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Abstract

Image recognition on expert domains is usually fine-
grained and requires expert labeling, which is costly. This
limits dataset sizes and the accuracy of learning systems.
To address this challenge, we consider annotating expert
data with crowdsourcing. This is denoted as PrOfeSsional
lEvel cRowd (POSER) annotation. A new approach, based
on semi-supervised learning (SSL) and denoted as SSL with
human filtering (SSL-HF) is proposed. It is a human-in-
the-loop SSL method, where crowd-source workers act as
filters of pseudo-labels, replacing the unreliable confidence
thresholding used by state-of-the-art SSL methods. To en-
able annotation by non-experts, classes are specified im-
plicitly, via positive and negative sets of examples and aug-
mented with deliberative explanations, which highlight re-
gions of class ambiguity. In this way, SSL-HF leverages the
strong low-shot learning and confidence estimation ability
of humans to create an intuitive but effective labeling ex-
perience. Experiments show that SSL-HF significantly out-
performs various alternative approaches in several bench-
marks.

1. Introduction
While deep learning enabled tremendous advances in

image recognition, high recognition performance is still dif-
ficult to achieve in expert domains, such as specialized areas
of biology or medicine, due to two challenges. First, these
problems involve fine-grained classes, such as the dogs of
Figure 1, which differ by subtle visual attributes. Second,
large annotated datasets are difficult to produce, since image
labeling requires expert knowledge, which can be too ex-
pensive or infeasible at scale. This makes it difficult to train
models as strong as those available for non-expert domains,
where crowd-source annotation enables training with mil-
lions, or even billions, of labeled examples. To address
this challenge, we consider the problem of how to leverage
crowd-source platforms to provide professional level anno-
tation for expert domain data, which is denoted as PrOfeS-
sional lEvel cRowd (POSER) annotation.
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Figure 1. Different approaches to the labeling of a query image. Left:
Machine Teaching [44] generates a teaching set, which is used to teach
different classes to crowd source workers, who label the query. Center:
SSL [21, 34] methods produce a pseudo-label that is accepted or rejected
by thresholding a confidence score. Right: SSL-HF uses crowd source
workers to filter pseudo-labels, by comparing the query to a positive (im-
ages of the pseudo-label class) and a negative (images from other classes)
support set. The annotator implements a binary filter with ‘I don’t know’
(IDK) option.

Since the difficulty is lack of annotator expertise, one
route to POSER annotation is to rely on machine teaching
(MT) algorithms [23, 42, 44]. As illustrated in Figure 1, a
small teaching set annotated by an expert is used to teach
crowd-source workers to discriminate the various classes.
The scalability of crowd sourcing is then leveraged to as-
semble a large labeled dataset [44]. While machine teaching
is surprisingly effective for problems of small class cardi-
nality, it is difficult to teach crowd-workers a large number
of classes. This is partly because they are averse to compli-
cated training procedures and the teaching relies on short-
term memory, which has limited capacity [13, 29].

The POSER combination of expert domain data and
crowd-sourcing also creates challenges to most human-in-
the-loop schemes in the crowd-source annotation literature.
These are usually based on active learning (AL) [31, 32],
assuming an oracle that produces a ground-truth label per
example. To minimize the number of labelling iterations
and cost, AL selects the hardest examples in the dataset to
be labelled. However, this is misguided for POSER anno-
tation, where noisy annotators are inevitable and the oracle
assumption is violated. Since hard examples are precisely
those where workers make most mistakes, their selection
maximizes labeling noise. Hence, while AL is successful



in domains where crowd-source workers are experts, e.g.
everyday objects, it is not effective for expert domains.

In this work, we consider an alternative formulation, in-
spired by semi-supervised learning (SSL) methods [4,5,28,
34, 35] where a classifier trained on labelled data produces
pseudo-labels for unlabeled examples. These labels are then
accepted or rejected by thresholding a classification score,
as illustrated in the middle of Figure 1. We refer to this pro-
cess as pseudo-label filtering. Accepted labels are added
to the training set, the classifier retrained, and the process
repeated. SSL has been shown successful for datasets of
everyday objects [4, 5, 34, 55], such as CIFAR [20], STL-
10 [9], SVHN [27], or ImageNet [11] but frequently col-
lapses in expert domains, even under-performing supervised
baselines trained on the small labeled dataset [36, 44, 50].
This is due to the increased difficulty of finer-grained clas-
sification, and the well-known inability of deep learning to
produce well calibrated confidence scores [14, 46].

While SSL, by itself, does not solve POSER annotation,
its strategy of choosing the easier examples (higher classifi-
cation confidence) is more suitable for the noisy POSER an-
notators than the hardest example strategy of AL. Further-
more, the major SSL weakness - poor pseudo-label filtering
- can be significantly improved upon by using humans to fil-
ter pseudo-labels. This suggests solving the POSER anno-
tation problem with the SSL with human filtering (SSL-HF)
approach at the right of Figure 1. Unlike machine teaching,
where workers are image classifiers, POSER annotation is
framed as an SSL problem where they become filters that
verify the pseudo-labels produced by the classifier for un-
labeled images. This has the critical benefit of framing the
annotator operation as an instantaneous low-shot learning
problem, which does not require prior training.

