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Abstract

In this work, we consider the problem of modeling the dynamic structure of hu-
man activities in the attributes space. A video sequence is first represented in a
semantic feature space, where each feature encodes the probability of occurrence
of an activity attribute at a given time. A generative model, denoted the binary
dynamic system (BDS), is proposed to learn both the distribution and dynamics
of different activities in this space. The BDS is a non-linear dynamic system,
which extends both the binary principal component analysis (PCA) and classical
linear dynamic systems (LDS), by combining binary observation variables with
a hidden Gauss-Markov state process. In this way, it integrates the representa-
tion power of semantic modeling with the ability of dynamic systems to capture
the temporal structure of time-varying processes. An algorithm for learning BDS
parameters, inspired by a popular LDS learning method from dynamic textures,
is proposed. A similarity measure between BDSs, which generalizes the Binet-
Cauchy kernel for LDS, is then introduced and used to design activity classifiers.
The proposed method is shown to outperform similar classifiers derived from the
kernel dynamic system (KDS) and state-of-the-art approaches for dynamics-based
or attribute-based action recognition.

1 Introduction

Human activity understanding has been a research topic of substantial interest in computer vision [1].
Inspired by the success of the popular bag-of-features (BoF) representation on image classification
problems, it is frequently based on the characterization of video as a collection of orderless spa-
tiotemporal features [2, 3]. Recently, there have been attempts to extend this representation along
two dimensions that we explore in this work. The first is to introduce richer models for the temporal
structure, also known as dynamics, of human actions [4, 5, 6, 7]. This aims to exploit the fact that
actions are usually defined as sequences of poses, gestures, or other events over time. While desir-
able, modeling action dynamics can be a complex proposition, and this can sometimes compromise
the robustness of recognition algorithms, or sacrifice their generality, e.g., it is not uncommon for
dynamic models to require features specific to certain datasets or action classes [5, 6], or non-trivial
forms of pre-processing, such as tracking [8], manual annotation [7], etc. The second dimension,
again inspired by recent developments in image classification [9, 10], is to represent actions in
terms of intermediate-level semantic concepts, or attributes [11, 12]. This introduces a layer of
abstraction that improves the generalization of the representation, enables modeling of contextual
relationships [13], and simplifies knowledge transfer across activity classes [11].

In this work, we propose a representation that combines the benefits of these two types of extensions.
This consists of modeling the dynamics of human activities in the attributes space. The idea is to
exploit the fact that an activity is usually defined as a sequence of semantic events. For example, the
activity “storing an object in a box” is defined as the sequence of the action attributes “remove (hand
from box)”, “grab (object)”, “insert (hand in box)”, and “drop (object)”. The representation of
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the action as a sequence of these attributes makes the characterization of the “storing object in
box” activity more robust (to confounding factors such as diversity of grabbing styles, hand motion
speeds, or camera motions) than dynamic representations based on low-level features. It is also
more discriminant than semantic representations that ignore dynamics, i.e., that simply record the
occurrence (or frequency) of the action attributes “remove”, “grab”, “insert”, and “drop”. In the
absence of information about the sequence in which these attributes occur, the “store object in box”
activity cannot be distinguished from the “retrieve object from box” activity, defined as the sequence
“insert (hand in box)”, “grab (object)”, “remove (hand from box)”, and “drop (object)”. In summary,
the modeling of attribute dynamics is 1) more robust and flexible than the modeling of visual (low-
level) dynamics, and 2) more discriminant than the modeling of attribute frequencies.

