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Abstract

Previous approaches to action recognition with deep fea-
tures tend to process video frames only within a small tem-
poral region, and do not model long-range dynamic infor-
mation explicitly. However, such information is important
for the accurate recognition of actions, especially for the
discrimination of complex activities that share sub-actions,
and when dealing with untrimmed videos. Here, we propose
a representation, VLAD for Deep Dynamics (VLAD3), that
accounts for different levels of video dynamics. It captures
short-term dynamics with deep convolutional neural net-
work features, relying on linear dynamic systems (LDS) to
model medium-range dynamics. To account for long-range
inhomogeneous dynamics, a VLAD descriptor is derived for
the LDS and pooled over the whole video, to arrive at the
final VLAD3 representation. An extensive evaluation was
performed on Olympic Sports, UCF101 and THUMOS15,
where the use of the VLAD3 representation leads to state-
of-the-art results.

1. Introduction
Object and action recognition are two important prob-

lems in computer vision. Over the last decade, the domi-
nant representation for both problems was the bag-of-words
model, combining histograms of descriptors such as HoG or
HoF and pooling over space-time volumes [24, 32]. More
recently, substantial gains in object recognition have been
reported with the use of deep convolution neural networks
(CNNs) [13, 27, 30]. This has motivated several attempts to
apply CNNs to the action recognition problem [11, 26, 31].
However, for action, the gains over state-of-the-art bag-of-
words approaches [32] have not been as impressive. This
can be at least partially explained by the structure of the
video signal.

While most images tend to exhibit localized spatial struc-
ture, the temporal structure of video is constrained by the
laws of Newtonian mechanics, which determine the motion
of objects in natural scenes. Since this motion tends to be
smooth, the video dynamics are homogeneous over a sub-
stantial number of frames. We refer to this as the medium-

range structure of video, which tends to be homogeneous.
On the other hand, over the long-range, natural scene dy-
namics can be very inhomogeneous since videos frequently
depict a number of actions. An example is given in Figure 1,
where the action of interest (“javelin throw”) is embedded in
video that also contains actions that precede (athlete warm-
ups) and follow (crowd shot, shot of the score board, etc.) it.
This video is only marginally informative about the action
of interest (depicts actions shared by all track events). Over-
all, the statistics of the video can be represented at various
levels of granularity, giving rise to the hierarchy of Figure 1.

In the short-term, a video can be characterized as a se-
quence of frames with characteristic motion patterns. For
example, the optical flow of the “pole-fly” scene is very
distinct from that of the “score board” scene. We refer to
this as short-term video dynamics. At the next level, the
video can be grouped into shots of dynamics that are dis-
criminative for the target action. Since these dynamics tend
to span a substantial number of frames (at least seconds,
sometimes minutes) they are denoted as medium-range dy-
namics. Note that, as shown in Figure 1, a single action,
such as the “javelin throw,” can span several shots, includ-
ing the sub-actions “run,” “throw,” “pole flight,” and “pole
landing.” Hence, the dynamics of a single action can fre-
quently be decomposed into a sequence of states, which
typically have themselves homogeneous mid-range dynam-
ics. Finally, the target action is embedded into marginally
or totally unrelated video. Hence, the long-range dynamics
of video tend to be highly inhomogeneous. While chunks
of these dynamics correspond to the action of interest, their
location can vary from one video to the next.

Since the temporal structure of video statistics follows
the hierarchy of Figure 1, it is sensible to consider a simi-
lar hierarchy for video models. The lowest level in this hi-
erarchy includes models whose temporal support accounts
for a few video frames. This includes approaches based on
hand-crafted descriptors and a number of recent CNN mod-
els, which use a few frames as inputs and a purely feedfor-
ward structure [11, 26, 31]. This is denoted as the short-
term level of the model hierarchy. The next class of models
includes recurrent neural networks (RNNs) and their vari-
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Figure 1: The VLAD3 is inspired by the hierarchical structure of video dynamics. A short-term stage captures short-
term appearance and motion patterns with deep features. A medium-range stage models the dynamics of segments of deep
features, using an LDS. Finally, a long-range stage computes and pools a VLAD descriptor, derived from the LDS.