In the proposed SSL-HF solution, given a query image
and its pseudo-label (‘Beagle’), the annotator is presented
with a small support set containing both positive (‘Beagle’
class) and negative (other classes) images. The annotator
then simply declares if they agree with the pseudo-label,
based on the similarity of the query image to the support
set examples. Due to the well-known ability of humans for
confidence calibration [10], this label filtering procedure is
much more accurate than that of SSL, enabling POSER an-
notation with high accuracy. Furthermore, because the fil-
tering is by visual similarity, the labeling is implicit, i.e. the
annotator does not even need to know the ‘Beagle’ class.
Hence, there is no need to teach annotators a priori, elimi-
nating the short-term memory constraints of MT. Together,
these properties enable the ultimate goal of POSER annota-
tion: accurate crowd-sourced annotation of expert datasets
with large numbers of classes.

The main insight behind SSL-HF is that the human low-
shot learning ability [1, 41, 49] can be leveraged to enable
annotators to filter labels in domains where they are not ex-

pert. However, when the differences between support set
examples are very fine-grained, it can be difficult to iden-
tify the object details to look for. To address this problem,
we propose to augment SSL-HF with deliberative explana-
tions [43, 45], which visualize image regions of ambiguity
between class pairs, tailored to the SSL-HF setting.

Overall, this work makes five contributions. First, we
introduce the SSL-HF framework for POSER annotation.
Second, we propose an implementation, where the classi-
fier suggests a label for the image and a support set of a
few positive and close-negative examples. Third, to en-
hance the accuracy of the human filtering of pseudo-labels,
the support set is complemented with visualization-based
explanations. Fourth, we present experiments showing that
SSL-HF significantly outperforms SSL, AL, and MT ap-
proaches to POSER annotation and that explanations en-
hance these gains. Finally, to minimize the development
cost of POSER annotation methods, we introduce an eval-
uation protocol based on simulated human labeling. These
contributions establish a new research direction at the in-
tersection of human-in-the loop and fine-grained classifica-
tion, needed to advance the effectiveness of deep learning
in expert domains.

2. Related Work
The problem of fine-grained classification with scarce la-

beled data can be addressed with various approaches.
Crowd sourcing: While critical for the success of deep
learning, crowd-source platforms such as Amazon Mechan-
ical Turk (MTurk) [18] are not suitable for expert domain
data, due to the lack of expert annotators. [40] introduced a
tool to collect large-scale fine-grained datasets with crowd
annotators who are passionate and knowledgeable about
a specific domain. However, this is still a much smaller
scale of annotation than MTurk. MTurk workers can also
be taught using machine teaching algorithms, but these are
only applicable to problems of low class cardinality [44].
SSL-HF is inspired by [30], who addresses binary detection
by asking workers to select images similar to a target image,
from a large pool. However, it is difficult to search a large
number of candidates. [25] introduces AL, only forwarding
‘hard’ examples for human labeling. However, when work-
ers are not domain experts, this induces many false posi-
tives. SSL-HF aims to extend these approaches to multi-
class classification and increase robustness to lay annotator
errors.
Semi-supervised learning (SSL): SSL can be broadly
divided into representation learning [7, 16] and pseudo-
labelling [21, 34]. The latter has achieved better results in
fine-grained SSL challenges [37]. Two popular approaches
are self-training [6, 21] and consistency-based learning [5,
34]. While some success has been achieved for medical im-
ages [2, 3], and sub-classes of birds and dogs [24, 26], SSL



is still under-explored for the fine-grained classes typical of
expert domains. In fact, studies show that, for fine-grained
data, SSL frequently under-performs a supervised baseline
trained only on the labelled data [36, 44, 50].
Active learning (AL): AL assumes ground-truth labels pro-
duced by an oracle [31, 32]. However, oracle annotators
are very expensive in expert domains. On crowd source
platforms, noisy annotations are inevitable. A few pa-
pers have considered acquisition functions for noisy ora-
cles [12], post-hoc denoising layers to overcome annotation
noise [15], or theoretical results on statistical consistency
and query complexity in the presence of noise [52]. How-
ever, these works either assume coarse-grained data, simu-
lated noise, or both. We focus on the combination of fine-
grained data and noisy annotators and show, experimentally,
that AL performs poorly in this setting.
Machine teaching (MT): MT is a broad research prob-
lem [8, 44, 56, 57], which includes the task of leveraging
machines to teach humans expert domain knowledge for
data labelling. Existing approaches can be grouped into
plain [19, 33, 42] or explanations-enhanced [8, 38, 44], de-
pending on whether they use explanations. Motivated by
the success of the latter, we introduce deliberative explana-
tions [43] as an aid to the human filtering now proposed.

