
BEV-Net: Assessing Social Distancing Compliance
by Joint People Localization and Geometric Reasoning

Supplemental Material

Zhirui Dai1, Yuepeng Jiang1, Yi Li1, Bo Liu2, Antoni B. Chan3, and Nuno Vasconcelos1

1Department of Electrical and Computer Engineering, UC San Diego
2Wormpex AI Research

3Department of Computer Science, City University of Hong Kong
{zhdai,yuj009,yil898,boliu}@eng.ucsd.edu, abchan@cityu.edu.hk, nvasconcelos@ucsd.edu

A. Dataset Annotation
Annotation procedure. The original CityUHK-X dataset
[4] contained the head annotations of all people in the scene,
as well as extrinsic camera parameters in the form of height
h and pitch angle θ relative to ground plane. The intrin-
sic parameters were assumed available at training and test
time. As the height of each individual is unknown, head
locations are not sufficient to recover pedestrians’ locations
in the world coordinates. Therefore, we used Amazon Me-
chanical Turk to annotate feet locations of each person, with
one-to-one correspondence to the head locations.

As the number of people in each scene varies greatly
(minimum 1 to maximum 121), the scene images are pre-
processed into rectangular crops around each head location.
The size of rectangles are selected adaptively to make sure
that each crop contains the whole person selected in the
original image. Given each crop with marked head loca-
tion, workers are required to locate the midpoint between
both feet that correspond to the same person (figure 1); In
crowded areas where one or both feet are occluded by ob-
jects or other pedestrians, workers are expected to provide
their best estimate of feet location, or indicate that too little
information is available to do so.

Each of the crops is assigned to three workers. The an-
notated coordinates from each worker are averaged after the
exclusion of outliers. If at least two workers think they
could see the feet clearly of the given person in the crop,
then the crop is marked ‘valid’ (clearly visible). Otherwise,
the feet of the given person are marked to be occluded.

Annotation outcome. 87,746 feet locations were anno-
tated using the procedure described above. Among them,

Figure 1: Annotation interface on MTurk.

63,669 (72.56%) were clearly visible and 24,077 (27.44%)
occluded. Figure 2 shows the percentage of estimated an-
notations due to occluded body parts as functions of camera
height and angle. The statistics reveal that occlusion occurs
more frequently with low camera height and small pitch an-
gles, making social distancing detection particularly chal-
lenging in these scenarios.

B. Homography Derivation
The setting of the camera is shown as figure 2 in the main

text. The origin of world coordinate is set to be the camera’s
perpendicular projection on the ground plane, and the yaw
angle of camera is set to be 0 by aligning it with the x-axis
of world coordinates. We further assume that the camera
has zero roll angle, i.e. its view is straightened to the hori-
zon. This is a reasonable setting for most surveillance sys-
tems. Given the camera’s height h and pitch angle θ, the
transformation from the world frame to the optical frame,
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Figure 2: Percentage of estimated annotations from oc-
cluded body parts. More occlusion is found at smaller pitch
angles and lower camera heights.
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where OTC is the transformation from the camera frame to
the optical frame, and WTC is from the camera frame to
the world frame.

In CityUHK-X-BEV dataset, the camera focal lengths
(fu, fv) are given and for generality, we suppose there is
no optical skew nor image center displacement. Hence, the
intrinsic matrix is

K =

fu 0 uI
c

0 fv vIc
0 0 1

 . (2)

Denoting with P the canonical projection matrix, trans-
formation from point (x, y, z) in the world frame to coordi-
nates (u, v) in the image frame is given by

ITW = KP OTW (3)[
u v 1

]⊤
= ITW

[
x y z 1

]⊤
. (4)

For a plane at z = h0, we can easily get the projection
of points in the plane by using the camera’s relative height
h′ = h− h0. So, z = 0 and equation 4 becomes[

u v 1
]⊤

= IHW

[
x y 1

]⊤
, (5)

where

IHW =

 uI
cα −fu uI

ch
′β

vIcα− fvβ 0 h′(fvα+ vIcβ)
α 0 h′β

 , (6)

α = cos θ, β = sin θ, (fu, fv) are the horizontal and verti-
cal focal length of the camera respectively, and (uI

c , v
I
c ) the

image center.
Since the BEV map is under a certain scale as equation

2 in the main text, the transformation between BEV map
coordinates and the world frame is

WTB =

 0 −s xc + sH/2
−s 0 yc + sW/2
0 0 1

 , (7)

where H,W are the height and width of the BEV map, and
(xc, yc) is the world coordinate of the image center on the
ground plane. Matrices of equation 6 and equation 7 are
combined in equation 5 of main text to build the transform
from image frame to BEV.

