
Supplementary Material: Learning Representations
from Audio-Visual Spatial Alignment

A Implementation details1

In this section, we describe in detail the implementation of the proposed AVSA pre-training as well2

as the semantic segmentation and action recognition downstream tasks.3

A.1 Audio-visual spatial alignment4

The architecture of the video and audio encoder networks, fv and fa, are shown in Table 1. The5

feature translation networks are described in Section 3.2 and depicted in Figure 3 of the main text.6

These are transformer networks of base dimension 512 and expansion ration 4. In other words,7

the output dimensionality of the linear transformations of parameters Wkey,Wqr,Wval,W0 and8

W2 are 512, and that of W1 is 2048. Models are pre-trained to optimize loss (7) for AVC task or9

(9) for AVTS and AVSA tasks. AVTS models are trained using negatives obtained from the same10

viewpoint but different moments in time. AVSA models are obtained using negatives obtained from11

the same moment in time but different viewpoints. All models were trained using the Adam optimized.12

Pre-training hyper-parameters are summarized in Table 2.13

A.2 Semantic segmentation14

For semantic segmentation, we used a lightweight FPN segmentation head. As originally proposed,15

lateral connections are implemented with a 1 × 1 convolution that maps all feature maps into a16

128 dimensional space followed by a 3 × 3 convolution for increased smoothing. Since the FPN17

head is used to perform semantic segmentation of a single frame given a video clip with multiple18

frames, we perform global temporal pooling of the feature maps before feeding them to the lateral19

connections. Semantic segmentation predictions are then computed based on the features at all levels.20

First, features from low-resolution layers are upsampled through a sequence of 3× 3 convolutions21

with dilation of 2 into 56× 56 resolution and added together to perform pixel-wise classification. All22

parameters of the FPN head are trained to minimize the softmax cross-entropy loss average across23

all pixels. Since we are using the output of a state-of-the-art model as ground truth, we avoid using24

low-confidence ground-truth labels. Thus, all pixels for which the state-of-the-art model was less25

than 75% confident were kept unlabeled. These low confidence regions were also ignored while26

computing evaluation metrics. The model was trained using the Adam optimizer with batch size 20,27

learning rate 1e− 4 and weight decay 5e− 4 for 10 epochs. The learning rate was decayed at epochs28

5 and 8. Video clips were extracted from random viewpoints within the 360◦video, with random29

angular coverage between 45◦and 90◦for data augmentation. Color jittering and horizontal flipping30

was also applied.31

A.3 Action recognition32

The video encoder network was evaluated on the task of action recognition using UCF and HMDB33

datasets. We augmented the video encoder with a linear classification layer after the global max-34

pooling operation, and finetune the whole network. We used Adam optimization for 100 epochs, with35

batch size 28, learning rate 10−4 decayed at epochs 40, 60 and 80. Performance is reported on first36

train/test split originally defined for the UCF and HMDB datasets.37
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B Ablations and parametric studies38

We assess different components of the proposed pre-trained mechanism through several ablation and39

parameteric studies shown in Table 3. All models are evaluated on AVC-Bin, AVSA-Bin, semantic40

segmentation, and action recognition tasks as introduced in §5.2–5.4 of main text (4 crops per video41

are used for AVC-Bin and AVSA-Bin). We report accuracies for the AVC-Bin, AVSA-Bin tasks42

using 4 viewpoints, mean IoU for the semantic segmentation task and clip level accuracy for action43

recognition on UCF.44

Influence of spatial audio To demonstrate the value of spatial audio, we train the AVSA pretext45

task using different inputs to the audio network: single channel mono audio, two channel stereo audio,46

and four channel ambisonic audio. The three versions of the audio input can be easily computed47

from the full ambisonics signal. The mono version of audio is generated by taking the projection of48

the ambisonic signal into the spherical harmonics at each viewing angle. To generate stereo, we use49

a standard ambisonic binauralizer that models a human listener looking at each viewing angle. To50

generate ambisonics, we simply rotate the original signal to align with each viewing angle. Assuming51