3. Challenges of POSER Annotation
In this section, we formalize the fine-grained expert do-

main annotation problem. Previous representative methods
are also recapped so as to motivate SSL-HF, which is intro-
duced in the next section.

Challenges: Very large datasets are critical for deep
learning. In lay domains, such as everyday objects, scal-
able annotation is feasible on crowd-sourcing platforms,
like MTurk. However, in expert domains, annotation is very
expensive and unfeasible at scale. While it is typically pos-
sible to collect a large dataset D = {xi}M+N

i=1 , only a small
subset Da = {xi}Mi=1, M ≪ N , can be realistically an-
notated, to produce a labeled dataset Dl = {(xi, yi)}Mi=1

where yi is the label of xi, and an unlabeled dataset Du =
D−Da. The goal is to label the latter and augment Dl with
the labeled Du. This can be difficult because expert domain
problems typically involve a large number C of fine-grained
classes. Intra-class variation, due to factors like object pose,
can easily exceed inter-class variation.

SSL: SSL is an automated approach, where a classifier
f trained on Dl generates pseudo-labels ŷ = f(x) and con-
fidence scores σ(x) for each x ∈ Du. As shown in the
middle of Figure 1, pseudo-labels are then filtered by confi-
dence score thresholding, σ(x) > θ. Images from Du that
survive this test are added to Dl, pseudo-labels accepted
as labels, and the process iterated. There are, however, two
difficulties. First, since Dl is originally small, f is not accu-
rate. Second, deep networks produce poorly calibrated con-

fidence scores. Since the two effects compound, pseudo-
labels ŷ are not trustworthy. It is particularly difficult to
propagate labels across images of the same class that are
not visually similar to those in Dl, e.g. new object poses.

Human in the loop: An alternative is to use human-in-
the-loop annotation, which iterates between human image
labeling and model training. The challenge is to identify
the images x ∈ Du most informative for learning f , to re-
duce the entire human labelling effort. This is addressed
with AL, which is similar to SSL but samples images of
larger hardness score h(x) according to f and uses humans
as label oracles. In the crowd-source setting, AL is sensi-
ble for lay domains, e.g. everyday objects, but unsuitable
for expert domains, where the oracle assumption is violated
and hard examples elicit the most labeling mistakes.

Machine Teaching: In MT, the classifier f is first
trained on Dl. A MT algorithm then designs a course, com-
posed of images L ⊂ Dl, for teaching workers to recognize
the C target classes. The workers trained with L then label
Du. The classifier f is finally re-trained on D. Since the
annotators do not have to be experts, crowd-sourcing plat-
forms can be leveraged for scalability. However, most MT
algorithms only support a small number of classes.

4. SSL with Human Filtering
In this section, we introduce the SSL-HF approach.

4.1. Motivation

In expert domains, POSER annotation of Du has several
problems. On one hand, crowd workers cannot be taught to
be good image classifiers with MT because of a large num-
ber of classes. In these domains, label noise is inevitable.
This also prevents the use of classical human-in-the-loop
solutions based on AL, which equate humans to oracles. On
the other, fully automated SSL algorithms cannot be trusted
to filter pseudo-labels. While SSL accounts for noisy la-
bels, the pseudo-labels produced by f are usually too poor
to enable progress. To address these problems, we propose
a combination of SSL and human-in-the-loop, by using hu-
mans to filter pseudo-labels produced by f . This inherits the
robustness of SSL to noisy labels but leverages the much su-
perior human classification accuracy to filter pseudo-labels.

The SSL-HF process is illustrated in Figure 1. Given
a query image q ∈ Du and a pseudo-label ŷ, in this
case ‘Beagle’, the annotator is asked the question ‘do
you agree that image q belongs to class ŷ?’. The an-
notator then responds with p = H(q, ŷ), where p ∈
{‘agree’, ‘disagree’, ‘I don’t know (IDK)’} and the IDK
option allows the annotator to skip images that are too dif-
ficult. Images q for which the annotators select the ‘agree’
option are labeled with y = ŷ, as usual in SSL. The prob-
lem is that the annotator may not know the ‘Beagle’ class.
To overcome this challenge, we propose two mechanisms.



Figure 2. Interface (black box). In this example, a query image of a ‘Red bellied Woodpecker’ receives pseudo-label ‘Red headed Woodpecker’ (ŷ), which is
the the class of the three images in ‘Group A’ (Sŷ). ‘Group B’ (Sc

ŷ) presents images of ‘Red bellied Woodpecker’, ‘Cardinal’, and ‘Rose breasted Grosbeak’.

