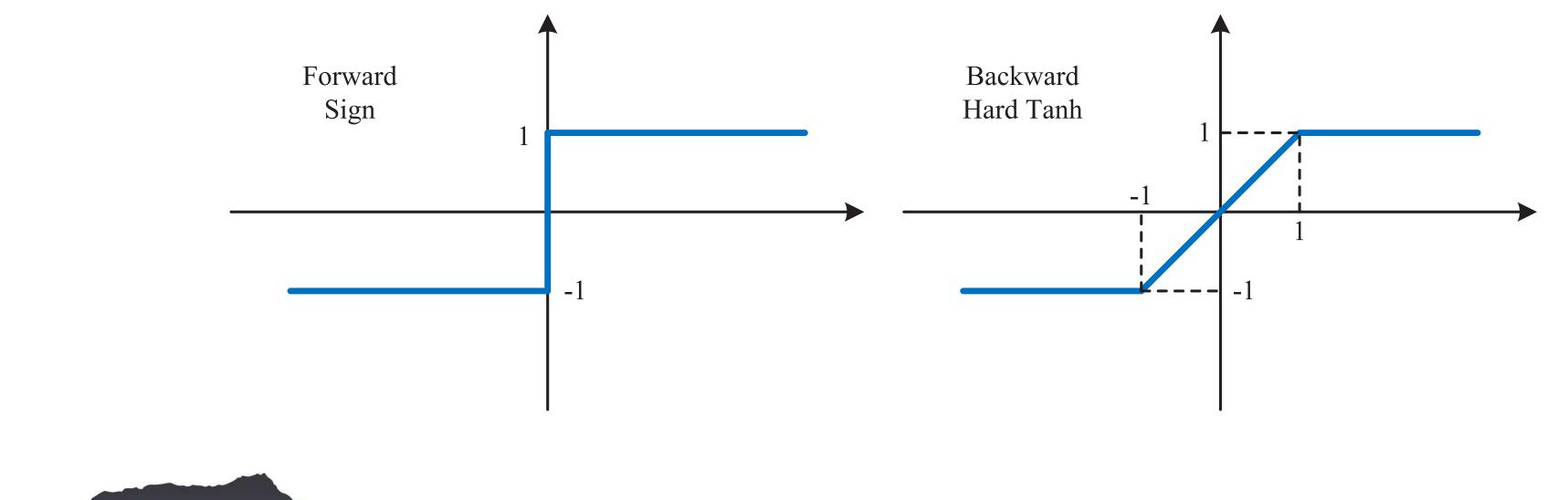
 $\mathbf{I} * \mathbf{W} \approx \alpha (\mathbf{I} \oplus \mathbf{B})$

where $\mathbf{B}^* = sign(\mathbf{W})$ and $\alpha^* = \frac{1}{cwh} \|\mathbf{W}\|_1$ - tremendous reduction in the memory footprint of the model, but the problem of computational complexity is not fully solved, since I is still with fullprecision.

• Binary Activation Quantization

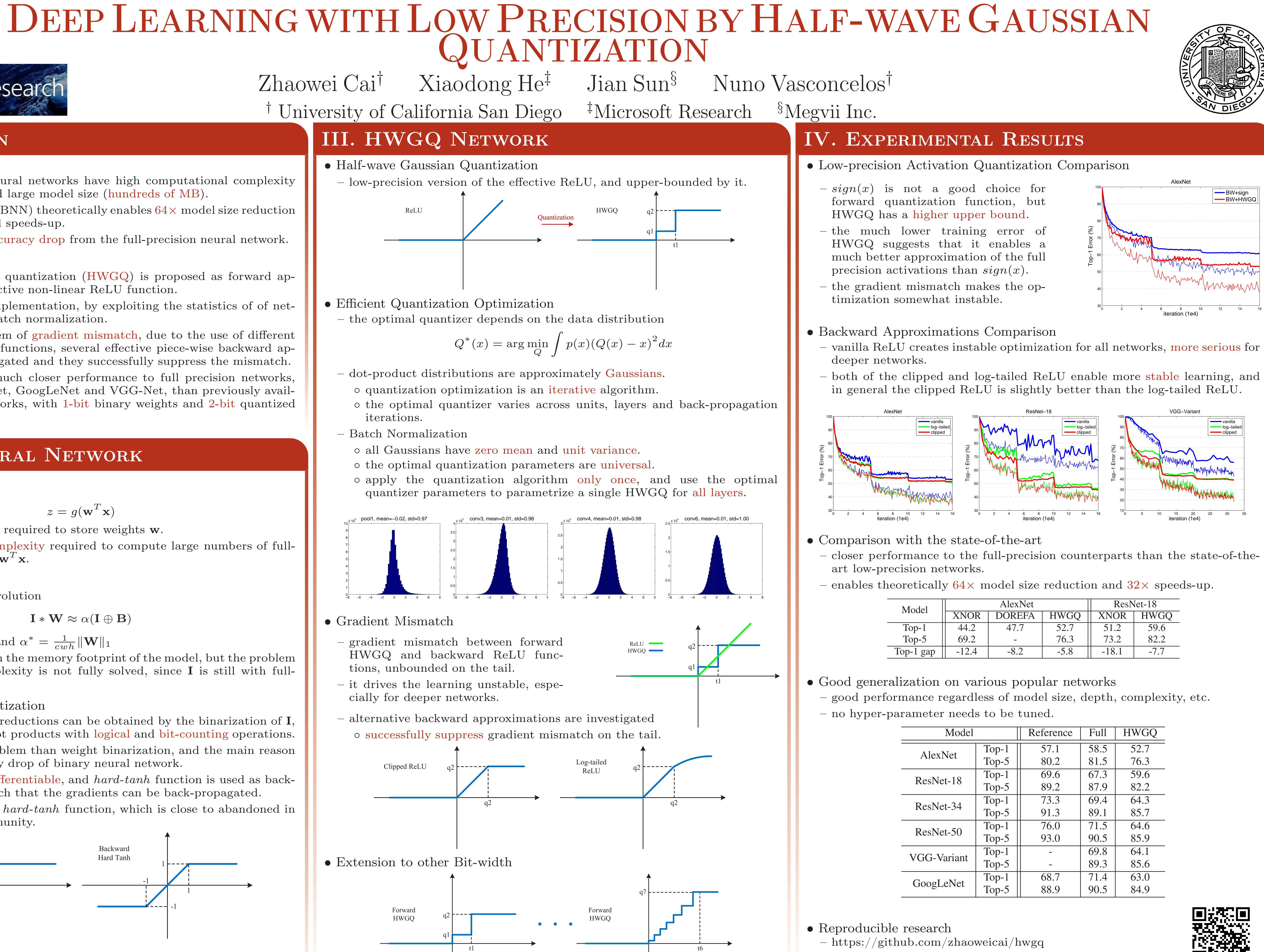
- substantial complexity reductions can be obtained by the binarization of \mathbf{I} , by implementing the dot products with logical and bit-counting operations.