In this work, we address the problem of modeling attribute dynamics for activities. As is usual in
semantics-based recognition [11], we start by representing video in a semantic feature space, where
each feature encodes the probability of occurrence of an action attribute in the video, at a given
time. We then propose a generative model, denoted the binary dynamic system (BDS), to learn both
the distribution and dynamics of different activities in this space. The BDS is a non-linear dynamic
system, which combines binary observation variables with a hidden Gauss-Markov state process.
It can be interpreted as either 1) a generalization of binary principal component analysis (binary
PCA) [14], which accounts for data dynamics, or 2) an extension of the classical linear dynamic
system (LDS), which operates on a binary observation space. For activity recognition, the BDS has
the appeal of accounting for the two distinguishing properties of the semantic activity representation:
1) that semantic vectors define probability distributions over a space of binary attributes; and 2) that
these distributions evolve according to smooth trajectories that reflect the dynamics of the underlying
activity. Its advantages over previous representations are illustrated by the introduction of BDS-
based activity classifiers. For this, we start by proposing an efficient BDS learning algorithm, which
combines binary PCA and a least squares problem, inspired by the learning procedure in dynamic
textures [15]. We then derive a similarity measure between BDSs, which generalizes the Binet-
Cauchy kernel from the LDS literature [16]. This is finally used to design activity classifiers, which
are shown to outperform similar classifiers derived from the kernel dynamic systems (KDS) [6], and
state-of-the-art approaches for dynamics-based [4] and attribute-based [11] action recognition.

2 Prior Work

One of the most popular representations for activity recognition is the BoF, which reduces video to
an collection of orderless spatiotemporal descriptors [2, 3]. While robust, the BoF ignores the tem-
poral structure of activities, and has limited power for fine-grained activity discrimination. A number
of approaches have been proposed to characterize this structure. One possibility is to represent ac-
tions in terms of limb or torso motions, spatiotemporal shape models, or motion templates [17, 18].
Since they require detection, segmentation, tracking, or 3D structure recovery of body parts, these
representations can be fragile. A robust alternative is to model the temporal structure of the BoF.
This can be achieved with generalizations of popular still image recognition methods. For example,
Laptev et al. extend pyramid matching to video, using a 3D binning scheme that roughly character-
izes the spatio-temporal structure of video [3]. Niebles et al. employ a latent SVM that augments
the BoF with temporal context, which they show to be critical for understanding realistic motion [4].
All these approaches have relatively coarse modeling of dynamics. More elaborate models are usu-
ally based on generative representations. For example, Laxton et al. model a combination of object
contexts and action sequences with a dynamic Bayesian network [5], while Gaidon et al. reduce
each activity to three atomic actions and model their temporal distributions [7]. These methods
rely on action-class specific features and require detailed manual supervision. Alternatively, sev-
eral researchers have proposed to model BoF dynamics with LDSs. For example, Kellokumpu et al.
combine dynamic textures [15] and local binary patterns [19], Li et al. perform a discriminant canon-
ical correlation analysis on the space of action dynamics [8], and Chaudhry et al. map frame-wise
motion histograms to a reproducing kernel Hilbert space (RKHS), where they learn a KDS [6].

Recent research in image recognition has shown that various limitations of the BoF can be overcome
with representations of higher semantic level [10]. The features that underly these representations
are confidence scores for the appearance of pre-defined visual concepts in images. These concepts
can be object attributes [9], object classes [20, 21], contextual classes [13], or generic visual con-
cepts [22]. Lately, semantic attributes have also been used for action recognition [11], demonstrating
the benefits of a mid-level semantic characterization for the analysis of complex human activities.
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Figure 1: Left: key frames of activities “hurdle race” (top) and “long jump” (bottom); Right: attribute transi-
tion probabilities of the two activities (“hurdle race” / “long jump”) for attributes “run”, “jump”, and “land”.

The work also suggests that, for action categorization, supervised attribute learning is far more useful
than unsupervised learning, resembling a similar observation from image recognition [20]. How-
ever, all of these representations are BoF-like, in the sense that they represent actions as orderless
feature collections, reducing an entire video sequence to an attribute vector. For this reason, we
denote them holistic attribute representations.