The first is to ask the question implicitly, with respect to
a support set of images, composed by a set Sŷ ∈ Dl of im-
ages from class ŷ (positives) and a set of images Sc

ŷ ∈ Dl

from classes other than ŷ (negatives). This is illustrated in
Figure 2, which shows a query of the class ‘Red bellied
Woodpecker’ that receives the incorrect pseudo-label (ŷ)
‘Red headed Woodpecker’. The annotator can compare the
query to three positives (Sŷ , images of ‘Red headed Wood-
pecker’), shown as ‘Group A,’ and three negatives (Sc

ŷ , im-
ages of classes ‘Red bellied Woodpecker’, ‘Cardinal’, ‘Rose
breasted Grosbeak’), shown as ‘Group B’.

This formulation of label filtering is similar to the def-
inition of low-shot recognition [39, 47] and leverages the
ability of humans to solve this problem. Rather than having
to know all the classes, as in MT, the annotator only has to
reason in terms of the visual similarity between query and
support set examples. Note that, in the figure, it is almost
immediately obvious that the query is not a ‘Cardinal’. A
detailed examination then reveals that it is also not a ‘Red
headed Woodpecker,’ because its head is not fully red, nor
a ‘Rose breasted Grosbeak,’ because it has a white breast.
However, this type of analysis can exceed the effort that
crowd-source workers are willing to devote to the task.

The second mechanism targets this problem, by high-
lighting the image regions of the query most informative
for the annotator decision. Namely, the query q is enhanced
with visual explanations m(·) that highlight image regions
key to distinguish the positives and negatives in the support
set. This is based on deliberative explanations [43] derived
from q,Sŷ, and Sc

ŷ . In the figure, the explanation highlights
the regions (head and feather texture) most distinctive for
the discrimination from the other classes in the support set.
Rather than examining the other images in detail, the an-
notator can then immediately realize that the ‘Red bellied
Woodpecker’ shown in the left of Group B is is the only
bird to have the same feather pattern as the query.

4.2. Support Set Generation

The two components of the support set are assumed to
have the same cardinality, |Sŷ| = |Sc

ŷ| = K. Let Dl
ŷ be the

set of examples in Dl of ground truth label ŷ. Experimen-
tally, we found no difference between multiple strategies
to select the examples of Sŷ ⊂ Dl

ŷ based on the predicted
posterior probability fŷ(x) of class ŷ given example x (see
detailed discussion in Supp). Since randomly selecting K
images from Dl

ŷ to construct Sŷ was found to be an effective
strategy, we use it in the bulk of our experiments.

The assembly of Sc
ŷ is more complex. First, there is a

need to decide whether the K images should come from the
same or different classes. We choose to display one image
of each of K classes, to maximize the probability that the
true class y is part of Sc

ŷ when ŷ is incorrect. Next, there is
a need to choose the K classes to display. We select the K
classes other than ŷ of largest probabilities in fŷ(q), since
these are the most similar to ŷ and thus the potentially most
informative for fine-grained class differentiation.

Figure 2 illustrates the importance of including Sc
ŷ . In

this example, an annotator may not notice that the ‘Red bel-
lied Woodpecker’ of q has a partially red head, while the
‘Red headed Woodpecker’ of Sŷ does not. The inclusion
of a ‘Red bellied Woodpecker’ in Sc

ŷ (left image) forces
the annotator to realize that there is a class of birds with
partially red heads. This makes it clear that q does not be-
long to class ŷ, making the annotators more likely to choose
the ‘disagree’ option. In the absence of a fine-grained neg-
ative set, these details might be lost, originating a false-
positive. Even when Sc

ŷ does not contain images from the
groundtruth class y, the visualization of a diverse set of ob-
jects that differ in subtle details is likely to encourage the
use of the IDK option whenever ŷ is incorrect.

Given the K classes that make up Sc
ŷ , it remains to

choose one example per class. Similarly to Sŷ , we have



Mangrove Cuckoo (MC) Yellow billed Cuckoo (YC)Black billed Cuckoo (BC)Warbling Vireo (WV)
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Figure 3. Deliberative explanation (red box) for a query image of a ‘Man-
grove Cuckoo’ and simplified explanation used in SSL-HF (green box).
Examples from the ambiguous classes are shown on the bottom for illus-
tration only. The annotator only sees the simplified explanation.

found that random example selection is sufficient.

4.3. Explanation Generation

A well suited explanation framework for SSL-HF is that
of deliberative explanations [43], which highlight the re-
gions that f finds ambiguous, i.e. likely to belong to more
than one class. Formally, a deliberative explanation is a list
of insecurities, where an insecurity is a triplet (r, a, b), com-
posed by the segmentation mask r of a region of ambiguity
between a pair of classes (a, b). Figure 3 shows an exam-
ple: a query image q of a ‘Mangrove Cuckoo,’ the three
most ambiguous classes for q (‘Black Billed Cuckoo,’ ‘Yel-
low Billed Cuckoo,’ and ‘Warbling Vireo’), and the delib-
erative explanation localizing the segments that the classi-
fier deems ambiguous for each pair of classes. We found,
however, this to be too much information for the crowd
sourcing setting and simplified the explanations as follows.
First, there is no need for the explanation to show ambi-
guities with classes outside the support set. Second, there
is no need to even consider ambiguities between pairs of
classes in the negative set, only between the prediction ŷ
and the classes in Sc

ŷ . So we only consider the insecurities
R = {(ri, ai, bi)|ai = ŷ, bi ∈ C′} where C′ is the set of
K classes in Sc

ŷ . Finally, instead of showing insecurities
separately, we combine them into a single image, by tak-
ing the union m(q) = 1−⊙K

i=1(1− ri), where ⊙ denotes
element-wise multiplication and ri is 1 for ambiguous re-
gions and 0 for background. The middle of Figure 3 shows
this operation.

