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Abstract

We consider the design of vision-based control algo-
rithms for unmanned aerial vehicles (UAVs), so as to en-
able a UAV to autonomously follow a person. A new vision-
based control architecture is proposed with the goals of
1) robustly following the user and 2) implementing fol-
lowing behaviors programmed by manipulation of visual
patterns. This is achieved within a detection/tracking
paradigm, where the target is a programmable badge worn
by the user. This badge contains a visual pattern with
two components. The first is fixed and used to locate the
user. The second is variable and implements a code used to
program the UAV behavior. A biologically inspired track-
ing/recognition architecture, combining bottom-up and top-
down saliency mechanisms, a novel image similarity mea-
sure, and an affine validation procedure, is proposed to de-
tect the badge in the scene. The badge location is used by a
control algorithm to adjust the UAV flight parameters so as
to maintain the user in the center of the field of view. The
detected badge is further analyzed to extract the visual code
that commands the UAV behavior. This is used to control the
height and distance of the UAV relative to the user.

1. Introduction

Recent years have witnessed an explosion in consumer
unmanned aerial vehicles (UAVs), known as drones. Partic-
ularly interesting is the problem of person-following UAVs,
i.e. UAVs that can be programmed to follow a user. This has
many interesting applications. For example, a UAV could
track an athlete, acting as a “personal camera man.” The
resulting video could be used for entertainment (a football
game shot from the quarterback’s perspective), studying
athletes’ performance (recording a soccer player’s dribbles
and field position), etc. In search and rescue or firefight-
ing, a drone could hover above a first responder or fireman,
providing an expanded view of the scene. In the context of
assisted living, it could follow an elderly person, produc-
ing an alarm if the person falls. Finally, in a child safety
scenario, a drone could escort a child to or from school.

As drones decrease in size, many of these applications
could be implemented almost seamlessly, e.g. by fly-sized
UAVs. Currently, person following is only possible by
tracking user coordinates with GPS and cellphones [1]. In
addition to the well known unreliability of this solution in-
doors and in disaster relief scenarios, the applications above
require precise control of the relative positions of drone and
subject being tracked. The drone must sometimes stay in
front, other times behind, and sometimes above. In each
case, it may have to stay directly aligned with the subject,
e.g. immediately above the firefighter, or at an angle, e.g.
45

� above the soccer player, and track the subject from far
or close. For example, the “personal cameraman” should
stay close to record soccer dribbling technique and far to
record player positioning. Such precision in the control of
its position requires the UAV to precisely locate the user
in the scene, understand which way the user is facing, etc.
The UAV should also be able to figure out what to do by
simple visual inspection of the scene, e.g. through analy-
sis of user gestures or other form of visual input. Ideally, it
would even be “programmable” by manipulation of physi-
cal world objects, as this would place the technology at the
reach of users of all ages and technical skills.

While these goals could, in principle, be achieved by
endowing drones with computer vision, previous work
in robotic vision has emphasized autonomy, namely au-
tonomous navigation based on simultaneous localization
and mapping [11, 4], visual odometry [26, 23, 18], and
obstacle avoidance [28, 24]. These, however, are not ma-
jor requirements for the applications above where, rather
than full-blown autonomy, the goal is to follow a person ro-
bustly, independently of the person’s pose, time of day, etc.
Similarly, complex user interaction, such as gesture [8] or
emotion recognition [9] is not critical for person-following
robotics. In this context, human-robot interaction reduces to
simple “drone behavior programming” commands, such as
specifying whether to collect video from the person’s front
or back, the person-following angle and distance, and sim-
ple “virtual fence” commands preventing drone access to
restricted areas. This programming should be possible by
manipulation of simple visual patterns.
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Figure 1: Vision-based UAV control architecture. The user wears a badge, which is detected and localized in
real-time. The differences between the badge position/size and pre-specified target values act as error signals
for a control algorithm. This issues drone flight commands, so as to align badge position and size with target
values. The badge displays a control (control bits) and a behavior program (program bits) pattern. The former
is used for badge detection, the latter (binary code for 48, 573 in this example) to specify drone behaviors.
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Figure 2: Margin similarity. The aver-
age intensity ⇠i of each badge square
is computed. Blocks corresponding to
white (black) squares are denoted pos-
itive (negative). The margin is the dif-
ference between the ⇠i of the darkest
positive and brightest negative blocks.