The temporal evolution of semantic concepts, throughout a video sequence, has not yet been ex-
ploited as a cue for action understanding. There has, however, been some progress towards this
type of modeling in the text analysis literature, where temporal extensions of latent Dirichlet allo-
cation (LDA) have been proposed. Two representatives are the dynamic topic model (DTM) [23]
and the topic over time (TOT) model [24]. Although modeling topic dynamics, these models are not
necessarily applicable to semantic action recognition. First, like the underlying LDA, they are un-
supervised models, and thus likely to underperform in recognition tasks [11, 10]. Second, the joint
goal of topic discovery and modeling topic dynamics requires a complex graphical model. This is
at odds with tractability, which is usually achieved by sacrificing the expressiveness of the temporal
model component.

3 Modeling the Dynamics of Activity Attributes

In this section, we introduce a new model, the binary dynamic system, for joint representation of the
distribution and dynamics of activities in action attribute space.

3.1 Semantic Representation

Semantic representations characterize video as a collection of descriptors with explicit seman-
tics [10, 11]. They are obtained by defining a set of semantic concepts (or attributes, scene classes,
etc), and learning a classifier to detect each of those concepts. Given a video v ∈ X to analyze, each
classifier produces a confidence score for the presence of the associated concept. The ensemble of
classifiers maps the video to a semantic space S, according to π : X → S = [0, 1]K ,π(v) =
(π1(v), · · · , πK(v))T , where πi(v) is the confidence score for the presence of the i-th concept.
In this work, the classification score is the posterior probability of a concept c given video v,
i.e., πc(v) = p(c|v) under a certain video representation, e.g., the popular BoF histogram of spatio-
temporal descriptors. As the video sequence v progresses with time t, the semantic encoding defines
a trajectory {πt(v)} ⊂ S. The benefits of semantic representations for recognition, namely a higher
level of abstraction (which leads to better generalization than appearance-based representations),
substantial robustness to the performance of the visual classifiers πi(v), and intrinsic ability to ac-
count for contextual relationships between concepts, have been previously documented in the litera-
ture [13]. No attention has, however, been devoted to modeling the dynamics of semantic encodings
of video. Figure 1 motivates the importance of such modeling for action recognition, by considering
two activity categories (“long jump” and “hurdle race”), which involve the same attributes, with
roughy the same probabilities, but span very different trajectories in S. Modeling these dynamics
can substantially enhance the ability of a classifier to discriminate between complex activities.

3.2 Binary PCA

The proposed representation is a generalization of binary PCA [14], a dimensionality reduction
technique for binary data, belonging to the generalized exponential family PCA [25]. It fits a linear
model to binary observations, by embedding the natural parameters of Bernoulli distributions in a
low-dimensional subspace. Let Y denote a K× τ binary matrix (Ykt ∈ {0, 1}, e.g., the indicator of
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occurrence of attribute k at time t) where each column is a vector of K binary observations sampled
from a multivariate Bernoulli distribution

Ykt ∼ B(ykt;πkt) = πykt

kt (1− πkt)
1−ykt = σ(θkt)

yktσ(−θkt)
1−ykt , ykt ∈ {0, 1}. (1)

The log-odds θ = log( π
1−π ) is the natural parameter of the Bernoulli distribution, and σ(θ) =

(1+ e−θ)−1 is the logistic function. Binary PCA finds a L-dimensional (L ≪ K) embedding of the
natural parameters, by maximizing the log-likelihood of the binary matrix Y

L = logP (Y ; Θ) =
∑

k,t

[
Ykt log σ(Θkt) + (1− Ykt) log σ(−Θkt)

]
(2)

under the constraint
Θ = CX + u1T , (3)

where C ∈ RK×L, X ∈ RL×τ , u ∈ RK and 1 ∈ Rτ is the vector of all ones. Each column of C
is a basis vector of a latent subspace and the t-th column of X contains the coordinates of the t-th
binary vector in this basis (up to a translation by u).