4.4. Implementation

Human filtering can produce ‘disagree’ or ‘IDK’ out-
comes for the pseudo-label of a particular example. These
examples can still be subsequently added to Dl if SSL-HF is
implemented iteratively. Experimentally, we observed that
the human filtering accuracy is positively correlated with

Algorithm 1 SSL-HF
Input Data Dl = {(xi, yi)}Mi=1, Du = {(xj)}Nj=1, #max
iteration τ , confidence threshold θ

1: Initialization: Dl,0 ← Dl, Du,0 ← Du, f0 ←
argminf RDl,0(f), t← 1.

2: while t < τ and empirical riskRDl,t(f) decreases do
3: for each xj ∈ Du,t−1 such that σ(xj |f t−1) > θ do //

Data Preparation Loop
4: ŷj = f t−1(xj).
5: Assemble Sŷj ,S

c
ŷj

6: end for
7: Lt ← ∅
8: for each xj ∈ Du,t−1 such that σ(xj |f t−1) > θ do //

Crowd Sourcing Loop
9: pj = H((xj , ŷj)|Sŷj ,S

c
ŷj
) ∈ {agree, disagree, IDK}

10: if pj = agree then
11: Lt = Lt ∪ (xj , ŷj)
12: end if
13: end for
14: Dl,t ← Dl,t−1 ∪ Lt

15: Du,t ← Du,t−1 \ Lt

16: classifier update: f t← argminf RDl,t(f).
17: t← t+ 1
18: end while
Output Dl,t−1, f t−1

the accuracy of the pseudo-labels produced by the classifier
f (see section 5.1). Since the accuracy of accepted pseudo-
labels determines the performance of f , there is a positive
reinforcement between human filter and classifier accuracy.
Hence, best SSL-HF results are usually achieved with a pro-
gressive classifier update strategy, where Dl grows at each
iteration, as unlabeled examples gradually receive labels.

The resulting SSL-HF procedure is summarized in Algo-
rithm 1. At iteration t, the classifier f is trained on labeled
dataset Dl,t−1. The classifier is then used to predict labels
ŷj for each image xj ∈ Du,t−1. For examples of high con-
fidence score, σ(xj) > θ, the pseudo-label ŷj = f(xj) is
used to assemble the support set Sŷj

,Sc
ŷj

. The human an-
notator then produces decision p = H((xj , ŷj)|Sŷj

,Sc
ŷj
) ∈

{‘agree,’ ‘disagree,’ ‘IDK’}, that xj belongs to class ŷj .
Examples denoted as ‘agree’ receive the label ŷ and are
added to Dl. The process is iterated until the empirical risk
RDl(f) of f on Dl does not decrease. While in our imple-
mentation examples are simply selected by thresholding the
confidence score, SSL-HF could use more advanced SSL
thresholding strategies, such as dynamic thresholding [51]
or a class-specific strategy [55]. In fact, since SSL-HF is an
implementation of SSL, it can benefit from any advances on
this problem. We leave this for future research.

4.5. Comparisons to Other Methods

When compared to MT solutions, such as MEMO-
RABLE [44], SSL-HF has several benefits. First, filtering
labels by comparison to a support set is easier than labeling
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Figure 6. Labelling accuracy, under different metrics, after each iteration
of POSER annotation. Classifier accuracy also shown on the right plot.

them from memory. Second, since there is no need to teach
annotators a priori, the labeling experience is more pleasing
and much cheaper. Third, because SSL-HF is iterative, a
difficult image can be seen by several annotators with sev-
eral support sets. As common in SSL, f becomes more
capable as the iterations progress. This allows SSL-HF to
converge to higher annotation and classifier accuracies. Fi-
nally, SSL-HF is applicable to problems with any number
of classes while MT is limited to low class cardinalities.

When compared to AL, the main difference is that the
SSL-HF annotator is assumed noisy. While AL samples the
hardest instances (e.g., an occluded object) as queries, SSL-
HF samples the image that f classifies most confidently.
Hence, while AL progresses from labeling hardest to easiest
examples, SSL-HF does the opposite. This is much better
suited for noisy annotators, since it avoids the early addition
of incorrect labels to the dataset, which can derail f .