In this work, we propose a computer vision-based UAV
control architecture for robust person-following that sup-
ports behavior programming by manipulation of visual pat-
terns. The architecture is illustrated in Figure 1. It achieves
the two goals via the introduction of a programmable visual
badge, to be worn by the user. The badge, which is inspired
by QR codes, depicts a visual pattern with two components.
The first (control bits) is fixed and used to locate the badge.
The second (programming bits) is variable, implementing a
code used to program the drone behavior.

A biologically-inspired computer vision architecture,
composed of two saliency mechanisms, is then proposed
to detect and localize the badge in the visual scene. This
includes salient point detection, a novel image similarity
measure, and an affine validation procedure. The badge lo-
cation is fed to a control mechanism that adjusts the drone
flight so as to maintain the badge in the center of the field
of view. The located badge is further analyzed to extract the
behavior programming code, which determines parameters
such as drone altitude and distance to the user. Experiments
show that the proposed architecture enables a drone to fol-
low a user in real-time, over a range of scenes, distances,
and lighting conditions. In fact, by displaying the badge on
a cellphone screen, it is even possible to track the user when
there is no ambient light. Furthermore, with the proposed
behavior programming, the drone can follow and capture
footage of the user over a range of distances and angles.

2. Related work

Robotic vision has mostly focused on autonomous navi-
gation, namely problems such as simultaneous localization

and mapping [11, 4], visual odometry [26, 23, 18], and ob-
stacle avoidance [28, 24]. Autonomous navigation is not
critical for person-following, which raises two other vision
problems. The first, vision for control, addresses the local-
ization and tracking of the person. The second, vision for
behavior programming, uses visual properties of the tracked
object to determine the person-following behavior.

Vision for control is closely related to object recogni-
tion [21, 32, 10, 14, 13]. Despite impressive recent gains
in deep learning [19], this is still a difficult problem, espe-
cially in the presence of wild variations of pose and light-
ing and under real-time constraints. Object recognition
can also place restrictive constraints on person-following.
For example, face detection [32] does not support person-
following from behind. Vision for behavior programming is
less related to standard computer vision problems, although
it could be framed as action recognition [30, 33, 20]. For
example, a pedestrian detector [10, 12, 7] could be used for
person-tracking and gesture analysis [35, 25] for behavior
programming. However, these operations are difficult to im-
plement in real-time, especially when the relative positions
of user and drone vary significantly. Gesture vocabularies
are also cumbersome to learn and it can be difficult to dis-
criminate between more than a few gestures.

In summary, while computer vision methods could be
applied to person-following, it is not clear that they could
withstand the variations of lighting and pose of this prob-
lem or meet its real-time constraints. In this work, we ad-
dress these problems by 1) restricting the object to follow
to a badge and 2) proposing a novel badge following pro-
cedure inspired by biological vision, namely the attention



mechanisms that direct human vision to salient regions of
the visual field [6]. This is inspired by psychology literature
showing that saliency is a function of both the visual scene
and the task executed by the human subject [36, 31, 34].
The scene-based component, known as bottom-up saliency,
is due to the fact that regions of the visual field different
from the background scene draw our attention. Mathemati-
cal models of saliency account for this with center-surround
differences [17, 15, 6], modeling saliency as the difference
between the feature responses of one region and those of
the surrounding neighborhood. The task-dependent com-
ponent, known as top-down saliency, reflects the fact that
saliency computations take into account the goals of high-
level areas of the brain. For example, while a subject asked
to estimate people’s ages will mostly fixate on their faces,
he will instead fixate on their clothes when asked to esti-
mate people’s wealth [36]. We propose an attention mecha-
nism based on the Harris corner detector [16] for bottom-up
saliency and a procedure inspired by the Viola-Jones face
detector [32] and the the local binary pattern (LBP) descrip-
tor [29] for top-down saliency.

3. Proposed approach

We now discuss the proposed UAV control architecture.