ants [6, 9], or a combination of a short-term representa-
tion, such as CNN activations, and a pooling operator along
video trajectories [33]. These representations have some
ability to capture the medium-range dynamics of Figure 1,
but not completely. While they can model longer segments
of homogeneous dynamics, it is less clear that they can ac-
count for actions composed of multiple distinct segments,
such as the “javelin throw” of Figure 1. They can thus
be considered as representations that fall between short and
medium range. Beyond them, the medium-range level of
the hierarchy includes models that explicitly account for a
hidden state, such as the hidden Markov model (HMM) [29]
or the linear dynamic system (LDS) [2], which allows them
to model actions composed of multiple states corresponding
to shots of sub-actions. Finally, the third-level of the hierar-
chy includes models that can account for short-term motion,
medium range dynamics with multiple states and highly in-
homogeneous long-range dynamics. We refer to this as the
long-range level of the hierarchy.

In this work, we propose a representation for video that
encompasses the three-level hierarchy of Figure 1. At the
short-term level, this representation extracts features from
a small temporal window over video frames, jointly cap-
turing their appearance and motions. It consists of a deep
CNN, whose layers implement spatiotemporal filters of re-
duced temporal support (16 frames). Semantically, this
level of the representation accounts for action segments,
e.g. “arm movement” or “running”. At the medium-range
level, the CNN features extracted by the short-term level
are processed by a linear dynamic system (LDS). This ac-
counts for medium-range dynamics by modeling the CNN
feature as a sequence of observations from a stochastic pro-

cess with a hidden state. By transitioning through states, it
can account for non-stationary dynamics, e.g. that throw-
ing a javelin consists of a temporal sequence of states such
as “running,” “throwing,” “pole flight,” and “pole landing”.
As the state process has a Gauss-Markovian structure, this
model has much better scalability than recurrent networks
and can be easily learned from much longer time sequences.
In this work, LDSs can be learned from features spanning
the whole video sequence. Finally, the last stage of the rep-
resentation is motivated by observations that the VLAD de-
scriptor [1] performs well for data with non-homogeneous
statistics, e.g. image classification [1] or even prior work
on action recognition [32, 21, 34]. We derive a VLAD de-
scriptor for the LDS likelihood of CNN responses and use
it as the final, long-range level representation of the video
hierarchy. This representation is denoted as the VLAD for
Deep Dynamics (VLAD3).

Overall, this work includes three main contributions.
First, at the level of statistical modeling, we derive the
VLAD descriptor for the LDS model. Second, at the level of
video representation, we study the hypothesis that effective
action representations must be discriminative in short-term,
scalable enough to capture medium range dynamics, and
robust to the heterogeneity of long-range dynamics. This
leads to the proposed combination of short-term CNN fea-
tures, medium-range LDS models, and global VLAD de-
scriptor. Finally, we test the hypothesis through a large scale
video recognition experiment which shows that the pro-
posed representation achieves state-of-the-art performance
on three challenging datasets - Olympic sports, UCF101,
and THUMOS15 - which have been the subject of substan-
tial prior research.



2. Related work
Long-range video dynamics are difficult to capture with

CNN models with small temporal support, e.g. space-
time models implemented by application of a spatial CNN
to a small set of stacked video frames [11], combinations
of CNNs operating on image and optical flow informa-
tion [26], or even models that implement layers of 3D con-
volutional filters [31]. As these representations scale poorly
in their temporal support, the resulting classifiers typically
account for only 10 to 20 video frames. This is not suffi-
cient to characterize the dynamics of the underlying scene,
which can unfold over tens of seconds or even minutes.
While these techniques are frequently mapped into a holis-
tic video-level representation by application of a global
pooling operation, this representation is a summary of the
short-term statistics of the video sequence, not a model of
its long-range dynamics.

The modeling of such dynamics can, in principle, be
achieved with more sophisticated deep learning models. In
fact, a branch of the deep learning literature has evolved to
address this problem. This includes methods based on re-
current neural networks (RNNs) [6], or variants such as the
long short-term memory (LSTM) of [9]. Such models have
recently started to appear in the action recognition litera-
ture, e.g. by stacking an LSTM upon a CNN [4] so as to
learn the high-level temporal structure of low-level visual
features, or by using an LSTM to model the dynamics of
CNN activations [19]. While models such as the RNN or
LSTM can, in principle, model sequences of infinite length,
they are usually trained with relatively small temporal sup-
port. While this observation holds even for datasets that are
sizable, such as Sports1M [19], it is conceivable that the in-
troduction of larger ones will eliminate the problem. This
is unclear at this point. Similarly to the CNN approaches,
these models have so far only been learned from sequences
of 16 [4] to 30 [19] frames.

