
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Feature Space Transfer as Data Augmentation
for Few-shot Classification and Single-View

Reconstruction
Bo Liu, Student Member, IEEE, Xudong Wang, Student Member, IEEE, Mandar Dixit, Member, IEEE,

Roland Kwitt, Member, IEEE, and Nuno Vasconcelos, Fellow, IEEE

Abstract—The problem of data augmentation in feature space is considered. A new architecture, denoted the FeATure TransfEr
Network (FATTEN), is proposed for the modeling of feature trajectories induced by variations of object pose. This architecture exploits a
parametrization of the pose manifold in terms of pose and appearance. This leads to a deep encoder/decoder network architecture,
where the encoder factors into an appearance and a pose predictor. Unlike previous attempts at trajectory transfer, FATTEN can be
efficiently trained end-to-end, with no need to train separate feature transfer functions. This is realized by supplying the decoder with
information about a target pose and the use of a multi-task loss that penalizes category- and pose-mismatches. In result, FATTEN
discourages discontinuous or non-smooth trajectories that fail to capture the structure of the pose manifold, and generalizes well on
object recognition tasks involving large pose variation. For few-shot recognition, meta-learning is used to further stabilize the model
when applied on unseen classes. Experimental results on the artificial ModelNet database show that it can successfully learn to map
source features to target features of a desired pose, while preserving class identity. Most notably, by using feature space transfer for
data augmentation (w.r.t. pose and depth) on SUN-RGBD objects, we demonstrate considerable performance improvements on
one/few-shot object recognition in a transfer learning setup, compared to current state-of-the-art methods. The method is also applied
on single-view reconstruction. By augmenting shape codes in terms of poses, it boosts the performance of the auto-encoder based
reconstruction method.

Index Terms—Feature Augmentation, Few-Shot Learning, Meta-Learning, Single-View Reconstruction.

F

1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) trained on
large datasets, such as ImageNet [1], have shown

significant gains for computer vision problems like object
recognition over the last few years. These models not only
achieve human level performance in recognition challenges,
but are also easily transferable to other data domains or
tasks, by fine tuning. Many recent works have shown
that ImageNet trained CNNs, like AlexNet [2], VGG [3],
GoogLeNet [4], or ResNet [5] can be used as feature extrac-
tors for the solution of many other problems. Nevertheless,
there are still challenges to CNN-based recognition. One
limitation is that existing CNNs still have limited ability to
handle pose variability. This is, in part, due to limitations
of existing datasets, which are usually collected on the web
and are biased towards a certain type of images. For exam-
ple, objects that have a well defined “frontal view,” such as
“couch” or “clock,” are rarely available from viewing angles
that differ significantly from frontal.

This is problematic for applications like robotics, where
a robot might have to navigate around or manipulate such

• B. Liu and N. Vasconcelos are with the Department of Electrical and
Computer Engineering, University of California, San Diego, CA, 92093.
E-mail:{boliu, nvasconcelos}@ucsd.edu

• M. Dixit is with the Microsoft, Redmond, WA, 98052.
E-mail:madixit@microsoft.com

• X. Wang is with the EECS Department at University of California,
Berkeley.

• R. Kwitt is with University of Salzburg, Austria.

Manuscript received April 19, 2005; revised August 26, 2015.

Appearance space

P
os
e
sp
ac
e

P(x)

P(x̂)

A(x) = A(x̂)

F(x)

x

x̂

Feature space
manifold M

Feature space
trajectory

Fig. 1. Schematic illustration of feature space transfer for variations in
pose. The input feature x and transferred feature x̂ are projected to the
same point in appearance space, but have different mapping points in
pose space.

objects. When implemented in real time, current CNNs tend
to produce object labels that are unstable with respect to
viewing angle. The resulting object recognition can vary
from nearly perfect under some views to much weaker for
neighboring, and very similar, views. One potential solution
to the problem is to rely on larger datasets with a much more

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

dense sampling of the viewing sphere. This, however, is not
trivial, for a number of reasons. First, for many classes, such
images are not easy to find on the web in large enough
quantities. Second, because existing recognition methods are
weakest at recognizing “off-view” images, the process can-
not be easily automated. Third, the alternative of collecting
these images in the lab is quite daunting. While this has been
done in the past, e.g., the COIL [6], NORB [7], or Yale face
dataset, these datasets are too small by modern standards.
The set-ups used to collect them, by either using a robotic
table and several cameras, or building a camera dome, can
also not be easily replicated and do not lend themselves to
distributed dataset creation efforts, such as crowd sourcing.
Finally, even if feasible to assemble, such datasets would
be massive and difficult to process. For example, the NORB
recommendation of collecting 9 elevations, 36 azimuths, and
6 lighting conditions per object, results in 1944 images per
object. Applying this standard to ImageNet would result in
a dataset of close to 2 billion images!

Some of these problems can be addressed with computer
generated images. This is indeed an established practice for
problems that require multiple object views, such as shape
recognition, where synthetic image datasets [8], [9] are rou-
tinely used. However, the application of networks trained
on synthetic data to real images raises a problem of domain
adaptation. Despite a vast literature on the topic [10], [11],
[12], [13], [14], [15], [16], adaptation methods are usually not
tailored for the transfer of object poses. In particular, they
do not account the fact that, as illustrated in Fig. 1, objects
subject to pose variation span low-dimensional manifolds of
image space, or corresponding spaces of CNN features. This
is because objects can be decomposed into appearance and
pose components. While the appearance component is fixed,
the pose component varies with viewing angle. Since the lat-
ter has few degrees of freedom, the pose trajectories spanned
by the object for different angles define low-dimensional
surfaces in image or feature space. The mapping between
locations along a pose trajectory is denoted pose transfer. This
has only been considered by a few works [17], [18], who
have proposed models with explicit pose inputs to transfer
objects along the pose manifold.

Besides explicit pose transfer, it is also possible to re-
sort to few-shot learning methods. One popular solution
is to rely on meta-learning [19]. This is a generic term for
methods that try to train a “learner”. Many recent works
show that meta-learning is useful for the few-shot learning
of a parameterized function that maps limited labeled data
to a classifier [20], [21]. For pose transfer, this function can
be meta-trained from data with many poses. However, all
current meta-learning methods treat the training procedure
as a black box, and rely on meta-training to learn all un-
known structures implicitly. In particular, they don’t have
an explicit model for pose transfer. Moreover, most methods
are only trained on original data, without augmentation.
One possibility is to add an hallucination module [22], by
using a generator to leverage prior visual knowledge and
hallucinate additional training data for better classification.
However, the generator of [22] fails to take the advantage of
pose transfer to generate more effective data.

The benefits of data augmentation along pose trajectories
are not limited to classification. For example, single-view

reconstruction is another prime application target. This fol-
lows from the ill-defined nature of 3D shape recovery from
a single object image, since part of the shape is never seen.
Traditional augmentations are not effective for this problem
and can even be misleading if combining information from
different objects. We find that pose transfer is specifically
suitable for this topic, because augmentations across pose
trajectory leverage information from multiple views. This
provides extra 3D structure while maintaining the semantic
object information.
Contribution. In this work, we propose a universal frame-
work, termed FeATure TransfEr Network (FATTEN), that ad-
dresses these problems. Essentially, FATTEN is an encoder-
decoder architecture, inspired by Fig. 1. We parametrized
pose trajectory transfer in terms of an appearance map, which
captures properties invariant on pose, such as object texture
and structure, and a pose map, which is pose dependent. Th
encoder maps an input feature x into a pair of appearance
A(x) and pose P(x) parameters. The decoder then takes the
appearance parameter together with a target pose parameter
t = P(x̂) and generate a feature vector x̂ with the new pose.

The FATTEN model is applied to few-shot recognition
and single-view reconstruction. For recognition, a classifier
is learned by meta-learning, using a parametric learner that
takes the pose-generated data as labeled data to produce a
classifier. To avoid mismatching, both pose transfer module
and classifier are trained end-to-end, using a multi-task loss
that accounts for both classification and feature transfer
errors. For single-view reconstruction, FATTEN is used to
augment shape codes. A 3D auto-encoder is used for 3D
reconstruction, producing a shape code that is used as a
bridge between a 2D image and the corresponding 3D
shape. FATTEN is trained to augment shape codes along
pose trajectories. The combination of these augmentations
is shown to improve 3D reconstruction quality.