3.1. Person-following architecture

The proposed person-following architecture is summa-
rized in Figure 1. Video is captured by the UAV-mounted
camera and transmitted, via Wifi, to a laptop1. A computer
vision module is used to detect a badge worn by the user.
The badge’s location in the image is then determined, a
bounding box placed around the badge, and two measure-
ments made: 1) the distance from the center of the box to
the center of the image and 2) the size of the box. They
are fed to a control module which issues motion commands
to the UAV. The UAV responds with movements that align
the bounding box position and size with a reference target.
This target is programmable by varying the appearance of
the badge, with different badge appearances corresponding
to different drone behaviors. Current drone behavior param-
eters are target location and size and drone altitude, control-
ling drone position relative to the user.

Figure 1 shows the badge used in this work. This is a dis-
tinctive object, which can be affixed to different locations of
the human body to support different drone following behav-
iors. As shown in the figure, it enables the simultaneous
solution of the two vision problems of person-following,
through the combination of a fixed and a programmable
visual pattern. The fixed component (denoted as “con-
trol bits”) is used to solve the control problem. The pro-
grammable component (“program bits”) instructs the drone

1All processing could in principle be done by the UAV. However, we
had no access to the CPU of the Parrot AR.Drone 2.0 used in this work.

on how to behave. By adopting a sufficiently rich visual pat-
tern, the behavior vocabulary can be as large as desired. Fi-
nally, since the badge can be active, e.g. displayed through
a cellphone screen, it is even possible to perform person-
following in the absence of environment light (e.g. at night)
or to change the behavior program in real-time.

In our implementation, the badge displays the visual
code shown on the left of Figure 1. This consists of 25

bits, implemented with white or black squares. From top-
left (bit b0) to bottom-right (bit b24), these bits specify the
binary code c = (b24, . . . , b0). Bit bi has value 0 (1) when
the square is black (white). The two vision modes are sup-
ported by combining two bit-patterns. The 9 squares in the
‘X’ configuration shown in the middle of the badge inset
are bits reserved for control purposes. The UAV detects
this fixed pattern to follow the person. The remaining 16

squares form a variable binary code, used for programming
UAV behavior, supporting 2

16
= 65, 536 behaviors.

There are several technical challenges associated with
the implementation of this architecture. First, the diffi-
culty of controlling a dynamic system, such as a UAV, in-
creases substantially as the number of scene measurements
decreases and/or there is delay. To be effective, the com-
puter vision system must operate in real-time, ideally at
30�40 frames per second. Second, tracking the badge over
a reasonable range of distances requires high-resolution im-
ages and badge detections over multiple image scales. In
this work, we consider 720 ⇥ 1280 pixel images and 50

badge sizes. Under the standard sliding window paradigm,
this implies the vision system needs to classify 1.8 trillion
windows per second. Third, the UAV frequently operates
in cluttered scenes, against complex backgrounds, under
a wide range of conditions, from over-exposed outdoors
scenes to low-lit indoor environments, or even in noctur-
nal scenes with little artificial light. Fourth, UAV move-
ment can induce significant image blur. Due to all these
factors, badge detection is far from trivial. For example,
our preliminary experiments showed that the OpenCV im-
plementations of the Viola-Jones face [32] and HoG pedes-
trian detector [10] were a few orders magnitude slower than
needed for this application and too sensitive to motion blur.
For deep learning [19], the real-time constraint would be an
even larger challenge.

3.2. Biologically-inspired badge detection

We propose a biologically-inspired architecture, using an
attention mechanism composed of bottom-up and top-down
saliency modules.

3.2.1 Bottom-up saliency

A first attention stage implements a bottom-up saliency de-
tector based on the Harris interest point operator [16]. This



exploits the fact that the badge is dissimilar from natural
backgrounds because it contains an unusually large num-
ber of corners. Since the Harris operator responds strongly
to corners, it elicits a strong response in the badge area.
To measure the density of interest points, the score map
H(u, v) produced by the Harris detector, where (u, v) are
the pixel coordinates, is thresholded. A square window
W(u, v), with 1/20th of the image width, is then placed
around each image position and the number of salient points
counted with

s(u, v) =
X

(p,q)2W(u,v)

u[H(p, q)� Th], (1)

where u(x) = 0 for x < 0 and u(x) = 1 otherwise. This
operation is performed efficiently with integral images [32].
The threshold Th is chosen adaptively so as to guarantee
that the number of saliency peaks surviving the bottom-up
stage is less than 0.5% of the image size. This is critical
to achieve the desired frame rates. In general, the saliency
peaks of (1) cover the badge region. However, there are also
many peaks in the background, due to areas of clutter.

