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1 Introduction

Document decomposition is a basic but crucial step for many document related tasks,
such as document classification, recognition, and retrieval. For example, given a techni-
cal article, after it is decomposed into zones, the zones’ properties can be used as indices
for efficient document retrieval. Hence, an accurate, robust and efficient framework for
document decomposition is a very important and demanding module of document anal-
ysis, which ensures success of subsequent tasks.

The goal of document image decomposition is to segment document images into
zones. Each zone is a perceptually compact and consistent unit (at certain scale), e.g. a
paragraph of text, a textural image patch. Methods for document image decomposition
can be classified into three categories: bottom-up methods[5, 9, 15], top-down meth-
ods[1, 7, 8], and combination of the two[13]. Typical examples of bottom-up methods
utilize detected connected components, and progressivelyaggregate them into higher
level structures, e.g. words, text lines, and paragraphs (zones). Conversely, top-down
methods decompose larger components into smaller ones. A typical top-down approach
is the X-Y tree method [14], which splits a document image into rectangular areas
(zones) recursively by alternating horizontal and vertical cuts along spaces. Usually,
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both approaches heavily depend on detecting connected components, separating graph-
ics and white space, or certain document generating rules and heuristics. Both param-
eters for detecting document components and rules/heuristics used to segment docu-
ments are often manually tuned and defined by observing data from a development set.
Thus, the adaptability and robustness of these methods are limited. It is hard for them
to be generalized from document to document. When there existambiguities (e.g. text
in document is noisy or has accidental proximity), neither type of method decomposes
pages reliably. Methods based on statistical pattern analysis techniques [6, 10] are gen-
erally more robust. However, current reported methods, so far, are still relatively naive.
For example, features are ad hoc, and computation engines are greedy.

This paper proposes a novel approach to decomposing document images using ma-
chine learning and pattern recognition techniques. More specifically, given a document
image, it first proposes over-complete overlapping zone hypotheses in a bottom-up way
based on generic visual feature classifiers. Then, each candidate zone is evaluated and
assigned a cost according to a learned generative probabilistic zone model. Finally, a
zone inference module implemented as a heuristic search algorithm selects the optimal
set of non-overlapping zones that covers the given documentimage corresponding to
the global optimal page decomposition solution.

The most outstanding advantage of the proposed method is that it organically com-
bines a convenient document representation, an elaboratedcomputational data structure,
and an efficient inference algorithm together to solve the page decomposition problem.
In other words, it seamlessly incorporates data(documents), models(representation) and
computing (data structure and algorithm) into an integrated framework. Thus, it makes
the model effective for data representation and computation; and it also makes the
computation efficient due to the convenient model and computational data structure.
Moreover, this method is one of the very few methods providing globally optimal
multi-column document decomposition solutions, besides the X-Y-tree-like context free
grammar methods. Based on page decomposition results, further document analysis
tasks, such as meta-data tagging, document recognition andretrieval, are expected to be
more convenient.

We first introduce a document image representation in Section 2. We discuss data
preparation, document models and learning in Section 3 and 4. In Section 5, we imple-
ment zone inference by a well informed heuristic search algorithm. Some results are
shown in Section 6. Finally, we summarize the proposed method in Section 7.

2 Document Image Representation

We represent a document image by a 2-layer hierarchical model. The first layer is called
theprimitive layer. Given a document imageI, we apply standard techniques, such as
[17], to detect “words” as atomic primitives, and connect these words into a word-graph,
denoted asGw.

Gw =< V,E >,

whereV = {vi; i = 1, . . . , Nw}, each “word” is a graph nodev. Nw is the number
of “words” in a document. The edge set,E = {(e = (i, j), wij) : vi, vj ∈ V,wij ∈
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Fig. 1. Two layers of a document image model. a) Layout layer - segmented zones. b) Primitive
layer - detected word bounding boxes.

R}, tells the neighborhood relation of pairs of “words.” Each edge is associated with a
weight,wij , representing bounding force between a pair of “words.”