The performance of FATTEN is investigated in two
stages. In the first stage, we examine the effectiveness of
pose transfer. We utilize the model in a multi-view retrieval
task, where generated features are used to retrieve features
by category and pose. These experiments are carried out
on a synthetic 3D dataset ModelNet [23]. Results show that
our pose transfer module hallucinates features with good
quality along both object category and pose dimensions,
for applications involving computer graphics imagery. This
could be of use for a now large body of 3D shape clas-
sification works [23], [24], [25], [26], where such datasets
are predominant. Second, FATTEN is embeded with other
models to work on few-shot recognition and single-view
reconstruction. For few-shot recognition, we combine the
pose transfer module and a classifier and train the whole
model end-to-end. We show that the proposed architec-
ture outperfroms both pure meta-learning methods and
meta-learning methods with generic feature hallucinator.
For single-view reconstruction, we combine FATTEN with
a popular 3D reconstruction model, the BSP-Net, whose
performance is also shown to benefit from the addition of
FATTEN.
Organization. In Section 2, we review related work. Sec-
tion 3 introduces the proposed FATTEN architecture. Sec-
tion 4 and 5 discuss the application of FATTEN to few-
shot recognition and single-view reconstruction. Section 6

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

presents experimental results on ModelNet, SUN-RGBD,
and ShapeNet. Finally, Section 7 concludes the paper with a
discussion of the main points and an outlook on open issues.

2 RELATED WORK

Objects describe smooth trajectories in image space, where
they span a 3D manifold, parameterized by the viewing
angle. Hence, many of the manifold modeling methods
proposed in the literature [27], [28], [29] could, in principle,
be used to develop trajectory transfer algorithms. However,
many of these methods are transductive, i.e., they do not
produce a function that can make predictions for images
outside of the training set, and do not leverage recent
advances in deep learning. While deep learning could be
used to explicitly model pose manifolds, it is difficult to rely
on CNNs pre-trained on ImageNet for this purpose. This
is because these networks attempt to collapse the manifold
into a space where class discrimination is linear. On the
other hand, the feature trajectories in response to pose
variability are readily available. These trajectories are also
much easier to model. For example, if the CNN is successful
in mapping the pose manifold of a given object into a single
point, i.e., exhibits total pose invariance for that object, the
problem is already solved and trajectory leaning is trivial
for that object.

On the other hand, trajectory transfer is popular for
problems involving multi-view recognition. Due to the in-
creased cost and difficulty of multi-view image collecting,
such problems usually consider some level of learning from
synthetic images. In fact, there is an established practice in
shape recognition, where synthetic 3D datasets [8], [9] are
widely used. A rich literature in shape recognition from syn-
thetic datasets has produced many 3D representations [23],
[24], [25], [26], [30], [31]. Nevertheless, it has also been
shown that the 3D recognition problem can be efficiently
solved as multi-view 2D recognition by using simple multi-
view extensions of current CNNs [25]. However, it is not
evident how these conclusions can generalize to real world
datasets.

An important component of the proposed model is a
pose transfer module that augments a dataset with feature
responses of unseen object poses. In this sense, the problem
is related to novel view synthesis [32], [33], [34], [35], [36],
[37], [38]. [36] uses appearance flows to synthesize novel
views of both objects and scenes. [34] combines information
from multiple views. [37] and [38] mainly focus on scene
images. All these works aim to generate realistic images,
but do not discuss potential benefits for image classification.
This mostly due to the difficulty of generating images,
leading to models that only work well on limited categories.
This is unlike the proposed model, which simplifies the task
by only generating features. This generalizes to larger sets
of categories and improves feature robustness.

With the introduction of large scale 3D datasets, such
as ShapeNet [39], 3D modeling has been widely studied.
One of the important tasks is single-view reconstruction,
which recovers a 3D shape model from a single view of an
object. Early works, such as 3D-R2N2 [40], generalize 2D
convolution to 3D and model 3D shapes with voxels. This
usually has low resolution, due to limits in computation and

memory. Later on, methods such as [41], directly generate
meshes or surfaces of the shape. This, however, could lead
to over complicated surfaces, and sometimes produces open
surfaces. Recently, there has been a trend of using implicit
models [42], [43], [44], which model the shape with a 3D
point classifier. In this work, we adopt one of the most recent
and successful implicit models, the BSP-Net [44].

Instead, trajectory transfer is more closely related to
the topic of transfer learning, where, there extensive work
has been devoted to problems such as zero-shot [10], [11],
[12] or few-shot learning [13], [14], [15]. Meta-learning has
recently shown its effectiveness for few-shot recognition.
Some methods, such as MAML and its variants [20], [45], or
LEO [46], are gradient based. These methods take advantage
of second derivatives to optimize the model from few-
shot samples. Another group of methods, including the
matching network [14], prototypical network [21], relation
network [47], and category traversal [48], aims to learn
robust metrics. Some few-shot methods have also proposed
to augment training data by combining GANs with meta-
learning [22], synthesizing features across object views [18]
or using other forms of data hallucination [49]. Learning
without forgetting [50] aims to transfer the existing classifier
to novel classes without loss of performance on the base
ones. [51] extends the few-shot problem from recognition
to detection by feature reweighting. Self-supervised learn-
ing or representationg learning is a technique aiming for
knowledge transfer. It has recently been studied for general
classification tasks [52], [53], [54] However, these methods
tend to be of general purpose. None of them exploits specific
properties of the pose manifold, such as the parametrization
of Fig. 1. The introduction of networks that enforce such
parameterizations is a form of regularization that improves
on the transfer performance of generic procedures.

3 THE FEATURE TRANSFER META-LEARNER AR-
CHITECTURE

In this section, we describe the proposed architecture for
feature space transfer.

3.1 Feature Transfer Motivation
In this work, we assume the availability of a training set
with pose annotations, i.e., Strain = {(xn,pn, yn)}n, where
xn ∈ RD is the feature vector (e.g., a CNN activation at some
layer) extracted from an image, pn is the corresponding
pose value and yn a category label. The pose value could
be a scalar pn, e.g., the azimuth angle on the viewing
sphere, but is more generally a vector, e.g., also encoding
an elevation angle or even the distance to the object (object
depth). The feature transfer problem is to learn the transfer
function F(xn,p) that maps the source feature vector xn to
a target feature vector x̂n corresponding to a new pose p.

3.2 The Feature Transfer Network Architecture
The FeATure TransfEr Network (FATTEN) architecture is
illustrated by Fig. 1, which depicts a pose manifold spanned
by an object under pose variation, and parameterized by
two variables. One of them is an appearance descriptor a ∈ RA
that represents pose invariant properties such as color or

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

CNN

x ∈ RD (e.g., FC7)

Decoder

a ∈ RA

Pose
predictor

p ∈ PN−1

t
=

e
j

x̂ = F(x) + x

id
(x
)
(s
h
or
tc
u
t)

+

concatenate

Lp(x̂, t) Lc(x̂, y)
Pose loss Category loss

D
es
ir
ed

p
o
se

va
lu
e
“
cl
a
ss
“

Input: Image

F
(x

)
Pose

predictor
Category
predictor

Appearance
predictor

 E
n
co
d
er

[a⊕ p⊕ t]

Fig. 2. The FATTEN architecture. Here, id denotes the identity shortcut
connection, D the dimensionality of the input feature space, A the
dimensionality of the appearance space and PN−1 the N−1 probability
simplex. Both pose predictors are pre-trained and share parameters.

texture. This means that it has the same value for all points
on the manifold. It can be thought of as an object code
that distinguishes the manifold spanned by one object from
those spanned by others. It is worth noting that appearance
is not the same as category. Some objects of different cate-
gories may share more similar appearance than those of the
same category. The other variable is a pose descriptor p ∈ RN
that captures the point x that corresponds to a particular
pose p. In form, a feature point x on the manifold could be
considered as the implementation of a mapping

φ : RA × RN →M, φ(a,p) 7→ x . (1)

The FATTEN architecture, as a encoder-decoder archi-
tecture shown in Fig. 2, models the relationship between
the feature vectors extracted from object images and its
associated appearance and pose parameters. The encoder
is designed to invert the mapping of (1), namely implement
φ−1. Given a feature vector x, it produces an estimate of
the appearance a and pose p parameters. A target pose
parameter t specifies the corresponding pose of the desired
feature vector x̂, which will be then generated by a decoder
that processes the concatenation of a, p and t. While, in
principle, it would be sufficient to derive x̂ from φ(a, t),
i.e., to use the inverse of the encoder as a decoder, we have
obtained the best results with the following modifications.