3.2.2 Top-down saliency

Salient regions are passed to the top-down attention mecha-
nism. This is a classifier

h(x) = sgn[�(w, x)� Ta], (2)

where x is the image patch extracted around an image loca-
tion, w the control-bit template shown in the badge inset of
Figure 1, �(w, x) a measure of similarity between w and x,
such as the dot-product < w, x >, and Ta a threshold.

For computational efficiency, the similarity function ex-
ploits the fact that the control pattern is a sum of 9 box-like
Haar wavelets

w =

X

l

alh
(l) (3)

where al 2 {�1, 1} is the coefficient of wavelet h(l) and
h(l) a binary function that identifies one of the 9 control
squares. The dot-products

⇠l =< h(l), x > (4)

between each of the Haar wavelets and the patch x are first
computed. These are proportional to the average image in-
tensity of x inside each square. As in [32], each is evaluated
with four additions, using integral images. The similarity
function then reduces to

�(w, x) = �(a, ⇠) (5)

where �(a, ⇠) is a measure of similarity between the vector
a of wavelet coefficients al of the template w and the vector
⇠ of wavelet coefficients ⇠l of the patch x. The evaluation

complexity of �(·, ·) is equal to that of �(·, ·) plus 36 addi-
tions, independently of the sizes of x and w. This is critical
to enable the computation of (2) for many badge sizes in
real time. For example, when �(·, ·) is the dot product, (2)
requires 45 adds and 9 multiplies per patch x.

The detection is repeated for multiple sizes of the patch
x. For each size, the threshold Ta is set to the maximum
value of the score �(w, x), if this is positive, and zero oth-
erwise. This guarantees that at most one badge location is
selected per size. The size of highest score is finally se-
lected, if this score is positive. Otherwise, it is concluded
that there is no badge in the video.

3.2.3 Similarity functions

Initial experiments, using the dot-product as similarity func-
tion �(., .) produced somewhat disappointing results. This
is due to the fact that, in this case,

�(a, ⇠) = �dp(a, ⇠) =
X

i

ai⇠i =
X

i2I+

⇠i �
X

i2I�

⇠i (6)

where I+ (I�) is the set of indices of the white (black)
badge squares. Consider a vector of ⇠i that produces a
mildly negative score, due to poor consistency between the
white/black squares of w and the image intensities of x. In-
creasing a single ⇠i in the first summation (e.g. a very bright
image region that aligns with a white block) can be enough
to produce a high similarity score, even though the simi-
larity is weak for all remaining blocks. Noting that (6) is
a measure of the difference between the average image in-
tensities of the blocks in I+ and those in I�, suggests the
more robust similarity function

�m(a, ⇠) = min

i2I+
⇠i �max

i2I�
⇠i. (7)

This measure is illustrated in Figure 2. Denote the blocks
of I� (black badge squares) as negative and the blocks of
I+ (white squares) as positive. As shown in the figure, (7)
equates similarity to the difference between the less posi-
tive block (the darker among positive blocks) and the less
negative block (the brighter among negatives). Since, in
machine learning, this is called “the margin” for the classi-
fication of the blocks, we denote (7) as the margin similar-
ity function. Note that, if the margin score is greater than
zero, there is a threshold T such that ⇠i > T, 8i 2 I+ and
⇠i < T, 8i 2 I�. This implies that the image patch x can
be thresholded so as to produce an exact replica of w. This
property does not hold for dot-product similarity. Further-
more, the margin measure is insensitive to variations of im-
age intensity that do not affect the less positive and negative
blocks. For example, the intensity of the brightest and dark-
est blocks play no role in this measure. This increases ro-
bustness to lighting variations. These properties are similar
to those of LBP [29]. We exploit them to produce a robust
template matcher, rather than a robust image descriptor.



3.3. Affine validation and behavior programming

While the largest detection score �⇤ across patch sizes
tends to occur at the badge location, when there is a badge
in the image, it is more difficult to determine badge absence.
This is because low positive values of �⇤ can be caused
by both 1) background regions that resemble the control
pattern, or 2) poor badge alignment (camera-badge orien-
tation), motion blur, and video compression noise. To over-
come this ambiguity, the badge detection is post-processed
by an affine validation procedure with three steps.