Binary PCA is not directly applicable to attribute-based recognition, where the goal is to fit the
vectors of confidence scores {πt} produced by a set of K attribute classifiers (and not a sample of
binary attribute vectors per se). To overcome this problem, we maximize the expected log-likelihood
of the data Y (which is the lower bound to the log expected likelihood of the data Y , by Jensen’s
inequality). Since E[yt] = πt, it follows from (2) that

EY [L] =
∑

k,t

[
πkt log σ(Θkt) + (1− πkt) log σ(−Θkt)

]
. (4)

The proposed extension of binary PCA consists of maximizing this expected log-likelihood under
the constraint of (3). It can be shown that, in the absence of the constraint, the maximum occurs
when σ(Θkt) = πkt, ∀k, t. As in PCA, (3) forces σ(Θkt) to lie on a subspace of S, i.e.,

σ(Θkt) = π̂kt ≈ πkt. (5)

The difference between the expected log-likelihood of the true scores {πt} and the binary PCA
scores {σ(θt) = σ(Cxt + u)} (σ(θ) ≡ [σ(θ1), · · · , σ(θK)]T ) is

E[∆L({πt}; {σ(θt)})] = EY

[
log(P (Y ; {πt}))

]
− EY

[
log(P (Y ; {σ(θt)}))

]
(6)

=
∑

k,t

[
πkt log

πkt

σ(Θkt)
+ (1− πkt) log

1− πkt

σ(−Θkt)

]
(7)

=
∑

t
KL[B(y;πt)||B(y;σ(θt))], (8)

where KL(B(y;π)||B(y;π′)) is the Kullback-Leibler (KL) divergence between two multivariate
Bernoulli distributions of parameters π and π′. By maximizing the expected log-likelihood (4), the
optimal projection {θ∗

t } of the attribute score vectors {πt} on the subspace of (3) also minimizes the
KL divergence of (8). Hence, for the optimal natural parameters {θ∗

t }, the approximation of (5) is the
best in the sense of KL divergence, the natural similarity measure between probability distributions.

3.3 Binary Dynamic Systems

A discrete time linear dynamic system (LDS) is defined by{
xt+1 = Axt + vt

yt = Cxt +wt + u
, (9)

where xt ∈ RL and yt ∈ RK (of mean u) are the hidden state and observation variable at
time t, respectively; A ∈ RL×L is the state transition matrix that encodes the underlying dynam-
ics; C ∈ RK×L the observation matrix that linearly maps the state to the observation space; and
x1 = µ0 + v0 ∼ N (µ0, S0) an initial condition. Both state and observations are subject to addi-
tive Gaussian noise processes vt ∼ N (0, Q) and wt ∼ N (0, R). Since the noise is Gaussian and
L < K, the matrix C can be interpreted as a PCA basis for the observation space (L eigenvectors
of the observation covariance). The state vector xt then encodes the trajectory of the PCA coeffi-
cients (projection on this basis) of the observed data over time. This interpretation is, in fact, at the
core of the popular dynamic texture (DT) [15] representation for video. While the LDS parameters
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Algorithm 1: Learning a binary dynamic system
Input : a sequence of attribute score vectors {πt}τt=1, state space dimension n.

Binary PCA: {C,X,u} = B-PCA({πt}τt=1, n) using the method of [14].
Estimate state parameters (Xt2

t1 ≡
[
xt1 , · · · ,xt2

]
):

A = Xτ
2 (X

τ−1
1 )†; V = (X)τ2 −A(X)τ−1

1 ; Q = 1
τ−1V (V )T ;

µ0 = 1
τ

∑τ
t=1 xt; S0 = 1

τ−1

∑τ
t=1(xt − µ0)(xt − µ0)

T .