First, to prevent the encoder/decoder pair from learning
a mapping that simply “matches” feature pairs, FATTEN
implements the residual learning paradigm of [5]. In partic-
ular, the encoder-decoder is only used to learn the residual

F(x) = x̂− x (2)

between the target and source feature vectors. Second, two
modules that explicitly predict the appearance a and pose
p parameters are used instead of a single encoder. In our
experience this decomposition facilitates learning, since the
pose predictor can be learned with full supervision. Third,
the source p and target t pose parameters are encoded as
one-hot vectors instead of continuous scalars. This makes
the dimensionality of the pose parameters closer to that of
the appearance parameter, and triggers a more balanced
training procedure. We have noted that, otherwise, the
learning algorithm can have a tendency to ignore the pose
parameters and produce a limited diversity of target feature
vectors. Finally, the decoder can leverage the source pose p,
in addition to a and t in (1). This again guarantees that
the intermediate representation is higher dimensional and
accelerates the learning of the decoder. We next discuss the
details of the various network modules.

3.3 FATTEN Details
Encoder. The encoder consists of a pose and an appear-
ance predictor. The pose predictor implements the mapping
p = P(x) from input feature vectors x to pose descriptors
p. The poses, as azimuth angle, are first internally regulated
into a code vector c ∈ RN of dimensionality comparable to
that of the appearance vector a. In the current implemen-
tation of FATTEN this is achieved in three steps. First, the
full angle space is quantized into N cells with centroids mi.
Second, Each pose is then assigned to the cell of the nearest
representative m∗ and converted by a N -dimensional one-
hot vector that identifies m∗. The pose mapping P is finally
implemented with a N-way classifier that maps x into a
vector of posterior probabilities

p = [p(m1|x), . . . , p(mN |x)] (3)

on the N − 1 probability simplex PN−1. The classifier con-
sists of a two-layer neural network, composed of a fully-
connected layer, batch normalization, and a ReLU, followed
by a softmax layer.

The appearance predictor implements the mapping a =
A(x) from input feature vectors x to appearance descriptors
a. This is implemented with a two-layer network, where
each layer consists of a fully-connected layer, batch normal-
ization, and a ELU layer.

The outputs of the pose and appearance predictors are
concatenated with a one-hot encoding of the target pose. The
encoding is implemented in the same way as the pose code
vector of the pose predictor.
Decoder. The decoder maps the vector of concatenated
appearance and pose parameters

[a ⊕ p ⊕ t] (4)

where ⊕ denotes vector concatenation, into the residual
x̂ − x of (2). It is implemented with a two layer network,
where the first layer contains a sequence of fully-connected
layer, batch normalization, and ELU, and the second is a
fully connected layer. The decoder output F(x) is then
added to the input x to produce the target x̂.

Although conceptually similar, our architecture is differ-
ent from AGA [17] and solves some key limitations of the
latter. In particular, the feature synthesis function f(x,p, t)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

(a) Airplane (b) Bowl (c) Plant

(d) Bookshelf

(e) D
esk

Fig. 3. Exemplary ModelNet [23] views: (a) different views of one object (airplane); (b)-(c) different views of two symmetric objects (bowl, plant);
(d)-(e) four views (bookshelf, desk) with 90 degrees difference.

of AGA is implemented as a series of encoder-decoder
modules fp,t(x), one for each pair of (p, t). The number
of these functions grows exponentially and AGA needs to
learn a different f for each p � t and t � p; there is
no provision to share information. Since FATTEN uses a
single network to solve this task, (1) model complexity scales
favorably with pose quantization and (2) due to weight
sharing, pose translations are informed by each other. Also,
AGA uses an L2 regularizer in feature space, which may not
preserve class identity; FATTEN uses a category loss to help
address this problem.

3.4 FATTEN Training

FATTEN is trained as a data generator, independently of
the downstream tasks to which it may be applied. A multi-
task loss is designed to ensure end-to-end training that
accomplishes two goals. The first is that the synthesized
feature vector x̂ should correspond to the desired pose t.
This constraint is enforced by the pose loss, which is the
cross-entropy loss commonly used for classification

Lp(x̂, t) = −tT log ρ(P(x̂)), (5)

where ρ is the softmax function, i.e. ρj(v) = evj∑
k e

vk
. Note

that, as shown in Fig. 2, this requires feeding the target
feature vector x̂ into a pose predictor P . It is worth noting
that, while this is only needed for training, the loss of (5) can
also be computed during inference, since the target pose t
is known. This can be used as a diagnostic measure for the
performance of FATTEN.

The second goal is that the generated feature vector x̂
maintains all the semantic information of the source vector
x. This semantic information can vary from task to task. For
classification, it is the category label y. Ideally, the synthe-
sized feature vectors should achieve the same recognition
results as the network used to extract the feature vectors,
denoted as CNN in Fig. 2, in the original problem. To
guarantee this, FATTEN uses the linear classifier obtained
by training the CNN backbone as a category predictor. This
predictor is fixed during the training of the remaining FAT-
TEN blocks to avoid overfitting. Its accuracy is measured by
the cross-entropy loss

Lc(x̂, y) = − log ρy(x̂), (6)

where ρ(v) is the softmax output of the category predictor.
The multi-task loss is finaly defined as

LFATTEN(x̂, t, y) = Lp(x̂, t) + Lc(x̂, y). (7)

This leads to three stages of training. In the first, the
CNN backbone and class predictor are trained for cate-
gory prediction, without pose information. This step can
be skipped if a pre-trained CNN is available. In the sec-
ond stage, the pose predictor P(x) is trained with pose
supervision. This is then embedded into the encoder-decoder
structure and pose loss structure. In the final training stage,
both pose and category predictors are fixed, and the appear-
ance predictor and decoder are trained end-to-end with-
out further appearance supervision. We found this training
strategy to be beneficial in two ways. First, embedding the
pre-trained pose predictor reduces the number of degrees of
freedom in the network, minimizing the ambiguity inherent
to the fact that a given feature vector could be consistent
with multiple pairs of pose and appearance parameters.
Unlike pose parameters, FATTEN allows a certain flexibility
on the appearance prediction for further robustness. For
example, while all feature vectors x extracted from views
of the same object should map into the same appearance
parameter value a, we do not enforce such constraint. This
endows the network with invariance to small variations of
the appearance descriptor, due to occlusions, variations in
lighting, etc. Second, by pre-training the pose and category
predictor, only weights of the encoder/decoder need to
be learned end to end. The weights of the sub-networks
used by the loss function(s) are fixed. This minimizes the
chance that FATTEN will over-fit to specific poses or object
categories.

4 FEW-SHOT RECOGNITION

A one/few-shot classifier is a classifier trained with one or
few examples per class. In this section we investigate the
use of FATTEN as a data augmentation technique for this
problem. We consider different classification strategies, from
the traditional support vector machine (SVM) to modern
meta-learners.

4.1 SVM
A classical solution to the few-shot problem is to rely on
the good generalization ability of the SVM [55], which is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

typically used as a binary classifier. Given a set of training
examples {xi, yi}, the SVM training algorithm minimizes
the hinge loss

L(xi, yi) = max(0, 1− yi(wxi − b)), (8)

where w and b are the classifier parameters to be learned.
This can be used to induce a soft margin by introduction of
a regularization term, leading to the loss

LSVM =
1

n

n∑
i=1

max(0, 1− yi(wxi − b)) + λ||w||2. (9)

A multi-class SVM is then built by learning binary classifiers
that oppose one class to all others [56].

One way to implement few shot classification is to rely
on a pre-trained CNN backbone, which is used a feature
extractor. The softmax layer used for category prediction is
then replaced by an SVM, which is trained with the features
produced by the CNN for the few examples available from
the target task. In our experiments, FATTEN is used as a
feature augmentation technique for this second stage, where
feature vectors of unavailable poses are synthesized to pro-
duce more data for SVM training. This allows us to increase
the number of training examples, enabling more robust
SVM training. While the simple use of an SVM is not a state
of the art method for few-shot classification, the fact that
it decouples feature synthesis from classification enables an
effective evaluation of the benefits of data augmentation.