First, the detected image patch is cropped and intensity
normalized to [0, 255], to compensate for scene illumina-
tion. Second, the patch is resized to 64 ⇥ 64 pixels and an
affine transformation ⌧ is used to bring it into alignment
with a reference pattern p. This is a synthetic 64 ⇥ 64

pixel badge replica, with intensities 0 or 255 (as defined
by the badge code), smoothed with a 5-tap Gaussian fil-
ter. Finally, the similarity score � (⌧(x), p) between the
affine warped patch ⌧(x) and the reference pattern is com-
puted. In our experience, this is a very robust indicator
of badge presence, taking positive (negative) values when
the badge is visible (not visible). A badge detection is de-
clared if � (⌧(x), p) > 0. Since this procedure only requires
the computation of an affine transformation of one 64⇥ 64

patch, it adds negligible complexity to the detection.
This affine validation procedure can be extended, in a

straightforward manner, to support behavior programming.
In this case, a set of reference patterns {pi} are generated
(one per badge programming code defined by the applica-
tion) and the affine validation stage is repeated for each pi.
The pattern pi⇤ of highest score

i⇤ = argmax

i
� (⌧i(x), pi) (8)

is finally selected and the corresponding behavior detected
if � (⌧i⇤(x), pi⇤) > 0. Note that this operation requires the
computation, per image, of a number of affine transforma-
tions equal to the number of programmable behaviors.

3.4. Backtracking to improve detection rate

The inclusion of affine validation makes the detector
very robust. In all our experiments, it has not produced a
single false positive. There can, however, be misses of two
types. Close misses occur when the badge is detected at one
patch size, but with a score weaker than a spurious detec-
tion at some other size. They tend to occur when the badge
suffers moderate amounts of blurring or perspective distor-
tion. Far misses are the cases where the true badge location
is not detected for any patch size.

To correct for these misses, we implement two back-
tracking procedures. Close misses are addressed by an
affine backtracking stage, which applies the validation pro-
cedure of Section 3.3 to the best patch of each size. This is

Figure 3: Example detections (green bounding boxes) in the badge de-
tection dataset. Note the diversity of subject orientations, distance to the
camera, and background clutter.

usually sufficient to rerank the detections of different sizes
so that the true badge location receives the top score. Far
misses are addressed by discarding the detections of Sec-
tion 3.2 altogether, and repeating the process for a full badge
detector. This consists of repeating the steps of (2) to (7)
for a template w that includes the complete badge (control
+ program bits) of Figure 1, rather than just the control pat-
tern. In this case, there are 25 (rather than 9) blocks and
the complexity increases to 125 adds and 25 multiplies per
patch. If the applications involves behavior programming
with C badge codes, the process must be repeated C times.
Overall, this process has close to 3C times the complexity
of the procedure of Section 3.2.

3.5. Badge tracking and drone control

Once detected, the badge is tracked in subsequent
frames. The proposed tracker follows the tracking by de-
tection paradigm [5, 22], applying the top-down saliency
detector to each video frame to localize the badge. This is,
however, constrained by a focus of attention (FoA) mech-
anism that limits the search area to a window around the
previous detection. In our implementation, this window has
roughly a quarter of the image size. The number of badge
sizes is also reduced to 20, around the size of the last detec-
tion. The FoA mechanism exploits the fact that both drone
and user are constrained by the laws of Newtonian physics,
which limit badge motion between frames. Besides reduc-
ing tracking complexity, it prevents large jumps to false pos-
itives. It also leverages the robustness with which badge ab-
sence is detected. When a loss of track is declared, the FoA
is disabled and the drone is ordered to hover until a new de-
tection occurs, giving the user the opportunity to get back
on frame.