When compared to SSL, SSL-HF has the advantage of
placing the hardest SSL step, validation of pseudo-labels,
on the hands of humans, which are much more competent
than any machine learning solution. The downside is the
financial cost of the annotations. We compare the costs of
the two approaches in the next section.

5. Experiments
In this section, we demonstrate the effectiveness of SSL-

HF. More details about the experimental set up are provided
in the supplementary.

5.1. Annotation Performance

We performed a study of annotation performance on the
fine-grained birds CUB dataset [48], following the SSL
setup of [36]. Figure 4 defines the confusion matrix of hu-
man annotators and statistics such as precision (P), recall

Lab. Acc. Cla. Acc.
A 60.1 59.2
B 66.2 64.1
C 61.1 60.2
D 68.7 65.9
E 74.3 68.6

Table 1. Labelling and classification
accuracy as a function of the support
set used by SSL-HF.
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Figure 7. Labelling and classifica-
tion accuracy as a function of confi-
dence threshold used by SSL-HF.

(R), and annotation accuracy (Ann Acc). Annotation per-
formance depends on a complex interplay between the qual-
ity of the pseudo-labels produced by the classifier f and the
hardness of the examples to annotate. Several experiments
were performed to gain insight on this interplay.

To evaluate how pseudo-label accuracy affects annota-
tor performance, we trained four classifiers of increasing
strength (accuracies of 0.46, 0.5, 0.58, 0.7 on Du), using
four labeled datasets Dl of increasing size. Figure 5 shows
the corresponding annotation accuracies on Du after one it-
eration of SSL-HF. Clearly, human annotation accuracy in-
creases with pseudo-label accuracy. This shows that there
is benefit in improving the classifier, i.e. the SSL compo-
nent is important, and justifies the progressive update of f
in Algorithm 1.

We then investigated how example hardness varies with
the SSL-HF iteration and how this affects annotator perfor-
mance. Figure 6 left shows how the confusion matrix of the
annotation evolves across four SSL-HF iterations. While
true positives dominate in the first iteration, this is no longer
true by the 3rd, suggesting that the images remaining to la-
bel after each iteration are harder. While Dl grows with iter-
ation, the newly accepted examples are noisier. The right of
the figure shows the impact on annotation P, R, and Ann Acc
as well as the accuracy of the classifier f . The three metrics
of annotation performance decrease, confirming that anno-
tation degrades in later iterations. The model f reaches the
best classification accuracy by the 3rd iteration. Note that
this does not contradict Figure 5, where the comparison is
for the same unlabeled image set. In Figure 6, annotation
accuracy declines as the classifier becomes stronger because
the unlabeled data consists of harder instances.

5.2. Ablation Study

Four different configurations were compared to ablate
the mechanisms of section 4. In all cases the query is an im-
age. The first two configurations use only text in the support
sets. (A) uses the positive support set only, asking turkers
if the query image is from class ŷ (replaced with the cate-
gory name). (B) adds the negative set, displaying the names
of K negative categories. The other two configurations test
the importance of including images in the support set. (C)
displays the positive support set only and (D) shows the full
set of images of the interface of Figure 2. None of these



In Distribution Out of Distribution
CUB Fungi CUB Fungi

Baseline Sup. expert (on Dl) 58.7 53.8 (0.4) 58.7 53.8 (0.4)
Upper boundSup. oracle (on Dl ∪ Du) 84.5 73.3 (0.1) 84.5 73.3 (0.1)

SSL

MoCo [16] 59.2 (0.6)55.2 (0.2)57.9 (0.5)52.9 (0.3)
Pseudo-Label [21] 57.0 51.5 (1.2) 59.1 52.4 (0.2)
Curr. Pseudo-Label [6] 57.3 53.7 (0.2) 59.6 54.2 (0.2)
FixMatch [34] 53.2 56.3 (0.5) 52.8 51.2 (0.6)
Self-Training [36] 61.3 56.9 (0.3) 61.4 55.7 (0.3)

POSER SSL-HF 68.6 (0.6)60.0 (0.4)65.0 (0.9)57.8 (0.5)

Table 2. Classification accuracy (mean(std)) comparison with the state of
the art SSL. Missing std indicates no std reported in the original literature.

experiments use explanations. These are added in a final
configuration (E), which corresponds to SSL-HF.

Table 1 compares the labeling and classification accu-
racy of all methods, enabling two conclusions. First, with-
out explanations (A to D), it is more important to add a neg-
ative support set than example images of the positive set.
Note that adding a text-based negative set increases anno-
tator performance by 6%, while adding all images only has
an additional gain of 2.5%. However, the addition of visual
explanations enables a large gain of almost 9%. Second, as
expected from the experiments above, improved annotation
accuracy leads to better classifiers. Overall, the classifier
learned with SSL-HF is almost 10% better than with the
simple baseline of A. The use of negative sets, asking ques-
tions implicitly via images, and explanations all contribute
to this significant gain.