Note that these detected “words” need not be lexical words, afraction of a word or
an image patch is fine. The only purpose of this step is to reduce the image represen-
tation from pixels to a compact atomic “word” representation for the sake of computa-
tional efficiency.

The second layer is thelayout layer, where the detected “words” are grouped into
zonesand form a zone-map, denoted asZ.

Z = (Nz, {zj : j = 1, . . . , Nz}), (1)

whereNz is the number of zones. Each zone is defined as

zj = ({c
(j)
i : i = 1, . . . , ncj}, {v

(j)
k : k = 1, . . . , nwj}), (2)

which is a polygon representation;c
(j)
i is a corner of a zone bounding polygon.ncj

is the number of vertices/corners of zone-j’s bounding polygon.nwj is the number of
“words” comprising zone-j. Fig.1 shows the hierarchical representation of a document
image.

Most conventional zoning algorithms heavily depend on connected component and
white-space analysis, which involvead hocparameter tuning and rigid rule based rea-
soning. Consequently, the adaptability and robustness of the algorithms are limited. Our
zone representation is based on corners, which is a well-known generic low-level ro-
bust visual feature, and it is independent of language. (Corners of the textural image
bounding polygon is still obtained by connected component analysis.) Note that this
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(a) (b)

Fig. 2. (a) Harr-wavelet features. (b) An illustration of zone bounding box edge cutting spans.

polygon representation for zones is not necessarily a rectangle. Our method is capa-
ble of handling diverse layout styles under a common genericzone model as shown in
Fig.6.

From generative model point of view, we have the following causal dependence
Z → Gw. We integrate the two layers into a joint probability ofGw (derived from an
input document imageI) and the hidden representationZ:

p(Gw, Z) = p(Gw|Z)p(Z), (3)

wherep(Gw|Z) is a generic zone likelihood model, andp(Z) is a prior model for zone
relations.

3 Data preparation

3.1 Features

Generic visual features In this project, we adopt 21 Harr-like filters to extract
features from document images. These 21 filters are derived from 5 prototype Harr-
filters (shown in Fig.2.(a), including a horizontal step edge, a vertical step edge, a hori-
zontal bar(ridge), a vertical bar, and a diagonal blocks) byvarying their size and scale.
These features are generic and important visual features, and the filter responses can be
computed in constant time at any scale and location using integral images[16].

“Word” related features “Word” related features are very important and con-
venient features for document analysis. In this project, weidentified six types of such
feature on the word-graphg. We introduce the definition of each feature as follows.

1. “word” compactness in a zone:f
(0)
w (g) =

∑
k

i=1 A(gi)

A(z) wheregi is theith connected
component of the word-graph within a candidate zone. Usually k = 1 in a zone,
i.e. words are highly connected to one another within a zone.A(·) is the area of
a connected component bounding box. This word-graph connected component is
not the pixel-based connect component adopted by conventional document image
analysis methods.0 < f

(0)
w (g) ≤ 1.
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2. “word” height(size) consistency in a zone:f
(1)
w (g) = nd

w(g)/nw(g), wherenw(g)
is the number of “words” in a zone, andnd

w(g) is the number of “words” with
dominant height in the zone. Usually,0 < f

(1)
w (g) ≤ 1. This feature tells the ratio

of dominant sized “words” in a zone, which indicates the fontsize consistency of
the zone.

3. zone bounding box top border edge-cutting span:f
(2)
w (g) = l

(t)
e /lz, wherelz is the

width of a zone, andl(t)e is length of part of the zone bounding box top border that
cuts word-graph edges. A graphical illustration of this feature is shown in Fig.2.(b).
0 ≤ f

(2)
w (g) ≤ 1.

4. zone bounding box bottom border edge-cutting span: Similar to the above,f (3)
w (g) =

l
(b)
e /lz, wherel

(b)
e is length of part of a zone bounding box bottom border that cuts

word-graph edges as shown in Fig.2(b).0 ≤ f
(3)
w (g) ≤ 1.