Alternatively, there has been interest in combining deep
learning features with statistical representations of better
temporal scalability. The hypothesis is that, while deep fea-
tures are highly discriminative for short-term dynamics, ac-
tion recognition will benefit from their combination with
models of long-range dynamics. We refer to this as the
long-range dynamics hypothesis. For example, [33] pro-
posed to pool deep features along video trajectories, a pro-
cedure commonly used in the bag-of-words literature [32].
This can, in principle, exploit the temporal scalability of
hand-crafted trajectories to substantially expand the tempo-
ral support of the video representation. However, because
trajectories are obtained by tracking, they can be quite sen-
sitive to the drift problem. In practice, this limits the maxi-
mum trajectory length, which is 15 frames in [33] and still
below the temporal extent of the dynamics of most scenes.

While the long-range dynamics hypothesis has moti-

vated the deployment of methods such as LSTM [4] or
pooling of deep features along motion trajectories [33], the
modeling of the long-range dynamics of deep learning fea-
tures has so far received limited attention in the vision liter-
ature. In the broader context of action recognition, dynam-
ics are frequently captured by rather straightforward oper-
ations, e.g. spatiotemporal extensions of spatial pyramid
pooling [15], or latent support vector machines (SVM) that
rely on anchor points to delimit motion segments [20]. Such
approaches can only capture coarse dynamics.

Finer grained models usually rely on a more elaborate
treatment of sequences of features, usually through gener-
ative models. Most generative models of video dynamics
have been proposed for attribute-based representations [17].
These characterize the video in terms of elementary seman-
tic units, such as “leg motion,” “raised arm,” etc. The em-
phasis on attribute dynamics can be partly explained by
the discrete nature of these variables, which enables sim-
ple learning and inference with widely used statistical mod-
els. For example, [29] models attribute sequences with the
combination of a Hidden Markov Model (HMM) and the
associated Fisher vector. However, discrete dynamic mod-
els tend to underperform their continuous counterparts [2].
For example, by connecting state and observations through
a PCA-like transformation, the LDS extracts a much more
compact representation of the scene dynamics. This usually
guarantees better generalization than what is possible with
an HMM. The difficulty is that, due to the non-Euclidean
nature of attribute spaces, the LDS is not a suitable model
for attribute data.

This has motivated non-Euclidean extensions of the
LDS. For example, [16] introduced the binary dynamic sys-
tem (BDS), which is basically an LDS for discrete obser-
vations. However, such non-Euclidean variants introduce a
non-trivial difficulty. While the LDS has exact inference,
through the efficient Kalman smoothing computations [25],
this is only possible because the state and observation dis-
tributions are both Gaussian, forming a conjugate pair. This
conjugacy is broken for non-Euclidean observations, ren-
dering exact inference impossible. This, in turn, makes it
impossible to compute a VLAD vector for models such as
BDS without resorting to complex Markov Chain Monte
Carlo procedures or some form of approximate inference.

The proposed VLAD3 representation is related to all
these previous efforts. Similarly to [29], we propose a gen-
erative model of dynamics and the associated Fisher vector
(albeit we use the simpler VLAD [21]). However, rather
than the discrete HMM we rely on a continuous model of
dynamics. While conceptually this makes the proposed ap-
proach more similar to the BDS, we eliminate the difficul-
ties of this approach by eliminating its reliance on human
defined attributes. Instead, we propose to apply the dynamic
model (LDS) directly to CNN features, which are power-



ful in discriminating short-term dynamics. Overall, we rely
on the CNN features for discrimination and on the LDS to
capture the medium-range dynamics of these features. Be-
sides eliminating the need for (additional) attribute anno-
tations and classifiers, this model supports exact inference
via Kalman smoothing. We exploit this property to design
an efficient algorithm for the computation of the VLAD de-
scriptor, which is not available for the BDS.

3. LDS for deep feature dynamics
In this section, we briefly review the linear dynamic sys-

tem (LDS) model and its extensions that are of interest for
this work.

