

Background Data Resampling for Outlier-Aware Classification

Yi Li Nuno Vasconcelos

UC San Diego

SVCL ₹

Out-of-distribution Detection

• Deep neural nets tend to produce overconfident predictions, specifically on

- Misclassified examples (Guo et al., 2017)
- Inputs that do not belong to any training class (Bendale et al., 2016)

- Out-of-distribution (OOD) detection: Discriminate outliers from regular test data
 - i.e. identify samples from different prob. distribution than training set
 - Existing methods: Input preprocessing (Liang et al., 2018), additional loss functions (Lee et al., 2018)
 - Auxiliary background data effective (Hendrycks et al., 2019), less explored

OOD Detection with Background Data

• Formulation: Two objectives

 $L(heta;\mathcal{D},\mathcal{D}_b) = L_{ ext{cls}}(heta;\mathcal{D}) + lpha L_{ ext{uni}}(heta;\mathcal{D}_b)$

- L_cls --- Classify in-distribution samples w/ high confidence output
- L_uni --- Detect out-of-distribution samples w/ low confidence output

• Challenge: Dataset size

OOD Detection with Background Data

• Large background dataset needed!

- Additional storage & training time
- Trade-off between detection quality & sample size

SVCL

OOD Detection with Background Data

• What background data to use?

(a) Small background dataset: Efficient but inaccurate.

(c) Uniformly resampled dataset: Efficient but inaccurate.

(b) Large background dataset: Accurate but inefficient.

Background Data Resampling

• Intuition

- Assign individual weights to background samples
- Adversarially update sample weights & classifier parameters
- Use optimized weights to sample background subset

Background Data Resampling

• Example reweighting

- \circ Assign $w_i \geq 0$ to sample x_i in background dataset \mathcal{D}_b
- \circ Reweight training loss using w_i
- \circ Special case when $w_i \in \{0,1\}$ Reweighted loss = Loss on background subset \mathcal{D}_b'

$$\begin{split} L_{\text{out}}(\theta; w) &= \frac{1}{|\mathcal{D}_b'|} \sum_{(x,y) \in \mathcal{D}_b'} L_{\text{uni}}(f(x; \theta)) \\ &= \frac{1}{\sum_i w_i} \sum_{i=1}^{|\mathcal{D}_b|} w_i L_{\text{uni}}(f(x_i; \theta)). \end{split}$$

SVCL

Background Data Resampling

- Adversarial resampling
 - Classifier updated to minimize reweighted loss
 - Sample weights updated to maximize reweighted loss, selecting the most challenging examples near the boundary of training distribution

 Background subset obtained through sampling w/ probability proportional to learned weights Algorithm 1: Adversarial resampling, batch version.

Input: ID dataset \mathcal{D} , background dataset \mathcal{D}_b , pre-trained classifier θ , learning rate η_{θ} , η_w , loss coefficient α , total iterations T

Initialize: $w^{(0)} \leftarrow [1, \ldots, 1], \theta^{(0)} \leftarrow \theta;$ for $t = 0, \ldots, T - 1$ do Compute ID loss $l_{in}^{(t)} \leftarrow L_{in}(\theta^{(t)}; \mathcal{D});$ Compute OOD loss $l_{out}^{(t)} \leftarrow L_{out}(\theta^{(t)}; w^{(t)});$ Update classifier $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta_{\theta} \nabla_{\theta^{(t)}} \left(l_{in}^{(t)} + \alpha l_{out}^{(t)} \right);$ Update weights $w^{(t+1)} \leftarrow w^{(t)} + \eta_w \nabla_{w^{(t)}} l_{out}^{(t)};$ Output: Resampling weights $w^{(T)}$.

SVCL

• OOD detection performance

- Training with background data improves OOD detection by large margin
- Random sampling 10% of background samples hurt detection quality
- Adversarial sampling gives similar or better performance, thanks to emphasis on samples near the boundary

Background \mathcal{D}_b	FPR95↓	AUROC \uparrow	AUPR \uparrow
None [13], $\gamma = 0$	31.45	90.72	62.77
Full, $\gamma = 100\%$	2.21	99.41	95.06
Random, $\gamma = 10\%$	2.85	99.14	92.92
Resampled, $\gamma = 10\%$	1.94	99.37	94.16

(a) In-distribution $\mathcal{D} = CIFAR-10$.

Background \mathcal{D}_b	FPR95↓	AUROC \uparrow	AUPR \uparrow
None [13], $\gamma = 0$	54.81	76.71	33.98
Full, $\gamma = 100\%$	8.51	97.03	81.16
Random, $\gamma = 10\%$	11.08	96.08	76.17
Resampled, $\gamma = 10\%$	6.40	97.76	83.75

(b) In-distribution $\mathcal{D} = CIFAR-100$.

Background \mathcal{D}_b	FPR95↓	AUROC \uparrow	AUPR \uparrow
None [13], $\gamma = 0$	62.41	72.01	30.73
Full, $\gamma = 100\%$	3.77	99.39	97.70
Random, $\gamma = 10\%$	8.17	98.19	95.22
Resampled, $\gamma = 10\%$	1.25	99.64	98.86

(c) In-distribution $\mathcal{D} = \text{Tiny ImageNet.}$

• OOD detection performance: Breakdown by OOD test sets (In-distribution: CIFAR-10)

- How many background samples to use?
 - Detection quality vs. Sample rate (% of background data used)

- Does resampled background data work under different training settings?
 - Generalization across models
 - Generalization across in-distribution datasets

Network Architectures

- Does resampled background data work under different training settings?
 - Generalization across models
 - Generalization across in-distribution datasets

In-distribution Datasets

Conclusions

• Motivations

- Background data for training OOD detection
- Trade-off between sample size and detection quality
- Background data resampling
 - Reweight background samples
 - Adversarially updating sample weights & classifier
- Results
 - Training with resampled dataset > random sample of equal size, sometimes outperforming full background data
 - Improvement is consistent at different resampling rates
 - Resampled data generalizes in different training settings