- it is a much harder problem than weight binarization, and the main reason responsible for accuracy drop of binary neural network.
- sign function is non-differentiable, and hard-tanh function is used as backward approximation such that the gradients can be back-propagated. - it is upper-bounded by hard-tanh function, which is close to abandoned in the deep learning community.

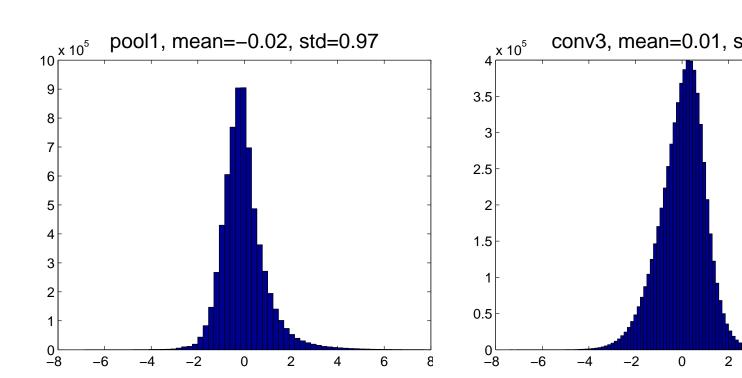


Zhaowei Cai[†]

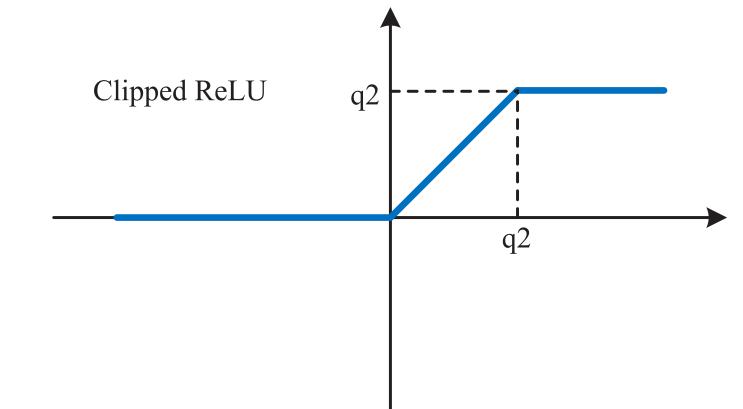
• Half-wave Gaussian Quantization



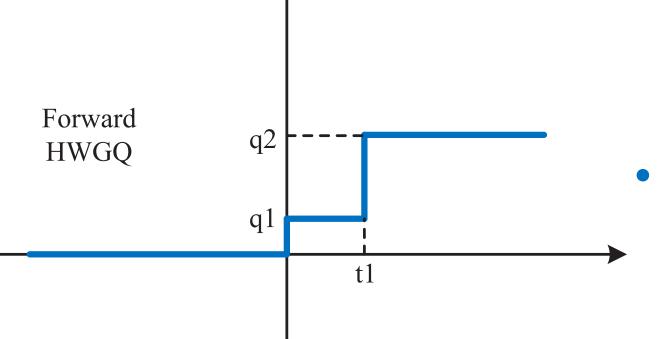
• Efficient Quantization Optimization



• Gradient Mismatch



• Extension to other Bit-width



el	AlexNet			ResNet-18	
	XNOR	DOREFA	HWGQ	XNOR	HWGQ
-1	44.2	47.7	52.7	51.2	59.6
5	69.2	-	76.3	73.2	82.2
gap	-12.4	-8.2	-5.8	-18.1	-7.7

Model		Reference	Full	HWGQ
AlexNet	Top-1	57.1	58.5	52.7
AIEXINEL	Top-5	80.2	81.5	76.3
esNet-18	Top-1	69.6	67.3	59.6
CSINCL-10	Top-5	89.2	87.9	82.2
lesNet-34	Top-1	73.3	69.4	64.3
C51 VCI-J4	Top-5	91.3	89.1	85.7
esNet-50	Top-1	76.0	71.5	64.6
	Top-5	93.0	90.5	85.9
GG-Variant	Top-1	_	69.8	64.1
	Top-5	_	89.3	85.6
oogLeNet	Top-1	68.7	71.4	63.0
UUGLUINU	Top-5	88.9	90.5	84.9