4.2 Meta-Learning Models
Recently, a number of model generalization approaches
have been proposed or aggregated under the meta-learning
term. These methods aim to produce a generalized classifi-
cation method that can learn a model independently of the
data domain, and adapt to new domains easily with limited
or even no data. This property makes meta-learning models
particularly suited for few-shot learning problems, where a
training set Str of class space Ytr and a testing set Ste of
class space Yte are given, with disjoint Ytr and Yte. While
many samples are provided for Str , only a small number of
samples are available in Ste. The model is evaluated by its
classification accuracy in class space Yte. More specifically, a
query setQwith the same class space Yte as Ste, which is also
known is support set, is given. The model is evaluated on Q,
with the help of samples and labels supported by Ste. When
the support set Ste has N classes and K samples per class,
the problem is called N-way K-shot few-shot classification.

Unlike traditional mini-batch training, meta-training
methods employ episode training on Str. For each episode,
a task is created by sampling a meta-training set Mtr from
Str and a meta testing set Mte with overlapping classes
from Ste. The meta-learning model F is then updated using
all samples from Mtr before classifying samples in Mte.
Given the updated model F (x,Mtr) and example (x, y) in
Mte, the model prediction ŷ = F (x,Mtr) is then chosen to
minimize a classification loss L(ŷ, y).

The training of each episode mimics the scenario where
a model is transferred to a new task. Because a new task is
sampled and optimized per episode, the model is less over-
fitted to the given training set Str, and will be more effective
when transferred to a new task. During testing, given a new

task of support set Ste and query set Q, the prediction for a
sample x ∈ Q is made with F (x, Ste).

Different meta-learning methods use different models
and even different learning strategies. They can be broadly
grouped into two types: gradient-based and metric-based.
In gradient-based methods, Mtr is used to update the
model F by directly back-propagating gradients. However,
in metric-based learning, Mtr is used to provide class
prototypes. Since FATTEN is a data generator, it is more
suitable for use with metric-based methods. We consider
the following two metric-learning approaches.
Prototypical Networks. Prototypical networks [21] lever-
ages the distance from class center in an M-dimensional
feature space. Given an embedding function fφ, The meta-
learning model is a classifier

F (x) = arg max
y∈Yte

e−d(x,cy)∑
k∈Yte

e−d(x,ck)
(10)

where
d(x, ck) = ||fφ(x)− ck||2 (11)

is the Euclidean distance between example x and a proto-
type ck of class k. During meta-training with Mtr or testing
with Ste, F is updated by computing class prototypes as

ck =
1

|Sk|
∑

xi∈Sk

fφ(xi), (12)

where Sk is the set of all points with label y = k in Mtr or
Ste. During meta-training, given meta-training set Mtr and
a sample (x, y) from meta-testing set Mte, the classification
loss is defined as

LMETA(x, y,Mtr) = d(fφ(x), cy) (13)

+ log
∑
k

exp[−d(fφ(x), ck)].

Relation Networks. Similar to prototypical networks, re-
lation networks [47] leverage an embedding function fφ
to produce a feature map for example x. However, the
Euclidean distance is replaced by a relation module gϕ that
produces a relation score in [0, 1]. The relation score of
example x to class k is defined as

r(x, k) = gϕ

 ∑
xi∈Sk

fφ(xi), fφ(x)

 , (14)

where Sk is a set contains all points with label y = k in
Mtr (during meta-training) or Ste (during testing). The loss
function is the mean square error (MSE)

LMETA(x, y,Mtr) =
∑
k

(r(x, k)− 1k=y)
2, (15)

where 1k=y is the indicator function of k = y, matched pairs
receive a relation score of 1 and mismatched ones a score of
0.

4.3 Meta Training
Recent work [22] has shown that training a data augmenta-
tion module end-to-end with a meta-learning algorithm can
improve the performance of the latter. For pose augmen-
tation, this requires that FATTEN and the meta-learner be

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

2D Encoder

3D Encoder3D Model

2D Image

𝑧"#

𝑧 3D Decoder 3D Model

𝑧

{t=0, …, N-1}

�̂�
FATTEN

𝑧#

Fig. 4. Single view reconstruction with the BSP-Net. A 3D encoder
extracts a ground-truth shape code from a 3D object, a 2D encoder ex-
tracts a shape code from a 2D image, and a decoder reconstructs a 3D
model. FATTEN is applied to the shape code, which it augments along
pose trajectories. The resulting pose-trajectory codes are combined into
a shape code that is input to the BSP-Net decoder.

jointly trained. To accomplish this, a feature extractor and
the FATTEN model are first pre-trained on training set Str,
as discussed in Section 3.4, and then embedded into the
meta-training procedure. In a second stage, FATTEN and the
classification model are trained together with meta-learning.
For this, in each episode, meta-training Mtr and meta-
testing Mte sets are first assembled from Str. Then, every
example in Mtr and Mte is fed through FATTEN to generate
features with a set of target poses {t = 1, . . . , N}. These
generated features together with the original features from
Mtr and Mte create augmented meta-training/-testing sets
Maug
tr and Maug

te . The meta-learning model is learned with
the meta-learning loss of (13) or (15), but the meta-learning
sets are replaced by Maug

tr and Maug
te . FATTEN is updated

according to the FATTEN loss of (7) with the classification
term replaced by the meta-learning classification loss. The
overall loss of each episode is

L(x̂, y, t,Maug
tr) = LMETA(x̂, y,M

aug
tr) + Lp(x̂, t). (16)

for any (x̂, y) ∈ Maug
te . Because the feature extractor is fine-

tuned, the pose predictor should be changed accordingly.
However, we find that fine-tuning the pose predictor does
not improve classification performance. This implies that
without explicit supervision, the meta-learning fine-tuning
does not change the latent pose trajectory. In result, we fix
the pose predictor in all settings.

5 SINGLE-VIEW RECONSTRUCTION

Single-view reconstruction aims to reconstruct the 3D shape
of an object from a single image of the object. This is quite
difficult because most of the 3D structure of the object is
occluded and has to be hallucinated by the reconstruction
model. Since FATTEN is designed to augment features
along pose trajectories it can simplify this hallucination, by
synthesizing a set of views from the single available image.

5.1 Single-View Reconstruction Model
We consider the recent BSP-Net [44], one of the most recent
and successful 3D shape generators. This is an implicit

model that, given a shape feature vector and a point in 3D,
classifies the point as being inside or outside the shape. The
object surface is modelled as the combination of a set of
binary space partitions, i.e. hyper-planes in 3D space.

For single-view reconstruction, the BSP-Net is imple-
mented with the auto-encoder structure of Figure 4. A 2D
convolutional neural network is used as an image encoder
that maps the input image I into a shape code

z = Eimage(I). (17)

The decoder takes this code and a set of 3D point coordi-
nates X = {xi}, classifying each point as being inside or or
outside the shape, producing a set of binary labels

Y = Dshape(z, {xi}) (18)

that, together with X , characterize the shape. For example,
the sets S and Y can be used to create a surface mesh using
the marching cubes algorithm [57].

5.2 Shape Code Augmentation
To apply FATTEN to the single view reconstruction prob-
lem, z can be seen as a feature vector that encodes shape
information but is sensitive to pose information. FATTEN
can then be used to augment z with feature vectors cor-
responding to other views of the object and these feature
vectors then combined to achieve a more robust shape code.
For this, the shape code predicted from the input image is
first augmented along a pose trajectory of N pre-defined
view angles tk, as shown in Figure 4. The shape code z and
a one-hot encoded target pose tk are input to the FATTEN
module, which synthesizes a new shape code

zk = FATTEN(z, tk) (19)

corresponding to pose tk but maintaining the semantic
information of z. In the second step, the set of feature vectors
{zk, k = 1, . . . , N} produced by FATTEN is then mapped
into a single shape code ẑ, as required by the BSP-Net
decoder Dshape. In this work, this is implemented with a
simple average pooling operation

ẑ =
1

N

N∑
k=1

zk. (20)

Other reduction methods are discussed and compared in the
experimental section.

