Statistical Visual Computing Lab

UC San Diego

Project Website & Dataset Download: http://www.svcl.ucsd.edu/projects/OOWL/CVPRW2022_REFINE.html

Introduction

- Recent progress has been made in reconstructing 3D object shape from images, i.e. single view 3D reconstruction.
- But due to the difficulty of collecting large datasets in the wild with 3D ground truth, it's still very challenging for generalize across domain, viewpoint, and class.
- To address this we propose REFINE, a postprocessing mesh refinement step easily integratable into the pipeline of any black-box method.
- At test time, REFINE optimizes a network per mesh instance, to encourage consistency between the mesh and the given object view. This helps restore details and improve reconstruction accuracy.
- A new hierarchical multiview, multidomain image dataset with 3D meshes called 3D-ODDS is also proposed as a uniquely challenging benchmark.

Previous Related Work

- Many single view 3D reconstruction methods exist; they can use varying 3D modalities (e.g. mesh, voxel, implicits) and use varying levels of supervision (e.g. supervised, weakly supervised, unsupervised).
- Regardless of method, important image details (circled in green) are frequently lost by state-of-the-art methods (circled in red).

Brandon Leung, Chih-Hui Ho, Nuno Vasconcelos

Experiments & Findings

- REFINE neural network learns to displace vertices of reconstructions, by exploiting silhouette and viewpoint information.
- Main signal is leveraging rendered 3D mesh match input image silhouette.
- Symmetry, smoothness, and displacement based losses provide regularization to prevent degenerate solutions.
- Operates at test time, on-the-fly per mesh. Weights reinitialized & reoptimized per mesh, taking about 400 iterations to converge (about 30 seconds per mesh).

Input Image	Origina Mesh	al r	Refined Mesh			Input Image	Origina Mesh		Refined Mesh	
				T			Æ			
							FE			
			¢			F				E
nput Image	Silhouette + Disp	placement	+ Smoothness	+ Symmetry			EMD	CD-la 1	F-Score ↑	Vol. IoU↑
No.		R		2	REFIN	REFINEd OccNet [34]		$34.0 \rightarrow 22.5$	80 → 84	$33 \rightarrow 35$
alo		T. Mar			REFINEd Pix2Mesh [51]		(-1.0) $4.8 \rightarrow 3.5$	(-11.5) $38.0 \rightarrow 23.1$	$(+4)$ $67 \rightarrow 78$	$\begin{array}{c c} (+2) \\ \hline 22 \rightarrow 27 \end{array}$
Input Mesh							(-1.3) $6.2 \rightarrow 4.9$	$\frac{(-14.9)}{62.5 \rightarrow 32.9}$	$(+11)$ $56 \rightarrow 72$	$(+5)$ $8 \rightarrow 13$
					REFIN	Ed AtlasNet [13]	(-1.3)	(-29.6)	(+16)	(+5)
		5			REFIN	NEd Pix2Vox [57]	$4.5 \rightarrow \overline{\textbf{3.3}}$ (-1.2)	$37.3 \rightarrow \mathbf{\overline{21.8}} \\ (-15.5)$	$70 \rightarrow 80$ (+10)	$\begin{array}{c} 27 \rightarrow \mathbf{\overline{34}} \\ (+7) \end{array}$

Black-Box Test-Time Shape REFINEment for Single View 3D Reconstruction

3D-ODDS Dataset

- The **3D Object Domain Dataset Suite** (3D-ODDS) is a hierarchical real-world dataset ideal as a benchmark for rigorously testing invariance.
- Contains 200,000 images and 331 corresponding 3D meshes.
- 3 disentangled factors of variation: class, viewpoint, and domain.
- About 20 different classes, 25 object instances per class.
- Domains originate from 3 types of data collection: turntable, drone, and in the wild
- 8 viewpoints per object instance (in azimuth increments of 45°)

a) OTURN Domain n the lab. turntable & DSLR Camera to create 3D meshes.

b) OOWL Domain In the lab, flying drone camera

c) OWILD Domain In the wild with real indoor & outdoor locations, smartphone camera

Workshop on Learning with Limited Labelled Data for Image and Video Understanding