Output: {A,C,Q,u,µ0, S0}

can be learned by maximum likelihood, using an expectation-maximization (EM) algorithm [26],
the DT decouples the learning of observation and state variables. Observation parameters are first
learned by PCA, and state parameters are then learned with a least squares procedure. This simple
approximate learning algorithm tends to perform very well, and is widely used in computer vision.

The proposed binary dynamic system (BDS) is defined as{
xt+1 = Axt + vt

yt ∼ B(y;σ(Cxt + u))
, (10)

where xt ∈ RL and u ∈ RK are the hidden state variable and observation bias, respectively; A ∈
RL×L is the state transition matrix; and C ∈ RK×L the observation matrix. The initial condition is
given by x1 = µ0 + v0 ∼ N (µ0, S0); and the state noise process is vt ∼ N (0, Q). Like the LDS
of (9), the BDS can be interpreted as combining a (now binary) PCA observation component with
a Gauss-Markov process for the state sequence. As in binary PCA, for attribute-based recognition
the binary observations yt are replaced by the attribute scores πt, their log-likelihood under (10)
by the expected log-likelihood, and the optimal solution minimizes the approximation of (5) for
the most natural definition of similarity (KL divergence) between probability distributions. This is
conceptually equivalent to the behavior of the canonical LDS of (9), which determines the subspace
that best approximates the observations in the Euclidean sense, the natural similarity measure for
Gaussian data. Note that other extensions of the LDS, e.g., kernel dynamic systems (KDS) that rely
on a non-linear kernel PCA (KPCA) [27] of the observation space but still assume an Euclidean
measure (Gaussian noise) [28, 6], do not share this property. We will see, in the experimental
section, that the BDS is a better model of attribute dynamics.

3.4 Learning

Since the Gaussian state distribution of an LDS is a conjugate prior for the (Gaussian) conditional-
distribution of its observations given the state, maximum-likelihood estimates of LDS parameters
are tractable. The LDS parameters ΩLDS = {A,C,Q,R,µ0, S0,u} of (9) can thus be estimated
with an EM algorithm [26]. For the BDS, where the state is Gaussian but the observations are not,
the expectation step is intractable. Hence, approximate inference is required to learn the parameters
ΩBDS = {A,C,Q,µ0, S0,u} of (10). In this work, we resort to the approximate DT learning
procedure, where observation and state components are learned separately [15]. The binary PCA
basis is learned first, by maximizing the expected log-likelihood of (4) subject to the constraint
of (3). Since the Bernoulli distribution is a member of exponential family, (4) is concave in Θ, but
not in C,X and u jointly. We rely on a procedure introduced by [14], which iterates between the
optimization with respect to one of the variables C,X and u, with the remaining two held constant.
Each iteration is a convex sub-problem that can be solved efficiently with a fixed-point auxiliary
function (see [14] for details). Once the latent embedding C∗, X∗ and u∗ of the attribute sequence
in the optimal subspace is recovered, the remaining parameters are estimated by solving a least-
squares problem for A and Q, and using standard maximum likelihood estimates for the Gaussian
parameters of the initial condition (µ0 and S0) [15]. The procedure is summarized in Algorithm 1.

4 Measuring Distances between BDSs

The design of classifiers that account for attribute dynamics requires the ability to quantify similarity
between BDSs. In this section, we derive the BDS counterpart to the popular Binet-Cauchy ker-
nel (BCK) for the LDS, which evaluates the similarity of the output sequences of two LDSs. Given
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LDSs Ωa and Ωb driven by identical noise processes vt and wt with observation sequences y(a)

and y(b), [16] propose a family of BCKs

KBC(Ωa,Ωb) = Ev,w

[∑∞

t=0
e−λt(y

(a)
t )TWy

(b)
t

]
, (11)

where W is a semi-definite positive weight matrix and λ > 0 a temporal discounting factor. To
extend (11) to BDSs Ωa and Ωb, we note that (y(a)

t )TWy
(b)
t is the inner product of an Euclidean

output space of metric d2(y
(a)
t ,y

(b)
t ) = (y

(a)
t − y

(b)
t )TW (y

(a)
t − y

(b)
t ). For BDSs, whose obser-

vations yt are Bernouli distributed with parameters {σ(θ(a)
t )}, for Ωa, and {σ(θ(b)

t )}, for Ωb, this
distance measure is naturally replaced by the KL divergence between Bernoulli distributions