5. zone bounding box vertical border average edge-cutting weight:f (4)
w (g) =

∑ n
(v)
e

i=1 w(i)
e

ntl

,

wheren
(v)
e is number of edges cut by the two vertical borders of a zone bounding

box. w(i)
e is theith edge weight.ntl is the number of text lines in the zone. This

feature indicates the connection force of a proposed zone with its surroundings.
The larger edge weight cut, less likely it is a valid zone.

6. text line alignment in a zone:f (5)
w (g) = min(var(xl), var(xc), var(xr)). It gives

the minimum variance of the text lines’ left, center and right x coordinates in a
zone. The smaller the variance, the better the alignment.

These features are heuristic but independent of languages and layout style, as we try to
avoid extracting syntax information from document to make our model more general-
izable. These features are not necessarily independent, and they are utilized to evaluate
the ”goodness” of proposed zones.

3.2 Generating word-graph – the primitive layer

Given a document imageI, we first compute a word-graphGw using a neighbor finding
algorithm based on the Voronoi tessellation algorithm[9] (Fig.3.(a)). Then, we compute
edge weights, which tell how likely a pair of connected wordsare to belong to the
same zone. The edge weights are posterior probabilities returned by an edge classifier
discussed below. We adopt Support Vector Machines (SVM) to learn the binary edge
classifier from word-graphs of training images as follows:

1. Data Preparation: We manually label zone bounding boxes on the training word-
graphs. Positive edge samples are the edges within zone bounding boxes; negative
samples are those cut by bounding box borders.

2. Feature Extraction: We extract a 22-dimensional featurevector including a feature
accounting height difference of a pair of “words”, and the 21Harr-like filter re-
sponses (described in Section.3.1) from an image patch. Theimage patch is cut
from I centering at the mid-point of an edge, and its area is four times large of the
union of the two “words” bounding boxes.

3. SVM Training: We train a LibSVM[2] classifier on the extracted feature vectors.
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(a) (b)

Fig. 3. (a) A Voronoi word-graph. (b) The same word-graph after pruneedges whose weighs are
less than 0.5 assigned by an edge classifier. Note that the edges betweenthe paragraphs that are
vertically adjacent to each other are not cut by the edge classifier.

Fig.3.(b) shows a word-graph after pruning edges whose weighs are less than 0.5 as-
signed by the SVM edge classifier. As the connection of a pair of “words” is computed
based on generic features, the measure is more robust than pre-defined adhoc heuris-
tic rules. Note that, in the figure, the edges between the paragraphs that are vertically
adjacent to each other are not cut by the edge classifier.

3.3 Generating zone hypotheses

In Eqn.2, the zone representation is a generic polygon. In this paper, we demonstrate
the power of the representation by simply using rectangles for zones without losing
much generality due to the data set. Thus, Eqn.2 is reduced tozj = (cul, clr, {v

(j)
k :

k = 1, . . . , nwj}), wherecul andclr are upper-left and lower-right corners of a zone
bounding box.

In order to propose candidate zones efficiently, we train twoclassifiers, which detect
upper-left and lower-right corners in document images, as follows:

1. Data Preparation: We obtain positive samples of zones’ upper-left and lower-right
corners using the labeled zones’ corners in training word-graphs; Negative samples
are collected by randomly selecting “word” bounding boxes’corners, which are not
the corners of labeled zones.

2. Feature Extraction: We extract a 21-dimension generic visual feature vector (de-
scribed in Section.3.1) from an image patch, which is cut from I centering at an
upper-left or lower-right corner, and its size is400 × 400 pixels.

3. SVM Training: We train LibSVM corner classifiers on the extracted feature vectors.

We augment the corner set by including bounding box corners of word-graph connected
components in order not to miss any possible corners. Fig.4.(a) shows detected zone
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(a) (b)

Fig. 4. (a) Detected corners. (b) Proposed top candidate zones.

corners. We propose all possible candidate zones by pairingall the detected upper-left
with all lower-right corners. If heuristics are used in thisprocess, candidate zones can
be proposed more effectively by ruling out some bad configurations such as a candidate
zone cannot cross line separators, etc. Fig.4.(b) shows thetop 51 candidate zones with
least costs proposed by this method. For the sake of computation efficiency, the rest
of zones with higher costs are discarded. The zone costs are assigned by a learned
generative zone model introduced below.