5.3 Training
The BSP-Net is pre-trained as in [44] and fixed. The 2D
encoder is used to extract the shape code z from input
images. The training of FATTEN follows the procedure
of Section 3.4 with one exception. For reconstruction, the
goal is not to classify the input images, i.e. the semantic
information is not in the form of class labels. The shape
code should encode the shape of the object, instead of just
its class. In the reconstruction task, ground-truth shapes
are also available during training. In fact, they are used to
train the image encoder Eimage . The corresponding shape
codes zgt summarize the semantic information required for
this task. Hence, the classification loss of Section 3.4 is
replaced by a regression loss, consisting of the L2 distance

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

between the feature vector zk synthesized by FATTEN and
the ground-truth code

Ls(zk, zgt) = ||zk − zgt||2. (21)

The FATTEN loss is finally given by

L(zk, tk, zgt) = λLp(zk, tk) + Ls(zk, zgt). (22)

6 EXPERIMENTS

We first train and evaluate the FATTEN model on the
artificial ModelNet [23] dataset (Sec. 6.1), and then assess
its feature augmentation performance on the one/few-shot
object recognition task of [17] (Sec. 6.2). This is done by
both training an SVM on augmented data, to evaluate aug-
mentation performance separately, and integrating classifier
design and FATTEN training with meta-learning (Sec. 6.3).
Finally, we evaluate the FATTEN model on the single-view
reconstruction task, using ShapeNet [39] (Sec. 6.4).

6.1 Feature Quality Evaluation
6.1.1 Dataset
ModelNet [23] is a 3D synthetic data set of 3D voxel grids.
It contains 4000 shapes from 40 object categories. Given
a 3D shape, it is possible to render 2D images from any
pose. In our experiments, we follow the rendering strategy
of [25]. 12 virtual cameras are placed around the object, in
increments of 30 degrees along the z-axis, and 30 degrees
above the ground. Example rendered views are shown in
Fig. 3. The training and testing splits are those proposed in
the ModelNet benchmark, namely 80 objects per category
for training and 20 for testing. However, the dataset contains
some categories of symmetric objects, such as “bowl”, which
produce identical images from all views (see Fig. 3(b)) and
some that lack any distinctive information across views,
such as “plant” (see Fig. 3(c)). These objects are eliminated
and only the remaining 28 object categories are used.

6.1.2 Implementation
To verify the generality of FATTEN, both VGG16 [3] and
ResNet-101 [5] are adopted as backbone architectures in
feature transfer experiments. All feature vectors x are col-
lected from activations of the last fully-connected layer of
networks fine-tuned on the training set, namely fc7 in
VGG16 and pool5 in ResNet101. The pose predictor is
trained with a learning rate of 0.01 for 1000 epochs, and
evaluated on the testing corpus. The complete FATTEN
model is then trained for 1000 epochs with a learning rate
of 0.01. The angle range of [0◦, 360◦] is split into 12 non-
overlapping intervals of size 30◦ each, labeled as 0-11. Each
angle is then converted to a classification label based on the
interval it belongs to.

6.1.3 Feature transfer results
The feature transfer performance of FATTEN is assessed in
two steps. The accuracy of the pose predictor is evaluated
first, with the results listed in Table. 1. The large majority of
the errors have magnitude of 180◦. This is not surprising,
since ModelNet images have no texture. As as shown in
Fig. 3(d)-(e), object views that differ by 180◦ can be similar

TABLE 1
Top: Pose prediction error (in %); Bottom: Pose & category accuracy (in

%) of generated features.

Degrees→ 0 30 60 90 120 150 180
VGG16 72.3 2.2 1.1 4.0 0.9 1.0 18.5
ResNet-101 64.4 2.9 2.3 5.1 2.3 1.6 21.4

Pose Object category
VGG16 96.20 83.65
ResNet-101 99.95 84.13

or even identical for some objects. However, this is not a
substantial problem for transfer. Since two feature vectors
corresponding to the 180◦ difference are close to each other
in feature space, to the point where the loss cannot distin-
guish them clearly, FATTEN will generate target features
close to the source, which is the goal anyway. If these errors
are disregarded, the pose prediction has accuracy 90.8% for
VGG16 and 85.8% for ResNet-101.

The second evaluation step measures the feature transfer
performance of the whole network, given the pre-trained
pose predictor. During training, each feature in the training
set is transferred to all 12 views (including identity). During
testing, this is repeated for each test feature. The accuracy of
the pose and category prediction of the features generated
on the test corpus, is listed in Table 1. Note that, here,
category refers to object category or class. It is clear that
on a large synthetic dataset, such as ModelNet, FATTEN
can generate features of good quality, as indicated by the
pose prediction accuracy of 99.95% and the category pre-
diction accuracy of 84.13% of the ResNet-101. Further, pose
prediction error as well as pose and category accuracy of
synthesized features is similar for the two backbones.

6.1.4 Retrieval with generated features
A set of retrieval experiments is performed on ModelNet
to further assess the effectiveness of FATTEN generated
features. These experiments address the question of whether
the latter can be used to retrieve instances of (1) the same
class or (2) the same pose. Since all features are extracted
from the VGG16 fc7 layer, the Euclidean distance

d1(x,y) = ||x− y||2 (23)

is a sensible similarity measure for the purpose of retrieving
images of the same object category. This is because the model
is trained to map features with equal category labels to the
same partitions of the feature space (enforced by the cate-
gory loss Lc). However, d1 is inadequate for pose retrieval.
Instead, retrieval is based on the activation of the second
fully-connected layer of the pose predictor P , denoted by
γ(x). The pose distance function is then defined as

d2(x,y) = ||γ(x)− γ(y)||2. (24)

Finally, the performance of joint category & pose retrieval is
measured with a combined distance, i.e.,

dc(x,y) = d1(x,y) + λd2(x,y). (25)

All queries and instances to be retrieved are based on
features synthesized for the testing corpus of ModelNet.
For each synthesized feature vector, three queries are per-
formed: (1) Category, (2) Pose, and (3) Category & Pose. This

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Query

Category

Pose

Category
+ Pose

Top-10 retrieved images

Fig. 5. Exemplary retrieval results for the experiments of Sec. 6.1.4. Rows are annotated by the retrieval type and errors are highlighted in red. In
the query, (left) shows the original image, (right) shows the original image corresponding to the pose of the generated feature.

TABLE 2
Retrieval performance in mAP [%] of real and synthesized features, on

the testing portion of ModelNet.

Feature type (P)ose (C)ategory P + C
Real 54.58 32.71 23.65
Synthesized 77.62 28.89 11.07

is compared to the performance, on the same experiment,
of the real features extracted from the testing corpus by
the backbone CNN. Retrieval results are listed in Table 2
and some retrieval examples are shown in Fig. 5. The syn-
thesized features enable a very high mAP for pose retrieval,
even higher than the mAP of real features. This is strong
evidence that FATTEN successfully encodes pose informa-
tion in the transferred features. The mAP of the synthesized
features is lower for category retrieval and the combination
of both. However, the performance of the real features is
also weak on these tasks. This could be due to a failure of
mapping features from the same category into well defined
neighborhoods, or to the distance metric used for retrieval.
While retrieval performs a nearest neighbor search under
these metrics, the network optimizes the cross-entropy loss
on the softmax output(s) of both output branches of Fig. 2.
The distance of (25) may be a particularly poor way to assess
joint category and pose distances. In the following section,
we will see that using a strong classifier (e.g., a SVM) on the
generated features produces significantly better results.

6.2 Data Augmentation on Few-shot Recognition
The experiments above provide no insight on whether
FATTEN generates meaningful features for tasks involving
real world data. In this section, we assess feature transfer
performance on a one/few-shot object recognition problem.
On this task, feature transfer is used for feature space
“fattening” or data augmentation. The benchmark data is
collected from SUN-RGBD [58], following the setup of [17].

6.2.1 Dataset
The whole SUN-RGBD dataset contains 10, 335 images and
their corresponding depth maps. Additionally, 2D and 3D

bounding boxes are available as ground truth for object
detection. Depth (distance from the camera plane) and Pose
(rotation around the vertical axis of the 3D coordinate sys-
tem) are used as pose parameters in this task. The depth
range of [0, 5) m is broken into non-overlapping intervals
of size 0.5m. An additional interval [5,+∞) is included for
larger depth values. For pose, the angular range of [0◦, 180◦]
is divided into 12 non-overlapping intervals of size 15◦ each.
These intervals are used for one-hot encoding and system
training. However, to allow a fair comparison with AGA
during testing, we restrict the desired pose t to take the
values 45◦, 75◦, ..., 180◦, prescribed in [17]. This is mainly to
ensure that our system generates 11 synthetic points along
the Depth trajectory and 7 along the Pose trajectory.