DBC(Ωa,Ωb) = Ev

[
∞∑
t=0

e−λt
(

KL(B(σ(θ
(a)
t ))||B(σ(θ

(b)
t ))) + KL(B(σ(θ

(b)
t ))||B(σ(θ

(a)
t )))

)]

= Ev

[∑∞

t=0
e−λt

(
σ(θ

(a)
t )− σ(θ

(b)
t )

)T (
θ
(a)
t − θ

(b)
t

)]
,

(12)

where θt = Cxt + u. The distance term at time t can be rewritten as

(σ(θ
(a)
t )− σ(θ

(b)
t ))T (θ

(a)
t − θ

(b)
t ) = (θ

(a)
t − θ

(b)
t )T Ŵt(θ

(a)
t − θ

(b)
t ), (13)

with Ŵt a diagonal matrix whose k-th diagonal element is Ŵt,k = (σ(Θ
(a)
t,k ) − σ(Θ

(b)
t,k))/(Θ

(a)
t,k −

Θ
(b)
t,k) = σ′(Θ̂

(a,b)
t,k ) (where, by the mean value theorem, Θ̂(a,b)

t,k is some real value between Θ̂
(a)
t,k and

Θ̂
(b)
t,k). This reduces (13) to a form similar to (11), although with a time varying weight matrix Wt.

It is unclear whether (12) can be computed in closed-form. We currently rely on the approximation
DBC(Ωa,Ωb) ≈

∑∞
t=0 e

−λt(σ(θ̄
(a)
t )− σ(θ̄

(b)
t ))T (θ̄

(a)
t − θ̄

(b)
t ), where θ̄ is the mean of θ.

5 Experiments

Several experiments were conducted to evaluate the BDS as a model of activity attribute dynam-
ics. In all cases, the BoF was used as low-level video representation, interest points were detected
with [2], and HoG/HoF descriptors [3] computed at their locations. A codebook of 3000 visual
words was learned via k-means, from the entire training set, and a binary SVM with histogram
intersection kernel (HIK) and probability outputs [29] trained to detect each attribute using the at-
tribute definition same as [11]. The probability for attribute k at time t was used as attribute score
πtk, which was computed over a window of 20 frames, sliding across a video.

5.1 Weizmann Activities

To obtain some intuition on the performance of different algorithms considered, we first used com-
plex activity sequences synthesized from the Weizmann dataset [17]. This contains 10 atomic action
classes (e.g., skipping, walking) annotated with respect to 30 lower-level attributes (e.g., “one-arm-
motion”), and performed by 9 people. We created activity sequences by concatenating Weizmann
actions. A sequence of degree n (n = 4, 5, 6) is composed of n atomic actions, performed by the
same person. The row of images at the top of Figure 2 presents an example of an activity sequence of
degree 5. The images shown at the top of the figure are keyframes from the atomic actions (“walk”,
“pjump”, “wave1”, “wave2”, “wave2”) that compose this activity sequence. The black curve (la-
beled “Sem. Seq”) in the plot at the bottom of the figure shows the score of the “two-arms-motion”
attribute, as a function of time. 40 activity categories were defined per degree n (total of 120 activity
categories) and a dataset was assembled per category, containing one activity sequence per person (9
people, 1080 sequences in total). Overall, the activity sequences differ in the number, category, and
temporal order of atomic actions. Since the attribute ground truth is available for all atomic actions
in this dataset, it is possible to train clean attribute models. Hence, all performance variations can
be attributed to the quality of the attribute-based inference of different approaches.