The control loop is implemented with a proportional-
integral-derivative (PID) controller [27, 3]. Given target
g(t) and measurement m(t), at time t, the control is

�(t) = Kpe(t) +Ki

Z t

0
e(⌧)d⌧ +Kd

d

dt
e(t), (9)



Table 1: Average time (T) and detection rate (DR) of different detectors.
1 code

dot product margin
T (ms) DR T (ms) DR

TD 407 68.5 369 68.1
TD + AB 422 87.2 396 86.6

FBD 736 58.6 922 86.6
FBD + AB 735 58.6 915 85.7
TD + FBD 601 66.5 572 90.1

TD + FBD + AB 591 66.5 589 93.0

2 codes
dot product margin

T (ms) DR T (ms) DR
TD 393 68.1 360 68.2

TD + AB 447 82.8 412 87.3
FBD 875 46.0 1300 86.6

FBD + AB 853 46.0 1319 85.1
TD + FBD 685 64.7 700 89.8

TD + FBD + AB 682 64.7 741 93.0

where Kp,Ki, and Kd are the proportional, integral, and
derivative gains, respectively, and e(t) = g(t) � m(t) the
measurement error. While the proportional term Kpe(t) de-
pends on the current error, the integral term Ki

R t
0 e(⌧)d⌧

depends on accumulated past errors, and the derivative term
Kd

d
dte(t) is a prediction of future errors, based on current

rate of change. Three independent PID controllers were im-
plemented, each acting on the drone speed along one of the
3 spatial directions - forward/backward motion, left/right
motion, and elevation. Elevation was not controlled through
visual measurements, using instead the drone altitude sen-
sor and a target altitude set by the behavior program. The
measurement signals for left-right and forward-backward
motion are the location and size of the badge bounding box,
respectively. The targets for these variables are specified by
behavior programming. The control gains Kp,Ki,Kd were
set by trial and error.

4. Experiments

Several experiments were performed to evaluate the ro-
bustness of the proposed UAV control algorithm.

Detection experiments: Badge detection accuracy was
evaluated with a dataset of images recorded by a drone fly-
ing in outdoors scenes with substantial clutter. Several data
collection flights were performed, from which about 10,000
images were collected. From these, we selected 312 of
the most challenging images, covering a diverse range of
distances and angles between user and drone, background
scenes with substantial clutter (trees, buildings, etc.), and
sometimes exhibiting significant amounts of motion blur
and compression artifacts2. Some of the images in this
badge detection dataset are shown in Figure 3. Note that
video quality can decrease substantially depending on bat-
tery level, distance between drone and laptop, wifi inter-

2All datasets assembled for this work are publicly available at [2].

Figure 4: Badge detections over a set of images collected for different
badge-drone distances and scene illuminations. Top: images collected at
the same distance for different illuminations. Bottom: images collected at
multiple distances.

ference from nearby devices, etc. An example of a mildly
degraded image is shown in Figure 2. The dataset was man-
ually annotated with badge bounding boxes.

Six detector configurations, involving combinations of
the top-down detector (TD) of Section 3.2.2, the full badge
detector (FBD) of Section 3.4, and the affine backtracking
(AB) stage of the same section, were tested. These combi-
nations are listed in Table 1. When more than one stage was
used, the methods are listed in order of application. For ex-
ample, the TD+FBD detector applied the TD detector first,
relying on the FBD stage only when TD could not find the
badge. The detections of all stages were affine validated,
as discussed in Section 3.3. The detection performance of
different algorithms was measured with the overlap crite-
rion commonly used to evaluate object detectors [13]. This
computes the ratio O =

A(G\D)
A(G[D) , where A(G \ D) is the

intersection area of ground truth and detection windows and
A(G[D) the area of their union, and accepts a detection if
O > 0.5. Performance is summarized by the detection rate

DR =

#detections

#images
. (10)

Table 1 summarizes the performance of the different
methods in terms of both average run-time (T) per image3

(in milliseconds) and average detection rate (DR) across the
dataset. Results are shown for the two similarity functions
(dot product and margin) of Section 3.2.3. The dataset in-
cludes images of badges with two different programming
codes (65, 535 as in Figure 1 and 48, 573 as in Figure 2).
Performance was measured for two settings: 1) badge code
known a priori, and 2) badge code unknown. In the first
setting, the drone has a single behavior, which is pre-
programmed. In the second, it can switch between two be-
haviors in real time. In this setting, the detection algorithm
has to search over the two badge codes. We have not yet
experimented with more complex scenarios, involving mul-
tiple codes. Code 65, 535 is, in our experience, the most
challenging to detect, because it corresponds to a program
bit pattern of all 1s. Since the associated visual badge pro-
gram pattern consists of “all white” blocks, it is quite con-

3All experiments were performed on a MacBook Pro 2015, 2.5GHz.
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Figure 5: Tracking rate (left) and time (right) of the different detectors as
a function of scene lighting condition.

fusable with large bright image regions, that appear in white
walls, shirts, areas of sky, etc.