3.1. Linear Dynamic System

The LDS is composed by a hidden Gauss-Markov state
process and Gaussian observation process, according to{

xt+1 = Axt + vt, (1a)
yt = Cxt + u+wt, (1b)

where y ∈ Rm is the observation and x ∈ Rn the hidden
state. This model is parametrized by the state transition ma-
trix A ∈ Rn×n, the observation matrix C ∈ Rm×n, and the
bias vector u ∈ Rm, and includes two noise components,
the state noise vt ∼ N (0, Q) and the observation noise
wt ∼ N (0, R). These are Gaussian processes of zero mean
and covariance matrices Q and R, respectively. Finally, the
initial state is x1 = µ+ v0 ∼ N (µ, S).

3.2. LDS learning

The LDS parameters Ω = {C,A,u,µ, R,Q, S}
can be learned by maximum likelihood (ML) using the
expectation-maximization (EM) algorithm. An adaptation
of the LDS, known as the dynamic texture model [5], is
popular for video representation in computer vision. Dy-
namic texture (DT) learning [5] uses a much simpler ap-
proximation to estimate the LDS parameters, via a two-step
algorithm. This starts by performing a principal component
analysis (PCA) of the observation sequence {yt}. The re-
sulting principal components are interpreted as the columns
of the observation matrix C and the associated coefficients
as an estimate of the hidden state variables {xt}. The sec-
ond step then learns the transition matrix A and the noise
parameters by solving a least squares problem.

3.3. LDS codebook learning

Besides learning a single LDS, several methods have
been proposed to learn mixtures or codebooks of LDSs.
Again, an ML solution can be obtained with recourse to the
EM algorithm, leading to the mixture of dynamic textures
model [3]. However, a simpler alternative is provided by the
bag-of-models clustering (BMC) procedure of [16]. This

procedure clusters observation sequences in model space,
rather than in the observation space. Given a sample set of
sequences D = {zi}Ni=1, where z = {yt}τt=1 is an individ-
ual sequence, BMC iterates between a cluster assignment
and a cluster refinement step.

The assignment step operates on the representation of
each sequence zi as a LDS model. The sequence is first
subject to the mapping

fM : Z ⊇ {z} 7→M ∈M (2)

from the space of observation sequences Z to the model
spaceM. This mapping is implemented with an LDS learn-
ing algorithm, as discussed in Section 3.2. The resulting
LDS, fM(zi), is then assigned to one of the models in the
LDS codebook, according to

qi = arg min
j

DM(fM(zi),wj), (3)

where wj ∈ M, the jth model in the codebook, is an LDS
P (z; Ωj) of parameters Ωj and

DM :M×M 7→ R (4)

is a distance metric on model spaceM.
The refinement step updates the codebook models ac-

cording to

wj = fM({zi : qi = j}). (5)

This consists of gathering all sequences zi assigned to each
model and relearning the model parameters with the LDS
learning algorithm of Section 3.2.

In this work, we rely on the BMC procedure to learn LDS
codebooks, using the dynamic texture procedure to imple-
ment the mapping of (2) and the popular Martin distance of
[18] as the distance of (4).

4. VLAD encoding for deep dynamics
In this section, we review the VLAD descriptor and in-

troduce the VLAD encoding for Deep Dynamics (VLAD3).

4.1. VLAD review

The vector of linearly aggregated descriptors (VLAD) is
a simplified version of the Fisher vector descriptor of [10].
A codebook V = {wj}Vj=1 of V generative models wj =
P (z; Ωj) of parameters Ωj is first learned with recourse to
a clustering algorithm. In this work, this is the BMC pro-
cedure of Section 3.3. The VLAD is an efficient encoding
of the first-order statistics of a sample D = {zi}Ni=1 with
respect to this codebook. Each sample point zi is first as-
signed to a subset of the codewords according to

qij =

{
1, if wj is in the k-nearest neighborhood set of zi,
0, otherwise



where the k-nearest neighborhood of wj is defined by the
distance of (3), which is the Martin distance in this work.

The VLAD encoding φ(D) is the vector

φ(D) = [φ1(D), . . . , φV (D)] (6)

such that

φj(D) =

n∑
i=1

qij
∂ logP (zi; Ω)

∂Ω

∣∣∣∣
Ω=Ωj

, (7)

where ∂ logP (zi;Ω)
∂Ω is the gradient of the log-likelihood

logP (zi; Ω) with respect to the parameters in Ω. In sum-
mary, φ(D) pools the log-likelihood gradients of the sample
D = {zi}Ni=1 with association qij .