Note how these results demonstrate the importance of
SSL-HF for expert domains. For the coarse-grained clas-
sification of everyday objects, the baseline of A (“is this a
picture of a shoe?”) is sufficient to achieve very high an-
notation accuracies. In fact, we hypothesize that the perfor-
mance of text-based only configurations is over-estimated
on this dataset, where the class name is very indicative of
visual features. For example, a bird without a red head can-
not be a ‘Red headed Woodpecker.’ On datasets where class
names are not so informative of visual attributes the gains
of simply adding images (configurations C D), over the text-
only baselines (A B), are likely to increase.

We also ablated the threshold of confidence scores used
to accept labels (step 3 and 8 in Algorithm 1), with the re-
sults of Figure 7. The optimal threshold, 0.25, is very dif-
ferent from those used for SSL approaches to object recog-
nition (e.g., 0.95 in [34]) and object detection (e.g., 0.7
in [22]). This confirms the claim that human filtering of
labels is much more robust than the simple thresholding of
confidence scores. Even though most pseudo-labels of low
confidence are incorrect, human annotators can still assign
the images to the correct class by visually analogy to the ex-
amples in the support set, as also demonstrated by the high
true positive rates of Figure 6. It is only for extremely low
values of confidence that the support sets are totally unin-
formative and human filtering becomes ineffective.

In fact, the confidence threshold cannot be too high for

500 2500 3000 3500 4000
Size of augmented dataset

0.6

0.7

0.8

0.9

1.0

La
be

lin
g 

A
cc

.

Randomness
AL (Uncertainty)
SSL-HF (Confidence)

500 2500 3000 3500 4000
Size of augmented dataset

0.58

0.60

0.62

0.64

0.66

0.68

0.70

C
la

ss
ifi

ca
tio

n 
A

cc
.

Randomness
AL (Uncertainty)
SSL-HF (Confidence)

Figure 8. Labelling (left) and classifier (right) accuracy vs size of the
POSER annotated dataset for different query selection strategies.

SSL-HF, as this leads to the acceptance of only the exam-
ples that are relatively easier. Such examples fail to induce
improvement of the classifier, which subsequently fails to
produce better pseudo labels for the next iteration. In result,
the gradual update of the classifier does not happen. Results
of a comprehensive ablation study of the other algorithm
parameters, such as image sampling strategy for creation of
support sets sets, support set cardinality, etc. are discussed
in the Supp.

5.3. Comparisons on Crowd-source Platforms

POSER annotation with SSL-HF, using MTurk work-
ers, was compared to various other approaches, on sev-
eral expert-domain datasets: CUB [48] (100 classes) and
Fungi [36] (200), which have large class cardinality, and
Butterflies [23] (5) and Gulls [44] (5), which are machine
teaching datasets.
SSL: Table 2 compares SSL-HF to SSL methods on
the benchmarks of [36, 44]. These include both an in-
distribution setting, where unlabeled and labeled data are
drawn from the same class space, and an out-of distribu-
tion setting, where the unlabeled data comes from novel
classes. The importance of data annotations is reflected
by the large gap between supervised learning from Dl (ex-
pert labeled dataset) and Dl ∪ Dl (upper bound, fully la-
beled) for all datasets. However, vanilla SSL is of little
help, since all methods have little to no gain over learning
from Dl alone. This is unlike POSER annotation with SSL-
HF, which achieves significant gains over expert annotation
alone. The gains can be as high as 10% for in-distribution
and 6% for out-of distribution data.
AL: SSL-HF was compared to AL and random example se-
lection. These were implemented with Algorithm 1, by re-
placing the function used to select examples in steps 3 and 8.
For AL [17,53,54], σ(xj |f t−1) was replaced by an entropy-
based acquisition function [17], which forwards images of
high classification uncertainty to the turkers. For random
selection it was replaced by a sample from a uniform distri-
bution in [0, 1]. Figure 8 shows how annotation and classifi-
cation accuracy vary with the amount of data from Du that
is labeled. SSL-HF is always the best method and AL the
worst, even worse than random. This confirms our claims
that the selection of hard examples performed by AL is not



Labeling Acc. Classification Acc.
Butterflies Gulls Butterflies Gulls

Baseline Sup. expert (on Dl) - - 58.7 53.8 (0.4)
Upper bound Sup. oracle (on Dl ∪ Du) - - 84.5 73.3 (0.1)
MT MEMORABLE [44] 77.1 (1.2) 68.3 (1.8) 77.5 (0.5) 60.2 (1.1)
SSL-HF SSL-HF 73.6 (0.8) 74.1 (0.5) 73.0 (0.7) 63.3 (0.5)

Table 3. Labeling and classification accuracy (mean(std)) comparison.