Several conclusions can be drawn from the table. First,
the margin similarity function is vastly superior to the dot
product. It improved the performance of nearly all detec-
tors, with gains as large as 26.8% for one code, and 40.2%
for two codes (FBD detector). Note that, for FBD, the dot-
product substantially underperformed in the two-code sce-
nario, where it tended to find regions of sky or walls as top
badge matches. On the contrary, the margin measure proved
very robust, achieving similar or identical results with one
or two codes, for all detectors. Second, all components of
Section 3.2 proved useful, with the TD+FBD+AB detector
achieving the top DR of 93%. Examples of its badge de-
tections are shown in Figure 3 and in [2]. For both 1 and
2 codes, the next best performance was the close to 90% of
TD+FBD. The weakest performer was TD, although its per-
formance increased substantially when combined with AB.
Finally, FBD was the most complex method, almost tripling
the complexity of TD. This was the fastest method, achiev-
ing speeds of 3 frames per second. TD+FBD+AB had inter-
mediate complexity. Note that these are times for very high
resolution images (720⇥1280) without the FoA mechanism
of Section 3.5. They are not the processing times of the full
system.

Tracking experiments: While rich in image artifacts, clut-
ter, etc., the badge detection dataset does not allow a precise
characterization of detection rate vs. variables such as dis-
tance and lighting (which are difficult to control outdoors).
Furthermore, since it only contains images, it cannot be
used to evaluate tracking performance, namely the impact
of the FoA mechanism of Section 3.5 in tracking complex-
ity. To overcome these problems, a tracking dataset was
collected in a cluttered garage. The badge was hung on a
wall with skateboards, wood panels, jump ropes, etc. lying
below it. The drone was then moved in the direction paral-
lel to the wall, at a nearly constant speed. To enable precise
control of its distance to the wall, the drone was either rolled
on an office chair or held by a person walking sideways. In
the first case the badge was aligned with the camera, but
in the second there was non-trivial in-plane rotation due to
the relative motion of the person’s hand and body. Figure 4
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Figure 6: Tracking rate (left) and time (right) of the different detectors as
a function of badge-drone distance.

presents typical images from this dataset.
Data was collected to test tracking robustness to scene

lighting and drone-badge distance. To evaluate robustness
to lighting, the garage was illuminated by two light sources,
sunlight from the left and a dim wall lamp to the right. Five
lighting conditions were created by incrementally opening
the garage door on the left. This is illustrated in the top row
of Figure 4, which shows images collected under three of
the lighting conditions. Under condition 1 (brightest, shown
on the left) the garage door was fully open, allowing bright
sunlight to cover the wall. This created a significant lighting
gradient from left to right. Since the drone camera gain ad-
justs to the brightest scene patch, the image would at times
be half dark and half bright. Under condition 5 (darkest,
shown on the right), the only light source was the lamp.
Intermediate conditions sometimes produced very uneven
light patterns (e.g. the image in the center) due to flow of
light through creaks in the semi open garage door. In these
experiments, the drone was kept at a constant distance of 9
ft from the badge.

To evaluate robustness to distance, the drone was placed
at five distances from the badge, ranging from 5�13 ft with
increments of 2 ft. This is illustrated in the bottom row of
Figure 4, where the leftmost image shows the shortest (con-
dition 1) and the rightmost image the largest (condition 5)
distance. As distance increased, the badge appeared smaller
and more clutter filled the frame. At smaller distances, the
badge moved much faster between frames.

A set of 10 videos were collected for the 5 light condi-
tions (one for chair, one for hand motion) and the 5 distance
conditions. Since one of the conditions (intermediate light
and distance) was shared by the two experiments, this lead
to a total of 18 videos. These were divided into 132 video
clips of 450 frames each. Bounding boxes were manually
produced for keyframes 60 frames apart (8 keyframes per
video), for a total of 1056 ground truth frames. Tracking
accuracy was measured by using the DR criterion of (10)
on these images. As before, we compared the performance
of the six detectors of Table 1, all using the FoA mechanism
of Section 3.5 and the margin similarity measure.