a typical ambisonics format with 4 channels, this is done by applying a 3D rotation matrix to its52

first-order spherical harmonic components (X , Y and Z channels), while keeping the zeroth-order53

component (W channel) fixed.54

Table 3a shows substantial improvement (∼ 7%) in AVC and AVSA tasks by using full ambisonics55

for each crop over mono audio, suggesting that the latter may not be sufficient to encode spatial56

information of sound sources. Using stereo audio which retains partial spatial information also57

improves over mono input, but with a smaller margin. For semantic tasks (segmentation and action58

recognition on UCF), learning with ambisonics also proved to be more effective.59

Influence of number of viewpoints As more viewpoints are extracted from each sample, the60

difficulty of the AVSA task increases since more options are provided for matching. To investigate61

whether the increased difficulty correlates with the quality of the learned representation, we vary the62

number of viewpoints during AVSA pre-training.63

Table 3b shows the AVC and AVSA performance increases monotonically as more viewpoints are64

used. However, these gains not always translates into better performance on semantic tasks. Semantic65

segmentation achieved the best performance by training to discriminate 2 or 4 viewpoints, while66

action recognition peaked at 4 viewpoints.67

Influence of type of negative crops The AVSA pretext tasks uses a combination of easy and hard68

(spatial) negatives: Easy negatives are clips from different video instances. Hard (spatial) negatives69

are sampled from different viewpoints, but the same moment in time. We also trained a network70

with hard spatio-temporal negatives, which can be sampled from any viewpoint and moment in time71

within the video. Table 3c shows the performance of models trained with different kinds of negatives72

crops. As can be seen, the combination of instance-based and spatial negatives (as used by the AVSA73

approach) yields better performance than using instance-based negatives alone (as used by AVC74

approaches). This shows the use of spatial negatives is complementary to AVC. However, the results75

are mixed when combining AVSA with temporal negatives (as used by AVTS approaches), producing76

slightly better semantic segmentations, but worse UCF performance.77

Influence of curriculum learning Prior work indicates that curriculum learning can benefit training78

by starting from easier sub-tasks and progressively increase the difficulty of the task being learned.79

To test this hypothesis in the AVSA context, we evaluate our network trained with and without the80

curriculum learning strategy (first optimizing for easy negatives, i.e. AVC, then optimizing for easy81

and hard negatives combined). We also compare to baselines where the model is only optimized for82

easy or hard negatives.83

Table 3d shows that training on hard negatives directly leads to the best AVC and AVSA performance.84

However, the learned representations significantly overfit to the pretext task, and do not transfer well85

to semantic tasks, as seen by the low performance on semantic segmentation and action recognition.86

Using a combination of easy and hard negatives proved to be beneficial for these two downstream87

tasks, with the curriculum learning strategy achieving the best results.88

Influence of modeling spatial context We propose to use a transformer network to leverage the89

rich spatial context of spatial audio and 360◦video while translating features across the two modalities.90

To assess the importance of modeling spatial context, we evaluate models trained with and without91
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the transformer networks. We further vary the depth of transformer module in search of a good92

trade-off between model complexity and quality of learned representations.93

Table 3e shows that modeling spatial context is not required to predict whether audio and video clips94

originate from the same sample (achieving lower AVC accuracy). However, the ability to perform95

spatial alignment is significantly impacted without the transformer network, showing that it is harder96

to perform spatial alignment without combining information from multiple viewpoints. The lack97

of spatial context also impacted both semantic segmentation and action recognition on UCF. For98

semantic tasks, a transformer of depth D = 2 provided a good trade-off between model complexity99