4 Models and Learning

4.1 A likelihood model for zones

In Eqn.3,p(Gw|Z) can be factorized into

p(Gw|Z) = p(gw̄)

Nz∏

i=1

p(gi|zi),

wheregw̄ is sub-graphs of “words” not covered by any zone.p(gw̄) = exp(−|gw̄|), and
| · | denotes the cardinality function.gi is sub-word-graph(s) subsumed in zone-i, and
p(gi|zi) is a generative model for zones.

Intuitively, p(g|z) governs how “words” are organized in zones in terms of the fea-
turesf

(j)
w (·) described in Section.3.1. We want to construct a probabilistic modelp on

word-sub-graphs, such that the expected value of each feature is the same as its average
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value extracted from training data. That is, givenn labeled zones,

Ej [f
(j)
w (g|z)] =

n∑

i=1

p(gi|zi)f
(j)
w (gi|zi) =

1

n

n∑

i=1

f (j)
w (gi|zi) = µj , j = 0, . . . , 5,

(4)
wherej indexes the zone features of Section.3.1. The observed feature statistics serve as
constraints. Thus, based onmaximum entropyprinciple, the likelihood model for zones
is derived as

p(g|z) = c exp{−
5∑

j=0

λjf
(j)
w (g|z)}, (5)

whereλ’s are Lagrange multipliers or, in this case, feature weights to be estimated.c
is the normalizing constant. Note that as the featuresf

(2)
w , f

(3)
w , f

(4)
w are “context sensi-

tive,” the zone model encodes a certain amount of contextualinformation.
Learning feature weightsλj In Eqn.5, generally, there is no closed formMax-

imum Likelihood Estimation(MLE) solution for (λ0, . . . , λ5). We adopt a numerical
method calledGeneralized Iterative Scaling(GIS) proposed by [4] to solve them itera-
tively as follows:

1. Given n labeled zones, compute each feature of each zone:f
(j)
w (gi|zi), (j =

0, . . . , 5, i = 1, . . . , n).
2. Compute the average of each feature extracted from the training data,

µj =
1

n

n∑

i=1

f (j)
w (gi|zi), j = 0, . . . , 5.

3. Start iteration of GIS withλ(0)
j = 1, j = 0, . . . , 5.

4. At iterationt, with current parameterλ(t)
j , use Eqn.5 to compute

E
(t)
j [f (j)

w (g|z)] =
n∑

i=1

p(t)(gi|zi)f
(j)
w (gi|zi), j = 0, . . . , 5

for each feature.
5. Update parameters

λ
(t+1)
j = λ

(t)
j +

1

C
log

µj

E
(t)
j

, j = 0, . . . , 5,

whereC is the correction constant chosen large enough to cover an additional
dummy feature[4]. (C = 8 in this project.)

6. Continue iteration from Step.4 until convergence.

4.2 A prior model for zone-map

The prior model of zone-maps governs not only each zone’s shape, but also spatial
distribution of zones in a page, e.g. similarity, proximity, symmetry. It is characterized
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by a statistical ensemble calledGestalt ensemblefor various Gestalt patterns[18]. The
model makes zone evaluation context sensitive. However, learning such a prior model
is very expensive. In this project, we take advantage of the specificity of the document
set by simply enforcing that each zone is a rectangle and there is no overlap between
any two zones, such thatp({z1, . . . , zNz

}) =
∏

i6=j δ(zi ∩ zj), whereδ(·) is the Dirac
delta function. Thus,

p(Z) = p(Nz)
∏

i6=j

δ(zi ∩ zj), (6)

wherep(Nz) is prior knowledge on zone cardinality, which we assume to bea uniform
distribution.