We started by comparing the binary PCA representation that underlies the BDS to the PCA and
KPCA decompositions of the LDS and KDS. In all cases we projected a set of attribute score vectors
{πt} into the low-dimensional PCA subspace, computed the reconstructed score vectors {π̂t}, and
the KL divergence KL(B(y,πt)||B(y, π̂t), as reported in Figure 3. The kernel used for KPCA was
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Table 1: Classification Accuracy on Weizmann Activities and Olympic Sports Datasets

Dataset BoF Holistic Attri. DTM TOT KDS BDS

Weizmann Activities 57.8% 72.6% 84.6% 88.2% 90.2% 94.8%
Olympic Sports 56.8% 63.5% 47.1% 53.3% 62.3% 65.7%

the logit kernel K(π1,π2) = σ−1(π1)
Tσ−1(π2), where σ−1(·) is the element-wise logit function.

Figure 3 shows the average log-KL divergence, over the entire dataset, as a function of the number of
PCA components used in the reconstruction. Binary PCA outperformed both PCA and KPCA. The
improvements over KPCA are particularly interesting since the latter uses the logistic transformation
that distinguishes binary PCA from PCA. This is explained by the Euclidean similarity measure that
underlies the assumption of Gaussian noise in KPCA, as discussed in Section 3.3. To gain some
more insight on the different models, a KDS and a BDS were learned from the 30 dimensional
attribute score vectors of the activity sequence in Figure 2. A new set of attribute score vectors were
then sampled from each model. The evolution of the scores sampled for the “two-arms-motion”
attribute are shown in the figure (in red/blue for BDS/KDS). Note how the scores sampled from the
BDS approximate the original attribute scores better than those sampled from the KDS, which is
confirmed by the KL-divergences between the original attribute scores and those sampled from the
two models (also shown in the figure).

We next evaluated the benefits of different dynamics representations for activity recognition. Recog-
nition rates were obtained with a 9-fold leave-one-out-cross-validation (LOOCV), where, per trial,
the activities of one subject were used as test set and those of the remaining 8 as training set. We
compared the performance of classifiers based on the KDS and BDS with a BoF classifier, a holistic
attribute classifier that ignores attribute dynamics (using a single attribute score vector computed
from the entire video sequence) and the dynamic topic models DTM [23] and TOT [24] from the
text literature. For the latter, the topics were equated to the activity attributes and learned with su-
pervision (using the SVMs discussed above). Unsupervised versions of the topic models had worse
performance and are omitted. Classification was performed with Bayes rule for topic models, and a
nearest-neighbor classifier for the remaining methods. For BDS, distances were measured with (12),
while for the KDS we tried the Binet-Cauchy, X 2, intersection and logit kernels, and reported the
best results. X 2 distance was used for the BoF and holistic attribute classifiers. The classification
accuracy of all classifiers is shown in Table 1. BDS and KDS had the best performance, followed by
the dynamic topic models, and the dynamics insensitive methods (BoF and holistic). Note that the
difference between the holistic classifier and the best dynamic model is of approximately 22%. This
shows that while attributes are important (14.8% improvement over BoF) they are not the whole
story. Problems involving fine-grained activity classification, i.e., discrimination between activities
composed of similar actions executed in different sequence, requires modeling of attribute dynamics.
Among dynamic models, the BDS outperformed the KDS, and topic models DTM and TOT.