4.2. LDS log-likelihood gradients

In the context of this work, the observation z is a se-
quence yτ1 = {yt}τt=1 of localized spatiotemporal features
extracted from a video sequence of length τ with a deep
CNN, and P (z; Ω) = P (yτ1 ; Ω) is the LDS of (1). Using
the chain rule of probability and the Markovian property of
the hidden LDS states, this has likelihood

P (yτ1) =

∫
P (yτ1 |xτ1)P (xτ1) dxτ1 (8)

=

∫ τ∏
t=1

P (yt|xt)
τ∏
t=2

P (xt|xt−1)P (x1) dxτ1 ,

where

P (yt|xt) = G(yt;Cxt + u, R), (9)
P (xt|xt−1) = G(xt;Axt−1, Q), (10)

P (x1) = G(x1;µ, S), (11)

and G(x;µ,Σ) is a Gaussian distribution of mean µ and
covariance Σ. One of the important properties of the LDS
is that all the terms of (8) are Gaussian. As is usual for the
VLAD, we only consider the gradients with respect to pa-
rameters that affect the mean of these distributions, namely
the vectors µ,u, and matrices A,C. Consider the gradient
with respect to C. Using

∂ logP (yτ1)

∂C
=

1

P (yτ1)

∂P (yτ1)

∂C
(12)

and

∂P (yτ1)

∂C
=

∫ [
∂

∂C

τ∏
t=1

P (yt|xt)

]
P (xτ1) dxτ1

=

∫  τ∑
t=1

∂P (yt|xt)
∂C

∏
j 6=t

P (yj |xj)

P (xτ1) dxτ1

=

∫ [ τ∑
t=1

1

P (yt|xt)
∂P (yt|xt)

∂C

]
P (yτ1 |xτ1)P (xτ1) dxτ1

it follows that

∂ logP (yτ1)

∂C
=

τ∑
t=1

∫
∂ logP (yt|xt)

∂C
P (xτ1 |yτ1)dxτ1

=

τ∑
t=1

Ext|yτ1

[
∂ logP (yt|xt)

∂C

]
. (13)

Similarly, it can be shown that

∂ logP (yτ1)

∂A
=

τ∑
t=2

Extt−1|yτ1

[
∂ logP (xt|xt−1)

∂A

]
, (14)

∂ logP (yτ1)

∂u
=

τ∑
t=1

Ext|yτ1

[
∂ logP (yt|xt)

∂u

]
, (15)

∂ logP (yτ1)

∂µ
= Ex1|yτ1

[
∂ logP (x1)

∂µ

]
. (16)

Using (9)-(11) and the Gaussian log-likelihood derivatives

∂ log G(x;Ps+ b,Σ)

∂b
= Σ−1(x− Ps− b), (17)

∂ log G(x;Ps+ b,Σ)

∂P
= Σ−1(x− Ps− b)sᵀ, (18)

it follows that

∂ logP (yτ1)

∂C
= R−1

τ∑
t=1

[
(yt − u)αᵀt − Cβt,t

]
, (19)

∂ logP (yτ1)

∂A
= Q−1

τ∑
t=2

[
βt,t−1 −Aβt−1,t−1

]
, (20)

∂ logP (yτ1)

∂u
= R−1

τ∑
t=1

[(yt − u)− Cαt] , (21)

∂ logP (yτ1)

∂µ
= S−1(α1 − µ) (22)

with

αt = E[xt|yτ1 ], βt1,t2 = E[xt1x
ᵀ
t2 |y

τ
1 ]. (23)

These expectations are part of the standard LDS inference,
and can be computed efficiently with recourse to Kalman
smoothing [25], which only requires a single forward and a
single backward pass through the sequence yτ1 .

4.3. VLAD3 encoding

To derive the VLAD3 encoding of a long sequence yT1 ,
the sequence is first decomposed into a set of overlapping
segments {zi}Ni=1, where zi is a subsequence of yT1 of
length τ , and an LDS is learned per subsequence. Given
a codebook V = {wj}Vj=1 of V LDSs, where wj =
P (z; Ωj), the sample association matrix qij of Section 4.1
is computed, using (3) and the Martin distance to define the



k-nearest neighborhood of each zi. The log-likelihood gra-
dients with respect to modelwj are then computed by using
yτ1 = zi and C = Cj , A = Aj , u = uj , and µ = µj ,
in (19)-(23). The expectations of (23) are obtained with the
Kalman smoothing filter. Finally, the gradient information
is pooled across the video-subsequences extracted from yT1 ,
according to (6) and (7). Following [34], the resulting vec-
tor is also post-processed with intra-normalization, power-
normalization, and l2 normalization.