In summary, the joint probability of a word-graphGw and zone partitionZ is

p(Gw, Z) = p(Gw|Z)p(Z)

= p(gw̄){

Nz∏

i=1

p(gi|zi)} · p(Nz)
∏

i6=j

δ(zi ∩ zj) (7)

5 Zone Inference by Heuristic Search

Document image decomposition can be formulated into a Maximum A Posteriori (MAP)
zone inference problem (p(Z|Gw)). However, to find the global optimal solution in this
high dimensional space can be very expensive. In this paper,we propose a novel ap-
proach, which converts this challenging statistical inference problem into an optimal
(covering) set selection problem by turning learned data statistics into costs and con-
straints. We design a well informed heuristic search algorithm, i.e.A∗ search, to seek
the global optimal page decomposition solution.

5.1 Generating costs and constraints from learned statistics

Instead of assigning costs and defining constraints in anad hocway, we derive them
based on learned probabilistic models. In the page decomposition problem, we learn
the following probabilistic models in Eqn.7: 1) a generative zone model,p(g|z), and 2)
a prior model about pairwise zone relation,p({z1, . . . , zNz

}).
We convert a probability0 < P (·) < 1 to a cost as

c(·) = ρ(− log P (·)), (8)

whereρ(x) is a robust function cutting off extreme values. WhenP (·) = 0 or P (·) = 1,
there generates a binary constraint for that event. As a result, in this project, we have the
following costs and constraints generated from the learnedmodels: 1) individual cost
for each zone, 2) a binary constraint that selected zones cover all “words” in a page,
and 3) a binary constraint of no overlap between any pair of zones.
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5.2 TheA
∗ algorithm

A∗ algorithm is a best-first graph search algorithm, which findsa path from an initial
node to a goal node. It maintains a set of partial solutions, i.e. paths through the graph
starting at the start node, stored in a priority queue. The priority assigned to a path
passing nodex is determined by the function,

f(x) = g(x) + h(x), (9)

whereg(x) is acost function, which measures the cost it incurred from the initial node
to the current nodex, andh(x) a heuristic functionestimating the cost to the goal
node fromx. To ensure the search algorithm find the optimal solution,h(x) must be
admissible.

In this project, after candidate zones are proposed, page decomposition can be for-
mulated as a weighted polygon partitioning problem in computational geometry: given
a polygon (document page) and a set of candidate sub-polygons (zones), each with a
weight(cost), the goal is to partition the polygon into a subset ofdisjoint sub-polygons
in the candidate set so as to cover every “word” in a document image with minimum
cost. This problem can be solved by anA∗ search algorithm, which exploit heuristics
from data to improve search performance.

As A∗ search algorithm is a standard algorithm in the search literature, here we only
introduce each term in the algorithm in the context of document decomposition.

State Variablex: Suppose that there aren candidate zones, we introduced a binary
state vectorx = (x1, . . . , xn), wherexi = 1 means zone-i is selected; 0, otherwise.
Any specific choice of 0’s or 1’s for the components ofx corresponds to selecting a
particular subset of the candidate zones.

The Goal Stateis every “word” in a given document is covered by only one zone.
The Cost Functiong(x): The cost of each path tox is defined as,

g(x) = c
T
z x, (10)

wherecz = (cz1, . . . , czn)T is the vector of individual zone costs, which was computed
by Eqn.5 & Eqn.8 immediately after candidate zones are proposed.

The Heuristic Function h(x): To insure theA∗ algorithm admissible (or optimal),
h(x) must never overestimate the actual cost of reaching the goal. To achieve this and
given the fact that both the document and the zones are represented by rectangles, the
h-value of a path, fromx to the goal state, is estimated by finding the minimum number
of non-overlapping rectangles to partition the rest of the document page that has not
been covered by the selected zones,nz(x),

h(x) = nz(x) ∗ cmin, (11)

wherecmin is the minimum zone cost learned from the training data. The estimate
of nz(x) involves partitioning the complementary polygon of a statex, which is cre-
ated by removing the selected zones (rectangles) from the document page (a rectangle),
into minimum number of non-overlapping rectangles. Partitioning arbitrary polygons
is NP-complete, but becomes tractable if it is restricted toonly orthogonalpolygons
(whose edges are either horizontal or vertical), and can be estimated by the following
theorem [11].
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Fig. 5. An illustration of estimating a minimum rectangular partition of an document image. (a)
A document image (the outer rectangle) with selected zones removed (shading rectangles). The
black solid dots are reflex vertices. The vertical and horizontal chordsbetween reflex vertices
are labeled, each represented by a vertex of the bipartite graph in (b). (b) The bipartite graph
constructed from the example in (a) and the derivation of a maximum independent set from a
maximum matching (dashed edges are in the matching): vertices in the independent set shown as
solid dots.

