# AGA: Attribute-Guided Augmentation



Mandar Dixit UC San Diego



**Roland Kwitt** University of Salzburg



Marc Niethammer UNC Chapel Hill



Nuno Vasconcelos UC San Diego

## **Visual Recognition**



#### Convolutional Neural Networks (CNNs) + Large-scale datasets



Challenge(s): appearance, pose, location invariance

### **Data Augmentation**

#### Augmentation in **IMAGE space**



Original

Flip

(Random) Crops

Crop + Flip

- Transformed copies of the original image
- Possible with simple image processing

[Chatfield et al. 2014] [Zeiler & Fergus 2014] [Krishevsky et al. 2012]

## **Guided** Data Augmentation





3D CAD based rendering [Peng et al. 2015]



3D Motion Capture Synthesize [Charalombous et. al. 2016], [Rogez & Schmid 2016]

#### Synthesis of non-trivial variations

- Either trivial in stimuli, e.g., digits
- Or require rendering from 3D
- Image space high dimensional
- Learning needs lot of data

Objective



.

Objective



Augmentation in space of CNN activations

### **Data Augmentation**

#### Augmentation in **FEATURE space**

- Inherits all the invariance of a CNN's representation
- Deep representations "unfold" the manifold of images [Bengio et al. 2012] (e.g., very recently leveraged in [Upchurch et al. 2016])
- Augmentation is performed in a space where trajectories of variation are "easier" to learn (e.g., with less data)

This is the strategy we advocate in this work!

### A Regression / Synthesis Problem



**Learn** trajectories in feature space

CNN activation space

### A Regression / Synthesis Problem



**Transfer** trajectories to unseen objects

CNN activation space

### Assumption



- Trajectories are parametrized by object pose and depth: Attributes
- Attributes assume a scalar value denoted by  $\gamma$

### **Problem Formulation**



### **Problem Formulation**



### **Problem Formulation**



### **Training for Synthesis**



To **train** the generator for a given pair  $(t_0, t)$  we keep the object CNN and the attribute predictor frozen.

### Training Loss for Synthesis



The loss minimizes attribute mismatch between the synthesized sample and the desired attribute value.

### Training Loss for Synthesis



... and **restrains** the synthesized sample to lie in the neighborhood of the original sample to preserve object identity.

### Training Loss for Synthesis



Note that learning only needs the given example  $\mathbf{x}$  and a scalar value tNo paired data points

## Training for Synthesis: Implementation

#### SUN RGBD dataset [Song et al. 2015]



Images of 19 object classes along and their bounding boxes

#### Attributes: object pose and depth

obtained from labeled 3D information

## Training for Synthesis: Implementation

#### SUN RGBD dataset



### Training for Synthesis: Implementation



## **Application: Transfer-Learning**



Source dataset

#### Source data : Object images with attribute labels

• 19 classes of SUN RGBD + depth & pose

Target data : Unseen object classes, no annotations

• 10 class subsets (T1, T2) from SUN RGBD



## Application: One / Few-Shot Transfer



Source dataset

#### Source data:

Training RCNN, Attribute predictor, Feature generator

**Target data** : Used for **one-shot** / **few-shot** object recognition

• Linear SVM trained with source RCNN activations



#### For every image in target dataset, we

- 1. generate RCNN features: x
- 2. predict it's depth / pose:  $t_0$
- 3. synthesize features  $\phi(\mathbf{x}, t_0, t)$  for a range of desired depths / poses t

| Datasets  | Baseline* |
|-----------|-----------|
| T1        | 33.74     |
| T2        | 23.76     |
| T1 and T2 | 22.84     |

#### For every image in target dataset, we

- 1. generate RCNN features: x
- 2. predict it's depth / pose:  $t_0$
- 3. synthesize features  $\phi(\mathbf{x}, t_0, t)$  for a range of desired depths / poses t

| Datasets  | Baseline* | Pose Aug. |
|-----------|-----------|-----------|
| T1        | 33.74     | 37.25     |
| T2        | 23.76     | 27.15     |
| T1 and T2 | 22.84     | 24.34     |

#### For every image in target dataset, we

- 1. generate RCNN features: x
- 2. predict it's depth / pose:  $t_0$
- 3. synthesize features  $\phi(\mathbf{x}, t_0, t)$  for a range of desired depths / poses t

| Datasets  | Baseline* | Pose Aug. | Depth Aug. |
|-----------|-----------|-----------|------------|
| T1        | 33.74     | 37.25     | 38.32      |
| T2        | 23.76     | 27.15     | 28.49      |
| T1 and T2 | 22.84     | 24.34     | 25.52      |

#### For every image in target dataset, we

- 1. generate RCNN features: x
- 2. predict it's depth / pose:  $t_0$
- 3. synthesize features  $\phi(\mathbf{x}, t_0, t)$  for a range of desired depths / poses t

| Datasets  | Baseline* | Pose Aug. | Depth Aug. | D + P. |       |
|-----------|-----------|-----------|------------|--------|-------|
| T1        | 33.74     | 37.25     | 38.32      | 39.10  | +5.36 |
| T2        | 23.76     | 27.15     | 28.49      | 30.12  | +6.36 |
| T1 and T2 | 22.84     | 24.34     | 25.52      | 26.67  | +3.83 |

We repeat the previous experiment with 5 instances per target class

|        | D + P. | Depth Aug. | Pose Aug. | Baseline* | Datasets  |
|--------|--------|------------|-----------|-----------|-----------|
| +6.89  | 56.92  | 53.83      | 55.04     | 50.03     | T1        |
| +10.28 | 47.04  | 42.68      | 44.57     | 36.76     | T2        |
| +5.50  | 42.87  | 39.36      | 40.46     | 37.37     | T1 and T2 |