and model performance.100

Video Network
Layer Xs Xt C Ks Kt Ss St

video 112 8 3 - - - -
conv1 56 8 64 7 3 2 1

block2.1 56 8 64 3 3 1 1
56 8 64 3 3 1 1

block2.2 56 8 64 3 3 1 1
56 8 64 3 3 1 1

block3.1 28 4 128 3 3 2 2
28 4 128 3 3 1 1

block3.2 28 4 128 3 3 1 1
28 4 128 3 3 1 1

block4.1 14 2 256 3 3 2 2
14 2 256 3 3 1 1

block4.2 14 2 256 3 3 1 1
14 2 256 3 3 1 1

block5.1 7 1 512 3 3 2 2
7 1 512 3 3 1 1

block5.2 7 1 512 3 3 1 1
7 1 512 3 3 1 1

max pool 1 1 512 7 1 1 1

Audio Network
Layer Xf Xt C Kf Kt Sf St

audio 129 100 N - - - -
conv1 65 50 64 7 7 2 2

block2.1 65 50 64 3 3 1 1
block2.2 65 50 64 3 3 1 1
block3.1 33 25 128 3 3 2 2
block3.2 33 25 128 3 3 1 1
block4.1 17 13 256 3 3 2 2
block4.2 17 13 256 3 3 1 1
block5.1 17 13 512 3 3 1 1
block5.2 17 13 512 3 3 1 1
max pool 1 1 512 17 13 1 1

Table 1: Architecture details of R(2+1)D video network and Conv2D audio network. The video network is
based of R(2+1)D convolutions, and the audio on 2D convolutions. Both video and audio networks use ReLU
activations and batch normalization at each layer. Xs spatial activation size, Xt temporal activation size, Xf

frequency activation size, C number of channels, Ks spatial kernel size, Kt temporal kernel size, Kf frequency
kernel size, Ss spatial stride, St temporal stride, Sf frequency stride. The input to the audio network is a
N -channel spectrogram, where N = 1 for experiments with mono audio, N = 2 with stereo and N = 4 with
ambisonics.

Method bs nv lr wd cj hf hfovmin hfovmax in sn tn τ

AVC 112 1 1e-4 1e-5 X 0.5 25 90 X 0.07
AVTS 28 4 1e-4 1e-5 X 0.5 25 90 X X 0.07
AVSA 28 4 1e-4 1e-5 X 0.5 25 90 X X 0.07

Table 2: Pre-training optimization hyper-parameters. AVSA models are initialized by the AVC model obtained
at epoch 100. bs–batch size; nv–number of viewpoints; lr–learning rate; wd–weight decay; cj–color jittering;
hf–horizontal flip probability; hfovmin/hfovmax–minimum/maximum horizontal field-of-view in degrees; in/sn/tn–
instance/spatial/temporal negatives; τ–InfoNCE temperature.
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AVC@4 AVSA@4 Segm UCF

Mono 82.39 62.95 34.21 64.90
Stereo 84.47 71.11 34.54 64.68

Ambisonics 89.83 69.97 35.83 68.52

(a) Spatial audio format.

AVC@4 AVSA@4 Segm UCF

1 Viewpoint 84.60 61.77 35.37 64.71
2 Viewpoints 87.70 63.71 36.63 66.64
4 Viewpoints 89.83 69.97 35.83 68.52
8 Viewpoints 91.65 74.64 34.84 66.44

(b) Number of viewpoints.

AVC@4 AVSA@4 Segm UCF

Instance 83.87 61.20 34.05 64.09
+ Spatial 89.83 69.97 35.83 68.52

+ Spatial + Temporal 89.65 72.81 36.11 65.77

(c) Negative crop type.

AVC@4 AVSA@4 Segm UCF

Easy Only 83.87 61.20 34.05 64.09
Hard Only 93.22 77.71 20.97 59.15

No Curriculum 91.93 71.77 35.29 65.49
Curriculum 89.83 69.97 35.83 68.52

(d) Curriculum learning.

AVC@4 AVSA@4 Segm UCF

Direct Prediction 91.67 68.87 34.50 65.59
Transformer (Depth=1) 90.64 72.95 35.77 66.97
Transformer (Depth=2) 89.83 69.97 35.83 68.52
Transformer (Depth=4) 89.86 70.09 35.97 66.88

(e) Modeling spatial context.

Table 3: Ablation studies.
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