5. Experiments

In this section, we describe the datasets used and discuss
several experiments conducted to evaluate the performance
of VLAD3.

5.1. Datasets
Three datasets were used in our experiments: UCF101,

Olympic Sports, and THUMOS15.
UCF101 [28] is widely used for video classification. It

consists of 13,320 videos of 101 human action classes, cov-
ering a broad set of activities such as sports, musical in-
struments, and human-object interaction. However, most of
the activities (e.g. “Knitting”, “Drumming”) are short, sim-
ple, and repetitive. Some of these activities can be discrimi-
nated without any modeling of dynamics, e.g. because they
occur against a very specific background scene, or due to
the presence of certain objects. In terms of the hierarchy of
Figure 1, this dataset is somewhere between the short-term
and medium-range levels. We adopt the three train-test
splits suggested in [28].

Olympic Sports [20] contains YouTube videos of 16
sport activities, for a total of 783 videos. Each video is
trimmed to contain only the activity of interest, but this can
be a complex activity, composed by a sequence of simpler
sub-actions. These sub-actions can be shared by different
activities. For example, “long jump” and “triple jump” have
very similar action segments (“running,” “jumping”), only
differing in their temporal sequencing and length (a single
long jump vs. three shorter hops). Hence, temporal dynam-
ics are critical for discrimination on this dataset, which can
be confidently considered a dataset at the medium-range
level of the hierarchy of Figure 1. On Olympic, we adopt
the train-test split of [20].

The task of the THUMOS challenge [8] is to recog-
nize human action classes in open source videos. The val-
idation set of THUMOS 2015 contains 2,104 untrimmed
videos of 101 activity classes, which are the same as those
of UCF101. However, in THUMOS15 each video includes
one/multiple instances of one/multiple actions, in varying
temporal locations. The irrelevant video segments can be
considered as semantic noise and the video statistics can be
highly non-homogeneous. This datasets is an example of
the long-range level of Figure 1. Since groundtruth is not

available for the test set of THUMOS15, we followed the
5-fold cross-validation train-test strategy of [35] on the val-
idation set.

5.2. Experimental set-up
In all experiments, the short-term representation of the

VLAD3 was based on the C3D features of [31], extracted
from a 16-frame video window. The temporal stride was
set to 16 for THUMOS15 and 4 on the other datasets. C3D
is a 3D-convolutional deep network learned from a large
video dataset. We used the 4096-d fc6 feature vector, which
was l2 normalized and dimensionality reduced into a 256-
d vector by PCA. Given the sequence of CNN vectors ex-
tracted from the video sequence, we defined a temporal
sliding window of length τ and stride three. The τ fea-
ture vectors within the window centered at time t composed
the sequence zt. A set of such sequences, collected from
a random subset of the training video sequences was used
to learn an LDS codebook of size V = 128, as discussed
in Section 3.3. Each LDS codeword had a hidden state of
dimension n ∈ {6, 8, 10, 20, 24}. The k-nn parameter of
VLAD encoding was set to 5. The maximum τ used in the
experiments was 40, corresponding to a temporal support of
656 frames for THUMOS15 and 176 frames for the other
datasets. We cross-validated n and τ for each action class.

5.3. The importance of modeling dynamics
A number of experiments were performed to evaluate the

importance of dynamic modeling in action recognition. In
these experiments we considered a family of representations
that cover different levels of the hierarchy of Figure 1. They
are all based on the C3D deep features, differing only in the
modeling of video dynamics. The first, denoted T3, pools
feature responses with the temporal pyramid (of scale 3) of
[15]. Since this is a very crude representation of video dy-
namics, this model is representative of the short-term level
of Figure 1. The second, denoted CTR [2], consists of the
spectral signature of an LDS learned from the entire video
sequence. It can capture long-range dynamics, but assumes
that these are homogeneous. It can thus be seen as a repre-
sentative of the medium-range level of Figure 1. Finally,
we considered, two representatives of the long-range level,
the HMM Fisher vector of [29] and the proposed VLAD3.
These are very similar, differing only in the use of discrete
or continuous state variables.