5.2 Olympic Sports
The second set of experiments was performed on the Olympic Sports dataset [4]. This contains
YouTuBe videos of 16 sport activities, with a total of 783 sequences. Some activities are sequences
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Table 2: Fine-grained Classification Accuracy on Olympic Sports by BDS

Method clean&jerk
(snatch)

long-jump
(triple-jump)

snatch
(clean&jerk)

triple-jump
(long-jump)

BDS 85% (9%) 80% (2%) 78% (10%) 62% (14%)
Holistic 73% (21%) 72% (20%) 65% (27%) 38% (43%)

Table 3: Mean Average Precision on Olympic Sports Dataset

Laptev et al. [3]
( BoF )

Niebles et al. [4]
( BDS )

Liu et al. [11]
( Attr. / B+A ) B+A+D

62.0%
( 67.8% )

72.1%
(73.2%)

74.4%
(72.9% / 73.3%) 76.5%
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Figure 4: Scatter plot of accuracy
gain on Olympic Sports by BDS.

of atomic actions, whose temporal structure is critical for discrimination from other classes (e.g.,
“clean and jerk” v.s.“snatch”, and “long-jump” v.s.“triple-jump”). Since attribute labels are only
available for whole sequences, the training sets of the attribute classifiers are much noisier than
in the previous experiment. This degrades the quality of attribute models. The dataset was split
into 5 subsets, of roughly the same size, and results reported by 5-fold cross-validation. The
DTM and TOT classifiers were as above, and all others were implemented with an SVM of ker-
nel Kα(i, j) = exp(− 1

αd
2(i, j)), based on the distance measures d(i, j) of the previous section.

Table 1 shows that dynamic modeling again has the best performance. However, the gains over the
holistic attribute classifier are smaller than in Weizmann. This is due to two factors. First, the noisy
attributes make the dynamics harder to model. Note that the robustness of the dynamic models to
this noise varies substantially. As before, topic models have the weakest performance and the BDS
outperforms the KDS. Second, since fine grained discrimination is not needed for all categories,
attribute dynamics are not always necessary. This is confirmed by Figure 4, which presents a scatter
plot of the gain (difference in accuracy) of the BDS classifier over the holistic classifier, as a func-
tion of the accuracy of the latter. Each point corresponds to an activity. Note the strongly negative
correlation between the two factors: the largest gains occur for the most difficult classes for the
holistic classifier. Table 2 details these results for the two pairs of classes with most confusable at-
tributes. Numbers outside brackets correspond to ground-truth category, numbers in brackets to the
confusing class (percentage of ground-truth examples assigned to it). BDS has dramatically better
performance for these classes. Overall, despite the attribute noise and the fact that dynamics are not
always required for discrimination, the BDS achieves the best performance on this dataset.

Finally, we compare the BDS classifier to classifiers from the literature. Three approaches, rep-
resentative of the state-of-the art in classification with the BoF [3], dynamic representations [4],
and attributes [11], were selected as benchmarks. These were compared to our implementation
of BoF (kernel using only word histograms), attributes (the holistic classifier of Table 1), dynam-
ics (the BDS classifier), and multiple kernel classifiers combining 1) BoF and attributes (B+A), and
2) BoF, attributes, and dynamics (B+A+D). All multiple kernels combinations were achieved by
cross-validation. The mean average precisions of all 1-vs-all classifiers are reported in Table 3. The
numbers in each column report to directly comparable classifiers, e.g., B+A is directly comparable
to [11], which jointly classifies BoF histograms and hollistic attribute vectors with a latent SVM.
Note that the BDS classifier outperforms the state-of-the-art in dynamic classifiers (Niebles et al.
[4]), which accounts for the dynamics of the BoF but not action attributes. This holds despite the fact
that our attribute categories (only 40 specified attributes) and classifiers (simple SVMs) are much
simpler than the best in the literature [11] , which uses both the data-driven and the 40 specified
attributes as ours, plus a latent SVM as the classifier. The use of a stronger attribute detection archi-
tecture could potentially further improve these results. Note also that the addition of the BDS kernel
to the simple attribute representation (B+A+D) far outperforms the use of the more sophisticated at-
tribute classifier of [11], which does not account for attribute dynamics. This illustrates the benefits
of modeling the dynamics of attributes. The combination of BoF, attributes, and attribute dynamics
achieves the overall best performance on this dataset.
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