Figure 5 shows the detection rate (left) and time (right)
of the detectors as a function of scene lighting. As before,
TD+FBD+AB achieved the best performance. The combi-



Figure 7: Experiments on the overall performance of the UAV control algorithm. Top: the UAV follows a user as she moves in 3D space. Bottom: The
user successively displays two badges that command the UAV to move closer or farther away. In all images, a green (yellow) ellipse is used to indicate the
position of the drone (badge). Videos of these experiments are available at [2].

nations TD+AB and TD+FBD were the next best perform-
ers. Again, FBD was the weakest detector. Note however
that, with a tracking rate always above 90%, all detectors
are quite insensitive to scene lighting. Detection examples
are shown in the top row of Figure 4. Close inspection re-
vealed that tracking was only lost for extreme lighting con-
ditions, e.g. when the camera gain control renders the badge
(located on the darker half of the wall) nearly impercepti-
ble. Figure 6 shows detection rate (left) and time (right) as
a function of drone-badge distance. It confirms the previ-
ous observations, with TD+FBD+AB achieving the top per-
formance, nearly matched by TD+AB and TD+FDB, and
FDB the weakest detector. However, the differences are
now more significant. All methods are less robust when
the badge is farthest away, because much more background
clutter is visible and the tracker sometimes locks on back-
ground objects. The gains of TD+FBD+AB over FBD are
now substantial (from 82% to 89%).

Overall, the TD+FBD+AB configuration achieved the
best performance, proving to be quite robust to lighting vari-
ations and scene clutter. Figures 5 and 6 also show that the
FoA mechanism is very effective at reducing complexity.
While the detection times of Table 1 are on the order of
700 milliseconds, the tracking times of Figures 5 and 6 are
between 25 and 50 milliseconds. This corresponds to frame
rates between 20 and 40 fps, enabling precise drone control.

Drone control experiments: A final set of experiments
was conducted to evaluate the overall performance of the
UAV control system. Since this involves autonomous drone
flight, we found it difficult to design a reproducible exper-
iment in which all variables could be carefully controlled.
Instead, we simply collected videos of autonomous flight,
which are available at [2]. Two sets of experiments were
performed. In the first, the drone simply had to follow the
user, as she moved side to side. Keyframes from these ex-

periments are shown in the top row of Figure 7. The videos
in [2] show the successful completion of this task in the dark
(night tests), using a tablet to display the badge. In the sec-
ond experiment, the user successively displayed two badges
with different patterns, which implemented two behavior
programs, commanding the drone to fly at two different dis-
tances. The drone should thus approach or recede from the
user, depending on the badge displayed. Keyframes from
this experiment are shown in bottom row of Figure 7 (and
video in [2]). In both sets of experiments, we observed
that the UAV reliably executed the desired behavior and was
successful in virtually all autonomous flights.

5. Conclusion

We have introduced a computer vision-based UAV con-
trol architecture for robust person-following that also sup-
ports behavior programming by manipulation of visual pat-
terns. These goals were achieved by introduction of a pro-
grammable badge that depicts a visual pattern with two
components. The first is fixed and used to locate the user,
the second is variable and displays a behavior programming
code. A biologically inspired tracking/recognition architec-
ture, combining bottom-up and top-down saliency, a novel
image similarity measure, and an affine validation proce-
dure, was introduced to localize the badge. Badge locations
were fed to a control mechanism that adjusts the drone flight
so as to maintain a target drone altitude, distance, and angle
to the user. These parameters are specified by the behavior
programming code. Experiments have shown that the pro-
posed architecture is a reliable person-following solution,
enabling a drone to follow a user in real-time, over a range
of scenes, distances, and lighting conditions.
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gray-scale and rotation invariant texture classification with
local binary patterns. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 24(7):971–987, 2002.

[30] R. Poppe. A survey on vision-based human action recogni-
tion. Image and Vision Computing, 28(6):976–990, 2010.

[31] A. M. Treisman and G. Gelade. A feature-integration theory
of attention. Cognitive Psychology, 12(1):97–136, 1980.

[32] P. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154,
2004.
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