In all cases, the classifier was a 1-vs-rest linear SVM
with cross-validated parameter C. Performance was evalu-
ated by the mean average precision (mAP) metric. For the
UCF101 dataset, where performance is usually reported in
terms of the accuracy (Acc), we also computed this metric.
A common strategy to boost action recognition performance
is the fusion of different models. Following [2, 26, 21], we
also tried to late-fuse the representations above with a holis-
tic representation obtained by average pooling the CNN fea-



UCF101? Olympic† THUMOS15♦

method mAP(%) Acc(%) mAP(%) mAP(%)

T3 ? 84.35 82.96 80.14 56.50
CTR † 84.28 81.59 80.89 61.52

HMM-FV ♦ 85.14 80.41 88.15 72.30
VLAD3 ♦ 89.31 84.08 90.78 76.84

+ holistic

T3 ? 89.11 84.04 86.53 72.30
CTR † 88.44 83.00 86.19 72.03

HMM-FV ♦ 89.56 84.29 88.41 75.49
VLAD3 ♦ 90.47 84.65 90.81 78.15

Table 1: Activity recognition performance on UCF101,
Olympic Sports, and THUMOS15.

tures across the video sequence. The results of all experi-
ments are summarized in Table 1. The top half of the table
shows the performance of the individual methods and the
bottom half the results of their fusion with the holistic ap-
proach. The symbols on the table reflect the location of
each method and dataset on the hierarchy of Figure 1. A ?
is used to identify short-term representations/video, a † for
medium-range and a ♦ for long-range.

These results confirm the hypothesis that the modeling
of continuous dynamics is beneficial for action recognition.
As expected, the gains of this modeling depend on the class
of dynamics present in each dataset. While, for example,
there is no significant difference between T3 and CTR on
UCF101, where most video only has short-term dynamics,
the difference becomes much more significant on THU-
MOS15. On Olympic and THUMOS15, where dynam-
ics are more important, the gains of the long-range mod-
els (HMM-FV and VLAD3) are substantial. Among these
models, the VLAD3 has clearly better performance. This
confirms the gains previously observed in [2] for continu-
ous dynamic models. Overall, the proposed VLAD3 repre-
sentation achieves significant gains in all datasets. Com-
pared to T3, these increase from 5% on the short-term
level UCF101, to 10% in the medium-range level Olympic
Sports, to 20% on the long-range THUMOS15.

The increase from 5% in UCF101 to 20% on THU-
MOS15 is particularly relevant, since the two datasets have
exactly the same activity classes, differing only on the inho-
mogeneity of their dynamics. This supports the hypothesis
that 1) there are benefits to modeling dynamics, and 2) the
dynamic model must account for both the long-term nature
of these dynamics and their inhomogeneity. More detailed
evidence in support of this hypothesis is given in Figure 2,
which shows a plot of the per-class average precision for
Olympic Sports. Classes, such as bowling or diving plat-
form 10m, that differ from the rest in terms of short-term
motion patterns are perfectly discriminated by the holistic
C3D representation. On the other hand, for classes with
similar short-term motion patterns, e.g. hammer-throw,

high-jump, triple jump and the remaining track activities,
the dynamic modeling of the VLAD3 enables very signifi-
cant gains in classification performance.

Finally, while late-fusion decreases the gap between the
methods, it does not change the conclusions above. On the
most challenging datasets, the gains of VLAD3 are signif-
icant even after late-fusion. In fact, in all datasets, the top
performance achieved by late-fusion of any of the short-
term and medium-range methods is at most equal (and
usually inferior) to that of the vanilla VLAD3.