C. Network Architecture
Figure 3 summarizes the architecture for each branch of

BEV-Net. Image-view (IV) branches estimate head or feet
locations from input image using an encoder-decoder struc-
ture. The IV encoders followed the same design as the first 4
convolutional blocks of VGG-16 [10] with batch normaliza-
tion [3]. Head and feet feature maps are then processed by
a fully-convolutional decoder network into the IV heatmap.
Pose branch uses fully connected layers stacked on top of
a ResNet-101 [2] feature extractor to regress camera height
and pitch angle. The head and feet feature maps are pro-
jected into bird’s eye view (BEV) using the BEV-Transform
module (section 4.2 of main text), then fed into the BEV de-
coder which predicts the final BEV heatmap.

D. More Ablation Study
Performance on split scene setting. As shown in fig-
ure 4, camera poses varies even within the same scenes
of the CityUHK-X-BEV dataset. In the paper, we use the
setting of PoseNet [5], which trains and tests on the same
scenes. We believe that this is the most suited for a public
health setting, where there is usually some planing of the
locations to monitor and data can be collected at those lo-
cations. In this setting, parameter variation is mostly due to
camera motion (e.g. pan-zoom cameras), wind effects, etc.
and usually less severe than even in figure 4. A more drastic
generalization to completely unseen scenes is a much more
challenging task. We also test BEV-Net with some scenes
unseen during training. The chamfer distance increases to
2.41/80.33%, IoU of local risk drops to 54.86%, and the
global risk MSE is 50.14× 10−4. We can see that BEV-Net
still outperforms most baselines.

Encoder shared across branches. A BEV-Net with en-
coder shared across feet, head and pose branches has cham-
fer distance 1.25, local risk IoU 71.01%, and global risk
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Figure 3: Network architectures. From left to right: IV (head/feet) branch, pose branch, BEV branch. The left bottom is the
attention module. All conv layers have stride s = 1; deconv layers use stride s = 2. Nonlinearity, dropout [11] and batch
normalization [3] omitted between some layers for simplicity.
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Figure 4: Variation in camera poses in the same scene of
CityUHK-X-BEV.

MSE 5.88 × 10−4. i.e. a little weaker than original imple-
mentation.

E. Qualitative Examples
Figure 5 and 6 contain qualitative comparison of local-

ization and risk predictions from the proposed BEV-Net and
baseline approaches using detection [1, 8] and crowd count-
ing [6, 7] backbones. The results confirm the observations

in main paper that detection methods have low recall for
pedestrians far away, while counting methods fail to pro-
duce accurate localization in ground plane. In contrast,
BEV-Net captures more people in crowded scenes, espe-
cially in areas far from the camera where occlusion is com-
mon, as well as those with extreme (close to 90◦) camera
angles. This advantage translates to better localization and
risk estimate performance, both in the visualizations and in
quantitative results (table 1 of main text).
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Figure 5: Qualitative comparison of BEV heatmaps between Mask R-CNN [1], Faster R-CNN [9], CSP [8], CSRNet [6],
DSSINet [7] baselines and BEV-Net (ours). BEV-Net misses fewer people than detection methods [1, 8] and produces more
accurate localization than crowd counting approaches [6, 7].
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Figure 6: Qualitative comparison of risk heatmaps between Mask R-CNN [1], Faster R-CNN [9], CSP [8], CSRNet [6],
DSSINet [7] baselines and BEV-Net (ours). Risk maps predicted by BEV-Net are closest to ground-truth.
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