The first 5, 335 images of SUN-RGBD are used for train-
ing and the remaining 5000 images for testing. If only
ground truth bounding boxes were used for object extrac-
tion, the instances would not be balanced w.r.t. categories,
nor w.r.t. pose/depth values. To remedy this issue, a fast
R-CNN [59] object detector is fine-tuned on the dataset
and proposals with IoU > 0.5 (to ground truth boxes) and
detection scores > 0.7 are used to extract object images
for training. Since this strategy produces a large amount
of data, the training set can be easily balanced per category,
as well as pose and depth. In the testing set, only ground
truth bounding boxes are used to exact objects. All source
features are exacted from the penultimate (i.e., fc7) layer
of the fine-tuned fast R-CNN detector for all instances from
both training and testing sets.

Evaluation is based on the source and target object
classes in [17]. We define a source dataset S and two
different (disjoint) target datasets, T1 and T2. A third target
dataset is defined as the union of the first two, T3 = T1 ∪T2.
Table 3 lists all the object categories in each set. The instances
in S are collected from the training portion of SUN-RGBD
only, while those in T1 and T2 are collected from the testing
set. Further, S does not have class overlap with any Ti,
which ensures that FATTEN has no access to shared knowl-
edge between training/testing images or classes.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 3
List of object categories in the source S training set and the two target/evaluation sets T1 and T2.

S (19, Source) T1 (10) T2 (10)

bathtub counter lamp sofa picture stove mug microwave
bed desk monitor table whiteboard cabinet telephone coffee table
bookshelf door night stand tv fridge printer bowl recycle bin
box dresser pillow toilet counter computer bottle cart
chair garbage bin sink books ottoman scanner bench

TABLE 4
One-/Five-shot recognition accuracy for three recognition problems

(from SUN-RGBD). Accuracies (in %) are averaged over 500 random
runs. Baseline denotes the accuracy of a linear SVM, when trained on

single instances of each class only.

Baseline Hal. [49] AGA [17] FATTEN

1–
sh

ot T1 (10) 33.74 35.43 39.10 44.99
T2 (10) 23.76 21.12 30.12 34.70
T3 (20) 22.84 21.67 26.67 32.20

5–
sh

ot T1 (10) 50.03 50.31 56.92 58.82
T2 (10) 36.76 38.07 47.04 50.69
T3 (20) 37.37 38.24 42.87 47.07

6.2.2 Implementation

Predictors of pose and depth are trained with a learning rate
of 0.01 for 1000 epochs. The FATTEN network is fine-tuned,
starting from the weights obtained from the ModelNet
experiment of Sec. 6.1, with a learning rate of 0.001 for 2000
epochs. The classification problems on T1 and T2 are 10-class
problems, whereas T3 is a 20-class problem. As a baseline
for one-shot learning, we train a linear SVM using only a
single instance per class. We then feed those same instances
into the FATTEN network to generate artificial features for
different values of depth and pose, in particular, 11 values
for depth and 7 for pose. After feature synthesis, a linear
SVM is trained with the same parameters on the augmented
(“fattened”) feature set (source and target features).

6.2.3 Results

Table 4 lists the averaged one-shot (and five-shot) recog-
nition accuracies (over 500 random runs) for all three
evaluation sets Ti. These are compared to the recognition
accuracies of two data augmentation methods from the
literature, feature hallucination [49] and AGA [17]. Table 4
supports the following conclusions. First, when compared
to the SVM baseline, FATTEN achieves a remarkable and
consistent improvement of around 10 percentage points on
all evaluation sets. This indicates that FATTEN can actually
embed the pose information into features and effectively
“fatten” the data used to train the linear SVM. Second, and
most notably, FATTEN achieves a significant improvement
(about 5 percentage points) over AGA, and an even larger
improvement over the feature hallucination approach of
[49]. The improved performances of FATTEN over AGA
and AGA over hallucination show that it is important (1)
to exploit the structure of the pose manifold (which only
FATTEN and AGA do), and (2) to rely on models that
can capture defining properties of this manifold, such as

continuity and smoothness of feature trajectories (which
AGA does not).

While feature hallucination works well in the Ima-
geNet1k low-shot setup of [49], Table 4 shows only marginal
gains over the baseline (especially in the one-shot case).
There may be several reasons as to why it fails in this
setup. First, the number of examples per category (k in the
notation of [49]) is a hyper-parameter set through cross-
validation. To make the comparison fair, we chose to use the
same value in all methods, which is k = 19. This may not
be the optimal setting for [49]. Second, we adopt the same
number of clusters as used by the authors when training
the generator. However, the best value may depend on the
dataset (ImageNet1k in [49] vs. SUN-RGBD here). Without
clear guidelines of how to set this parameter, it seems
challenging to adjust it appropriately. Third, all results of [49]
list the top-5 accuracy, while we use top-1 accuracy. Finally,
FATTEN takes advantage of pose and depth to generate
features, while the hallucination feature generator is non-
parametric and does not explicitly use this information.

The improvement of FATTEN over AGA can most likely
be attributed to (1) the fact that AGA uses separate synthesis
functions (trained independently) and (2) failure cases of
the pose/depth predictor that determines which particular
synthesis function is used. In case of the latter, generated
features are likely to be less informative, or might even
confound any subsequent classifier.

6.3 Augmentation with Meta-Learning
The experiments above show the effectiveness of pose
guided data augmentation. However, the classifier is only
trained a posteriori, on the augmented data. In this section,
we evaluate the few-shot recognition problem with meta-
learning, where the two are optimized jointly. Following
the notations of Section 6.2, we use S during training, and
Ti(i = 1, 2, 3) during testing.

6.3.1 Implementation
Meta-training involves the training of both feature extractor
and classifier. We adopt the structure and fine-tune the
parameters of the feature extractor used in Section 6.2 except
the last fc layer, which is dicussed in Section 6.3.3. During
meta-training, per episode, we sample Mtr and Mte from
S , and calculate the meta loss. To thoroughly evaluate the
effectiveness of meta-learning with data augmentation, we
propose three different meta-learning setups. M: a meta-
learner is trained on S without data augmentation. The meta
loss is calculated on Mtr and Mte with (13) or (15). G+M: a
meta-learner is trained on augmented data. All data points
in Mtr are first augmented by FATTEN to assemble Maug

tr .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
One-shot recognition accuracy under three meta-learning setups. Accuracies (in %) are averaged over 500 random runs. SVM denotes a linear

SVM trained on single instances of each class. G+SVM denotes a linear SVM trained on augmented instances of each class.

M G+M GM+M Imag. [22] SVM G+SVM

T1 (10) Prototypical 44.52 33.26 46.78 43.13 33.74 44.99Relation 41.25 36.75 44.45 43.86

T2 (10) Prototypical 34.22 23.69 37.08 31.64 23.76 34.70Relation 31.74 26.73 35.99 34.80

T3 (20) Prototypical 28.79 19.30 35.89 32.52 22.84 32.20Relation 34.02 27.71 33.74 29.01

TABLE 6
One-shot recognition accuracy of the ”GM+M” setup for different
embedding dimensions. Accuracies (in %) are averaged over 500

random runs.

Dimension 64 256 1024 4096

Prototypical 45.07 46.78 43.00 40.39
Relation 42.59 43.39 43.82 44.45

A meta loss is calculated on Maug
tr and Mte with (13) or (15).

Only the feature extractor and the meta-learning classifier
are updated according to the loss. GM+M: A meta-learner
is trained together with a data generator. All data points in
Mtr and Mte are first augmented by FATTEN to assemble
Maug
tr and Maug

te . The loss is calculated on Maug
tr and Maug

te

with (16). Both the meta-learning classifier and the generator
are updated according to the loss.

All meta-learning setups are tested with both the Pro-
totypical [21] and the Relation Network [47]. All meta-
training parameters are those in the original papers with
exception of the feature space dimension, which is discussed
in Section 6.3.3. During testing, 1 instance per class is
randomly sampled from Ti to form a 1-shot problem, and
the remaining samples are used as testing set. The average
accuracy over 500 episodes of different random samples is
reported, to reduce the effects of randomness.

6.3.2 Results
Table 5 lists the averaged results for all three setups and
two meta-learners. These are compared to the recent Imag-
inary [22] meta-learning based data augmentation method.
Two baselines, SVM on 1-shot and SVM on augmentation,
are also listed for comparison.

The Table 5 supports several conclusions. First, both
the Prototypical and the Relation Network perform much
better than the SVM, even without data augmentation.
Second, when synthesized features are directly applied to
the classifier, both meta-learning structures have a big per-
formance drop. We believe this is due to mismatching.
Because the data augmentation module is not optimized
for the classifier, the synthesized features are not useful for
meta-learning. Third, the performance of both meta-learners
improves substantially, when data augmentation module
and meta-learner are trained jointly. This again illustrates
the benefits of data augmentation with FATTEN.