In summary, we observe gains similar to one-shot (in the range of 5-10 points)

### **Object-based Scene Representation**



**Problem: weak encoding** due to few detections / image (more so in few-shot case)

### **Object-based Scene Representation**



Deploy pre-trained pose & depth guided synthesis to multiply the features

## **Application: One-shot Scene Recognition**



#### Source Data: SUN RGBD

• Train feature synthesis

Target Data: Subset of MIT Indoor Scenes [Quattoni et al. 2012]

- Local feature extraction + depth / pose guided synthesis
- Scene Representation (Fisher vector) [Perronnin et al. 2010]
- Combined with state-of-the-art rep.: Places [Zhou et al. 2014], Sem-FV [Dixit et al. 2015]

### **Application: One-shot Scene Recognition**

| Approaches                 | Accuracy (%) |
|----------------------------|--------------|
| Sem-FV [Dixit et al. 2015] | 32.75        |
| AGA-augmented Sem-FV       | 34.36        |

## **Application: One-shot Scene Recognition**

| Approaches                    | Accuracy (%) |
|-------------------------------|--------------|
| Sem-FV [Dixit et al. 2015]    | 32.75        |
| AGA-augmented Sem-FV          | 34.36        |
| Places CNN [Zhou et.al. 2014] | 51.28        |
| AGA-augmented Places CNN      | 52.11        |

Accuracy of Sem-FV and Places CNN representations improves non-trivially!

#### Conclusion

- We propose a technique for attribute-guided data augmentation (AGA)
- Augmentation in feature space of a CNN
  - Low complexity learning
  - Inherits the invariance of a pre-trained CNN
- Augmentation: Regression along attribute trajectories
  - Trajectories once learned can be transferred to unseen objects
- Attribute trajectory learning
  - Attribute predictor MLP
  - Feature regressor MLP
  - Training needs no paired examples
- Augmentation improves one shot/few-shot recognition

# Thank You!

#### Source code (+ trained models for pose / depth) is publicly available!

This work is supported by **NSF** awards IIS-1208522, CCF-0830535 and ECCS-1148870. We also thank **NVIDIA** for the generous donation of TitanX GPUs.



Supplementary Material

### Implementation

- Framework: Torch
- Optimizer: ADAM [Kingma & Ba, 2015]

|               | Attribute strength<br>predictor | <b>Encoder-Decoder*</b> (per attribute interval [a,b] to desired target t) |
|---------------|---------------------------------|----------------------------------------------------------------------------|
| Learning rate | 0.001                           | 0.001                                                                      |
| Batch size    | 300                             | 300                                                                        |
| Epochs        | 50                              | 50                                                                         |
| Loss          | MSE                             | Weighted MSE<br>(0.7 regularizer + 0.3 mismatch)                           |

\*pre-trained using all available data

## Quality of Synthesized Examples

| <b>Objects</b> (T1) | Correlation coefficient | MAE<br>(Depth [m]) | Correlation coefficient | MAE<br>(Pose [degrees]) |
|---------------------|-------------------------|--------------------|-------------------------|-------------------------|
| Picture             | 0.67                    | 0.08               | 0.65                    | 5.13                    |
| Ottoman             | 0.70                    | 0.09               | 0.70                    | 4.41                    |
| Whiteboard          | 0.67                    | 0.12               | 0.65                    | 4.43                    |
| Fridge              | 0.69                    | 0.10               | 0.68                    | 4.48                    |
| Counter             | 0.76                    | 0.08               | 0.77                    | 3.98                    |
| Book                | 0.74                    | 0.08               | 0.73                    | 4.26                    |
| Stove               | 0.71                    | 0.10               | 0.71                    | 4.50                    |
| Cabinet             | 0.74                    | 0.09               | 0.72                    | 3.99                    |
| Printer             | 0.73                    | 0.08               | 0.72                    | 4.59                    |
| Computer            | 0.81                    | 0.06               | 0.80                    | 3.73                    |
| Average             | 0.72                    | 0.09               | 0.71                    | 4.35                    |

## Quality of Synthesized Examples

| Retrieval experiment                                                                                                                            | <b>Objects</b> (T1) | Тор-1 | R <sup>2</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|----------------|
|                                                                                                                                                 | Picture             | 0.33  | 0.36           |
| • Using synthesized samples we retrieve the                                                                                                     | Ottoman             | 0.60  | 0.12           |
| nearest real sample from target database.                                                                                                       | Whiteboard          | 0.12  | 0.30           |
| <ul> <li>Results expressed in</li> <li>Top-1 retrieval accuracy (object class)</li> <li>Coeff. of determination (attribute strength)</li> </ul> | Fridge              | 0.26  | 0.08           |
|                                                                                                                                                 | Counter             | 0.64  | 0.18           |
|                                                                                                                                                 | Books               | 0.52  | 0.07           |
|                                                                                                                                                 | Stove               | 0.20  | 0.13           |
|                                                                                                                                                 | Cabinet             | 0.57  | 0.27           |
| Reasonable predictability of attr. strength for                                                                                                 | Printer             | 0.31  | 0.02           |
| most objects classes.                                                                                                                           | Computer            | 0.94  | 0.26           |
| In other of least class identifies is noteined.                                                                                                 | Average             | 0.72  | 0.09           |

• In others, at least class identity is retained