5.4. Role of long-range dynamics and heterogeneity
In addition to establishing a video representation that

covers all levels of the hierarchy of Figure 1, the VLAD3

can be used as a tool to investigate the importance of each
“step” on this hierarchy, i.e. from short-term to long-range
dynamics and from homogeneous to noisy dynamics. In
fact, this can be done by measuring the performance of
the VLAD3 as a function of the temporal support τ of the
subsequences used to compute it. In the limit of τ = 1,
the VLAD3 includes no modeling of medium or long-range
dynamics, reducing to a standard Gaussian-VLAD. As τ
increases, and the LDS accounts for mid-range dynamics,
performance is expected to improve. Finally, for large τ ,
as these dynamics become highly inhomogeneous, perfor-
mance is expected to degrade. In the limit, it is possible
to fit a single LDS to the full video yT1 (which could have
hundreds or thousands of frames, e.g. average T for THU-
MOS15 is 6620), rather than fitting various LDSs to subse-
quences of size τ . This is denoted the single-LDS descriptor
and expected to be sensitive to inhomogeneous dynamics.

Figure 3 presents the results of this procedure on the
three datasets. In all cases, performance increases with τ
demonstrating the benefits of medium-range level model-
ing. However, performance starts to saturate for a value
of τ that matches the temporal support of the dynamics in
the video and decreases after that. This can be seen by the
fact that, in all cases, the single-LDS descriptor underper-
forms the VLAD3 of optimal τ . These experiments also
confirm the categorization of the datasets in Table 1. On
Olympic Sports and THUMOS15, whose video is com-
posed of complex events and/or has inhomogeneous dy-
namics, the VLAD3 of optimal τ clearly outperforms the
single-LDS. However, on UCF101, which is a short-term
dataset, the single-LDS is almost as good.

5.5. Comparison with the state-of-the-art
A comparison to state-of-the-art results in the literature

can be difficult, since different methods use different com-
ponents that are not always comparable. In fact, the best
results are usually obtained by fusing different represen-
tations. For example, as noted in [31], hand-crafted fea-
tures such as iDT [32] are complementary to the C3D fea-
ture - the iDT encodes low-level gradients by tracking op-
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Figure 3: VLAD3 performance as a function of the LDS temporal support τ .

UCF101 (Acc%) Olympic Sports (mAP%) THUMOS15(mAP%)
Tran et al. [31] 90.4 Wang and Schmid [32] 91.1 Xu et al. [35] 74.6
Lan et al. [14] 89.1 Gaidon et al. [7] 85.5 Qiu et al. [23] 70.0

Simonyan and Zisserman[26] 88.0 Lan et al. [14] 91.4 Ning and Wu [12] 65.5
Wang et al. [33] 91.5 Peng et al. [22] 93.8 VLAD3 76.8
VLAD3 +iDT 90.9 VLAD3 +iDT 96.6 VLAD3 +iDT 80.8

VLAD3 +iDT(fisher) 92.2

Table 2: Comparison to state-of-the-art results.

tical flow while C3D features are more abstract and cap-
ture high level semantics. Inspired by this observation, we
tested the late-fusion of the scores produced by VLAD3 ,
which is built on top of C3D features, and iDT. Table 2
compares this approach to the state-of-the-art for the three
datasets considered in this work. In all cases, the fusion
of VLAD3 and iDT achieves the best performance. For ex-
ample, on UCF101, replacing the state-of-the-art trajectory-
pooled deep descriptors (TDD+iDT (fisher)) of [33] by the
VLAD3+iDT (fisher) combination, improves the state-of-
the-art from 91.5% to 92.2%. This is a non-trivial gain,
given the amount of research that has addressed this dataset.
Similarly, on Olympic Sports, the VLAD3+iDT combina-
tion, outperforms approaches that attempt to stack multiple
layers of feature representation. Since THUMOS15 is a rel-
atively new dataset, we only list the results using the top
three approaches (with only visual features) reported in the
competition. Note that these approaches often require fu-
sion of many different features, while VLAD3 by itself can
lead to better performance, clearly demonstrating the ben-
efits of a representation that models long-range dynamics.

Again, the VLAD3+iDT achieves the state-of-the-art results
by a big margin.

6. Conclusion
In this work, we proposed a new video representation,

the VLAD3, that models video dynamics at three hierar-
chical levels. The resulting encoding leverages discrimina-
tive deep features for short-term dynamics, the LDS model
for medium-range dynamics, and a novel VLAD descriptor,
derived from the LDS, for long-range dynamics. This en-
ables it to model video whose dynamics are homogeneous
over short and medium-range time scales, but inhomoge-
neous over long time spans. An evaluation on three datasets
showed that explicit modeling of long-range dynamics is
important for action recognition, and demonstrated superior
performance of the proposed VLAD3 compared to state-of-
the-art methods.
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