Surprisingly, the imaginary structure does not always
outperform the meta-learner itself. This observation is not

consistent with the results of [22]. We believe this is due to
the difficulty of the dataset. Unlike ImageNet1k, our sun-
rgbd dataset only has 19 training classes. The may not
create the data diversity needed by Imaginary to learn a
good generator. This is less of a problem for FATTEN since,
unlike unsupervised generators, it uses pose information as
extra supervision. In result, it can generate more meaningful
augmented data even for a limited meta-training set.

6.3.3 Ablation Study on Meta-learner Structure
Both prototypical and relation network use a feature em-
bedding fφ to map the high-dimensional input features into
a low-dimension latent feature space. While the dimensions
of this space are usually small (64) for meta-learning, this
may not be ideal when the data augmentation module
is introduced. Since the synthesized features are 4096 di-
mensional, we ablate the latent space dimension of the
”GM+M” configuration for the four dimensions reported
in Table 6. All experiments are carried out on test set T1.
These results show that the relation network benefits from
a larger dimension, while the prototypical network prefers
a lower dimensional embedding. It can also be seen that the
prototypical network is much more sensitive to embedding
dimension. For fair comparison, we use a 256-D prototypical
and a 4096-D relation network in all experiments of Table 5.

6.4 Single-View Reconstruction

We next consider the task of single-view reconstruction.

6.4.1 Dataset
We use the 13 categories of ShapeNet [39] with more
than 1, 000 shapes each, and the rendered views from 3D-
R2N2 [40]. 80% of the objects from all categories are used
for training, and the remaining for testing. Each object
has 24 2D images rendered from random camera angles.
During testing, the last generated view of each object is
used as input. A symmetric Chamfer Distance is used for
quantitative evaluation.

6.4.2 Implementation
The BSP-Net is first trained as in [44] and then frozen. A set
of shape codes {zi} is extracted from all 2D views in the
training set and a set of ground-truth shape codes {zi,gt}
from the corresponding 3D shapes. For each 2D view, the
azimuth angular range of [0◦, 360◦] is divided into 12 non-
overlapping intervals of size 30◦ each. These intervals are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Chair Bench Table

Input

BSP-Net

BSP-FAT

Ground
Truth

Fig. 6. Examples of 3D reconstruction. A chair, a bench and a table
object are shown. For all objects, the figure shows the input image
together with the original BSP-Net results, results of BSP-FAT, and the
ground truth.

used by the cross-entropy loss for pose training and the one-
hot encoding of FATTEN.

A pose training set {(zi, pi)} is composed by shape
codes and the corresponding discrete pose labels. The pose
predictor is trained on {(zi, pi)} with a learning rate of 0.01
for 100 epochs. The training set {(zi, tp, zi,gt)|p = 0, . . . , 11}
of FATTEN, where tp is the one-hot encoding of pose p, is
composed by all possible combinations of shape codes and
target poses. FATTEN is then trained with a learning rate of
0.01 for 200 epochs, using λ = 0.01 in (22).

During inference, a shape code z is combined with all
possible target poses {tp|p = 0, . . . , 11} to obtain a set of
synthesized features {zp|p = 0, . . . , 11}. The average of
the features in this set is used by the BSP-Net decoder to
reconstruct the 3D shape.

6.4.3 Results
The combination of BSP-Net and FATTEN, denoted BSP-
FAT, is compared to Atlas [41], OccNet [42], IM-Net [43],
and the baseline BSP-Net model [44]. The pytorch code pro-
vided by the authors of the BSP-Net is used to implement
the model. This gives slightly different results from those
reported in their paper, which are produced with tensor-
flow code. We report the pytorch results for comparison,
and also include the original results for reference.

The overall and category performance are shown in
Table 7. BSP-FAT achieves the best overall performance and
the best or the second best result in 10 of the 13 categories.
When compared to BSP-Net, from which it differs only by
addition of FATTEN feature augmentation, it has improved
performance in 12 of the 13 categories. This shows that
FATTEN can stably improve single-view reconstruction.

6.4.4 Ablations
We first compare different choices of shape code reduction.
In addition to average pooling, we test max pooling, an MLP
with two fully-connected layers, and an LSTM similar to
that of [40]. In the cases of MLP and LSTM, the networks
are included in the training. Table 8 shows that none of these
choices outperforms average pooling. Further examination
of the MSE distance between predicted and ground truth
shape code, shows that only average pooling decreases the
MSE distance of the original BSP-Net. We next consider how
the training MSE loss varies with λ in (22). Table 9 shows
that when λ is too large, giving the pose prediction too
much weight, the shape code cannot be trained to produce a
low MSE error, which is important for good reconstruction
performance.

6.4.5 Visualization
Figure 6 shows some typical examples of how pose transfer
improves single-view reconstruction. All three objects are
reconstructed from a view where part of the object is barely
visible or ambiguous. For example, the chair has a footrest
beam on the front, of which only a very small portion is
visible in the image. The original BSP-Net reconstruction
fails to recover this shape feature. This is not the case
when FATTEN is used, since the beam can be recovered
by pose transfer from other views. Similarly, the table has
an underlying beam that is hard to identify in the image,
but recovered by FATTEN. For the bench, the input view
is such that the right part of the bench can be confused for
a small table, which results in the wrong reconstruction by
the BSP-Net. FATTEN corrects this problem by pose transfer,
leveraging the fact that this ambiguity does not occur in
other views. These examples show that the perceptual gains
of FATTEN are even larger than the gains in Chamfer
distance suggest. Frequently, the reconstructions improve
by addition of shape features, such as the footrest above,
that can occupy few voxels but are semantically significant.

7 CONCLUSION

The proposed architecture to data augmentation in feature
space, FATTEN, aims to learn trajectories of feature re-
sponses, induced by variations in image properties (such
as pose). These trajectories can then be easily traversed
via one learned mapping function which, when applied to
instances of novel classes, effectively enriches the feature
space by additional samples corresponding to a desired
change, e.g., in pose. This “fattening” of the feature space is
highly beneficial in situations where the collection of large
amounts of adequate training data to cover these variations
would be time-consuming, if not impossible. In principle,
FATTEN can be used for any kind of desired (continuous)
variation, so long as the trajectories can be learned from
external data. By discretizing the space of variations, e.g.,
the rotation angle in case of pose, we also effectively reduce
the dimensionality of the learning problem and ensure that
the approach scales favorably w.r.t. different resolutions of
desired changes. Finally, it is worth pointing out that feature
space transfer via FATTEN is not limited to object images;
rather, it is a generic architecture in the sense that any
variation could, in principle, be learned and transferred.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 7
Single-view reconstruction results per category and overall. Chamfer Distance is scaled by 1, 000. BSP-Net* denotes results from original paper,

BSP-Net those of our implementation. Best result in green, second best the best in red.

Method airplane bench cabinet car chair display lamp speaker rifle couch table phone vessel Overall

Atlas 0.587 1.086 1.231 0.799 1.629 1.516 3.858 2.328 1.001 1.471 1.996 1.048 1.179 1.487
OccNet 1.534 3.220 1.099 0.870 1.484 2.171 12.528 2.662 2.015 1.246 3.734 1.183 1.691 2.538
IM-Net 2.211 1.933 1.902 1.390 1.783 2.370 6.387 3.120 2.052 2.344 2.778 2.268 2.385 2.361
BSP-Net* 0.759 1.226 1.188 0.841 1.340 1.856 3.480 2.616 0.888 1.645 1.643 1.383 1.585 1.432
BSP-Net 0.713 1.362 1.184 0.864 1.386 1.929 4.179 2.585 0.881 1.627 1.641 1.536 1.420 1.477

BSP-FAT 0.636 1.251 1.132 0.831 1.274 1.692 4.518 2.398 0.797 1.464 1.499 1.321 1.301 1.391

TABLE 8
Single-view reconstruction with different shape code reduction

procedures.

Method BSP-Net av pool max pool MLP LSTM

Chamfer 1.477 1.391 1.723 1.456 1.472
MSE 0.0092 0.0083 0.0102 0.0091 0.0092

TABLE 9
MSE loss of the shape code for different λ.