suitable for the noisy annotators of POSER annotation.
MT: Table 3 compares SSL-HF with a state of the art
MT algorithm [44]. These experiments are restricted to
the small class cardinality datasets supported by MT. They
confirm the previous observation that higher labeling accu-
racy leads to higher classification accuracy. Regarding rel-
ative performance, the results are mixed, with better results
for [44] in Butterfies and for SSL-HF in Gulls. This is ex-
plained by the fact that Butterflies is not as fine-grained as
Gulls, a fact confirmed by the higher classification accura-
cies of the former. In result, Gull classes are harder to com-
mit to short-term memory and the annotation performance
of MT degrades. Note that while SSL-HF is slightly infe-
rior to MT on the easier dataset, it has similar annotation
accuracy on the two datasets. This suggests that visual rea-
soning in terms of support sets and visual explanations is
quite robust, unlike the memorization required by MT. This
and the scalabilty of SSL-HF with class cardinality make
SSL-HF a clearly better overall solution.

5.4. Comparisons by Human Simulation

Protocol: Crowd source experiments are difficult to repli-
cate and expensive. Hence, there is a benefit to simu-
lated evaluation protocols that facilitate algorithmic devel-
opment. These should mimic human annotations as closely
as possible. Following [44], we propose a simulated proto-
col to evaluate SSL-HF, based on estimates of the confusion
matrix of Figure 4, obtained on a small dataset. R examples
are sampled from Du, forwarded to human annotators, the
confusion matrix is computed and used to simulate the an-
notators for the remaining unlabeled examples. Given a new
example (x, y) and pseudo-label ŷ, a random number (p) is
sampled from a uniform distribution in [0, 1]. If ŷ = y, the
human decision is simulated as ‘Agree’ when p < TP

TP+FN
and ‘Disagree/IDK’ otherwise. If ŷ ̸= y, ‘Agree’ is declared
when p < FP

FP+TN and ‘Disagree/IDK’ otherwise.
To determine how many examples R are needed to pro-

duce a realistic confusion matrix, we performed a two-
sample two-tailed T test comparing the classification accu-
racies of human and simulated labeling. Table 4 lists statis-
tics for different values of R. The null-hypothesis is that the
underlying population means are the same. The t-scores are
computed for a p-value of 0.05, and the null-hypothesis is
accepted for all R ≥ 500. This suggests that simulation is a
very economical alternative to user experiments.
Cost-accuracy trade-off: We used simulation to compare
supervised learning from Dl, SSL-HF, SSL, and AL with
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Figure 9. Trade-off between accuracy and annotation cost of different la-
beling strategies.

Simulated Real
R 400 500 1000 1500 2000 3885
Accuracy 69.8(0.4) 69.6(0.4) 69.2(0.3) 68.9(0.4) 68.5(0.3) 68.6
t-score 2.95 2.40 1.58 0.72 -0.26
Conclusion Reject Accept Accept Accept Accept

Table 4. Classification accuracy (mean(std)) of simulated experiments with
different R, and results (t-score) of two-sample two-tailed T test, for p-
value 0.05.

respect to the trade-off between classifier accuracy and an-
notation cost (dollars). These experiments are too expensive
to perform on MTurk, due to the need to explore various
points along the trade-off.

For supervised and SSL methods, the entire labeling
budget is spent on expert annotations. SSL-HF and AL split
labels between experts and crowd source workers. These
annotations have very different costs. For workers, we as-
sume the rate of $0.01 per image, used in all experiments
above and customary on MTurk. The cost of an expert can
vary significantly with the application, e.g. doctors tend to
be more expensive than botanists. We used the conserva-
tive estimate of $1 (more details given in Supp.). We then
assumed a total dollar budget and determined the number
of images labeled by experts and workers. Figure 9 shows
the plots of cost vs classification accuracy of the different
methods on CUB. SSL-HF achieves the best trade-off. For
example, its accuracy for a cost of $800 equals those of SSL
for $1, 200 and Supervised for $1, 700.

6. Conclusion

In this work, we have proposed SSL-HF, a new human-
in-the-loop method that uses crowd-source workers for
POSER annotation. Experiments have shown that SSL-
HF significantly outperforms alternatives such as semi-
supervised learning, machine teaching or active learning for
expert domain problems of large numbers of classes. It is
unclear whether the SSL-HF originates serious negative so-
cietal impacts. By enabling easier training of large-scale
fine-grained recognition, the proposed techniques could fa-
cilitate negative or illegal uses of deep learning.
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Love. Optimal teaching for limited-capacity human learners.
NeurIPS, 27, 2014.

[30] Genevieve Patterson, Grant Van Horn, Serge Belongie,
Pietro Perona, and James Hays. Tropel: Crowdsourcing de-
tectors with minimal training. In AAAI, volume 3, 2015.

[31] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Brij B Gupta, Xiaojiang Chen, and Xin Wang.
A survey of deep active learning. ACM computing surveys
(CSUR), 54(9):1–40, 2021.

[32] Burr Settles. Active learning literature survey. 2009.
[33] Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi,
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