λ 1 0.5 0.1 0.05 0.01

MSE 0.0252 0.0234 0.0155 0.0126 0.0090

REFERENCES

[1] J. Deng, W. Dong, R. S. L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in CVPR, 2009.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.

[3] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” CoRR,
vol. arXiv:1409.1556v6, 2014.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[5] K. He, X. Zhang, S.Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[6] S. Nene, S. Nayar, and H. Murase, “Columbia object image li-
brary,” Columbia University, Tech. Rep. CUCS-006-96, 1996.

[7] Y. LeCun, F. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in CVPR,
2004.

[8] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object
detectors from 3D models,” in ICCV, 2015.

[9] H. Su, C. Qi, Y. Li, and L. Guibas, “Render for CNN: Viewpoint
estimation in images using cnns trained with rendered 3D model
views,” in ICCV, 2015.

[10] R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng, “Zero-shot
learning through cross-modal transfer,” in NIPS, 2013.

[11] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based
classification for zero-shot visual object categorization,” TPAMI,
vol. 36, no. 3, pp. 453–465, 2014.

[12] B. Romera-Paredes and P. Torr, “An embarrassingly simple ap-
proach to zero-shot learning,” in ICML, 2015.

[13] K. Tang, M. Tappen, R. Sukthankar, and C. Lampert, “Optimizing
one-shot recognition with micro-set learning,” in CVPR, 2010.

[14] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wier-
stra, “Matching networks for one shot learning,” in NIPS, 2016.

[15] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in
ICML, 2016.

[16] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in ICLR, 2017.

[17] M. Dixit, R. Kwitt, M. .Niethammer, and N. Vasconcelos, “AGA:
Attribute-guided augmentation,” in CVPR, 2017.

[18] B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos, “Feature
space transfer for data augmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
9090–9098.

[19] S. Thrun, “Lifelong learning algorithms,” in Learning to learn.
Springer, 1998, pp. 181–209.

[20] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1126–1135.

[21] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Advances in Neural Information Processing Systems,
2017, pp. 4077–4087.

[22] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot
learning from imaginary data,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7278–7286.

[23] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: A deep representation for volumetric shape mod-
eling,” in CVPR, 2015.

[24] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3D classification and segmentation,”
CoRR, vol. arXiv:1612.00593v2, 2016. [Online]. Available:
http://arxiv.org/abs/1612.00593

[25] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in ICCV,
2015.

[26] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on
3D data,” CoRR, vol. abs/1604.03265, 2016. [Online]. Available:
http://arxiv.org/abs/1604.03265

[27] S. T. Roweis and L. K. Saul, “Nonlinear dimension-
ality reduction by locally linear embedding,” Science,
vol. 290, pp. 2323–2326, 2000. [Online]. Available:
http://science.sciencemag.org/content/290/5500/2323

[28] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Computation,
vol. 15, no. 6, pp. 1373–1396, 2003. [Online]. Available:
https://doi.org/10.1162/089976603321780317

[29] L. van der Maaten and G. Hinton, “Visualizing high-dimensional
data using t-SNE,” JMLR, vol. 9, pp. 2579–2605, 2008.

[30] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool,
“Hough transform and 3D SURF for robust three dimensional
classification,” in ECCV, 2010.

[31] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri, “3D
shape segmentation with projective convolutional networks,”
CoRR, vol. arXiv:1612.02808v3, 2016. [Online]. Available:
http://arxiv.org/abs/1612.02808

[32] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by in-
formation maximizing generative adversarial nets,” arXiv preprint
arXiv:1606.03657, 2016.

[33] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg,
“Transformation-grounded image generation network for novel
3d view synthesis,” in Proceedings of the ieee conference on computer
vision and pattern recognition, 2017, pp. 3500–3509.

[34] S.-H. Sun, M. Huh, Y.-H. Liao, N. Zhang, and J. J. Lim, “Multi-
view to novel view: Synthesizing novel views with self-learned

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

confidence,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 155–171.

[35] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Multi-view 3d
models from single images with a convolutional network,” in
European Conference on Computer Vision. Springer, 2016, pp. 322–
337.

[36] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View
synthesis by appearance flow,” in European conference on computer
vision. Springer, 2016, pp. 286–301.

[37] O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson, “Synsin: End-
to-end view synthesis from a single image,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 7467–7477.

[38] R. Tucker and N. Snavely, “Single-view view synthesis with
multiplane images,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 551–560.

[39] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet:
An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[40] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A
unified approach for single and multi-view 3d object reconstruc-
tion,” in European conference on computer vision. Springer, 2016,
pp. 628–644.

[41] T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry, “Atlas-
net: a papier-mâché approach to learning 3d surface generation
(2018),” arXiv preprint arXiv:1802.05384, vol. 11, 2018.

[42] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger, “Occupancy networks: Learning 3d reconstruction in
function space,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 4460–4470.

[43] Z. Chen and H. Zhang, “Learning implicit fields for generative
shape modeling,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 5939–5948.

[44] Z. Chen, A. Tagliasacchi, and H. Zhang, “Bsp-net: Generating
compact meshes via binary space partitioning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 45–54.

[45] C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic meta-
learning,” in Advances in Neural Information Processing Systems,
2018, pp. 9516–9527.

[46] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu,
S. Osindero, and R. Hadsell, “Meta-learning with latent
embedding optimization,” in 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=BJgklhAcK7

[47] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-shot
learning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1199–1208.

[48] H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang, “Finding task-
relevant features for few-shot learning by category traversal,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 1–10.

[49] B. Hariharan and R. Girshick, “Low-shot visual recog-
nition by shrinking and hallucinating features,” CoRR,
vol. arXiv:1606.02819v4, 2016. [Online]. Available:
https://arxiv.org/abs/1606.02819

[50] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 4367–4375.

[51] B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, “Few-
shot object detection via feature reweighting,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
8420–8429.

[52] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised repre-
sentation learning by predicting image rotations,” arXiv preprint
arXiv:1803.07728, 2018.

[53] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9729–9738.

[54] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
International conference on machine learning. PMLR, 2020, pp. 1597–
1607.

[55] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[56] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[57] W. E. Lorensen and H. E. Cline, “Marching cubes: A high reso-
lution 3d surface construction algorithm,” ACM siggraph computer
graphics, vol. 21, no. 4, pp. 163–169, 1987.

[58] S. Song, S. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D scene
understanding benchmark suite,” in CVPR, 2015.

[59] R. Girshick, “Fast R-CNN,” in ICCV, 2015.

Bo Liu Bo Liu is currently a PhD candidate at
Statistical Visual Computing Lab, Department
of Electrical and Computer Engineering at Uni-
versity of California, San Diego. His current re-
search is focused on computer vision and ma-
chine learning. Specifically, he is working on
few-shot learning, meta-learning and long-tailed
recognition.

Xudong Wang Xudong (Frank) Wang is a Ph.D.
student in the EECS Department at University
of California, Berkeley, co-advised by Prof. Stella
X. Yu and Prof. Michael Lustig. He received his
Master’s Degree in Intelligent Systems, Robotics
and Control at University of California, San
Diego, advised by Prof. Nuno Vasconcelos, and
Bachelor’s Degree from Tang Aoqing Honors
Program in Science at Jilin University. He was
a Staff Researcher at International Computer
Science Institute from 2019-2020.

Mandar Dixit Mandar Dixit received his PhD
from the University of California at San Diego
in 2018. He is currently a researcher in the
computer vision technology group at Microsoft,
Redmond. His research interests include in large
scale visual recognition, transfer learning and
meta learning.

Roland Kwitt Roland Kwitt is full professor for
machine learning in the Department of Com-
puter Science at the University of Salzburg,
Austria. His research spans multiple areas, but
mostly focusses on theoretical and practical as-
pects of learning methods that allow to leverage
and control structural characteristics of data.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Nuno Vasconcelos Nuno Vasconcelos received
the licenciatura in electrical engineering and
computer science from the Universidade do
Porto, Portugal, and the MS and PhD degrees
from the Massachusetts Institute of Technology.
He is a Professor in the Electrical and Com-
puter Engineering Department at the University
of California, San Diego, where he heads the
Statistical Visual Computing Laboratory. He has
received a NSF CAREER award, a Hellman Fel-
lowship, several best paper awards, and has

authored more than 150 peer-reviewed publications. He has been Area
Chair of multiple computer vision conferences, and is currently an As-
sociate Editor of the IEEE Transactions on PAMI. He is a Fellow of the
IEEE.