Theorem 1 An orthogonal polygon can be minimally partitioned intoN −L−H + 1
rectangles, whereN is the number of reflex vertices3 H is the number of holes andL is
the maximum number of non-intersecting chords that can be drawn either horizontally
or vertically between reflex vertices.

One key computation in the theorem is that of findingL, the maximum number
of non-intersecting chords that can be drawn either horizontally or vertically between
reflex vertices. In this section we will show that this is equivalent to the problem of find-
ing themaximum number of independent vertices in the intersection(bipartite) graph
of the vertical or horizontal chords between reflex vertices, and derive a solution from
a maximum matching of the bipartite graph [11, 12].

As illustrated in Figure 5(a), the complementary of a document image (the outer
rectangle), to be partitioned, is generated first by removing the selected zones (the shad-
ing rectangles) in a pathx. To estimateL for this orthogonal polygon, a bipartite graph
is first constructed in the following steps:

1. find all possible horizontal and vertical chords that can be drawn between all reflex
vertices of the polygon (the black dots shown in Figure 5 (a));

2. include all horizontal chords obtained from Step.1 in a set H, and vertical chords
in a setV ;

3. construct a bipartite graph from the two sets by setting a vertex for each chord and
drawing an edge between vertices of two sets if their corresponding chords inter-
cept. Each edge is represented by a duplet, e.g.(h1, v1) for edge between vertices

3 A reflex vertex is a vertex with interior angle greater than180
o.
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h1 ∈ H andv1 ∈ V , and the set of all edges in the graph isE. The constructed
bipartite graph is represented asG = ((H,V ), E).

Figure 5 (b) illustrates the bipartite graph constructed from Figure 5 (a), whereH =
{h1, h2, h3}, V = {v1, v2, v3, v4}, andE = {(h1, v1), (h2, v3), (h2, v4), (h3, v2)}.
The problem of findingL converts, now, to that of finding the maximum independent
set of the bipartite graphG.

Definition 1 Maximum independent set problem Given a graphG, an indepen-
dent setis a subset of its vertices that are pairwise not adjacent (connected by an edge).
The problem of finding the largest independent set in a graphG is called amaximum
independent set problem.

The independent set problem of an arbitrary graph is known tobe NP-complete, but
a polynomial solution exists when the graph is a bipartite graph. This can be done by
solving amaximum bipartite matchingproblem [11, 12].

Definition 2 Maximum bipartite matching problem Let G = ((A,B), E) be an
undirected bipartite graph, whereA andB are sets of vertices, andE the set of edges of
the form(a, b) with a ∈ A andb ∈ B. A subsetM ⊆ E is a matching if no two edges
in M are incident to the same vertex, that is no two edges share a common vertex.
A vertex is calledmatched if it is incident to an edge in the match, andunmatched
otherwise.Maximum bipartite matching is to find a matchingM that contains the
maximum number of edges of all possible matchings.

The maximum bipartite matching problem is a well studied topic in graph theory, and
often appears as a algorithm textbooks (e.g. [3]). As it is a standard algorithm, we omit
the details for the sake of space limit.

In this project, we adopt graph-cut algorithm to solve themaximum bipartite match-
ing for G = ((H,V ), E), so as to find themaximum independent setto solveL. Con-
sequently, according to Theorem 1, the heuristic functionh(x) can be computed by
Eq. 11. As the heuristic estimation is grounded on a solid theoretical foundation and
generally gives a tight upper bound, the proposed algorithmbecomes very efficient and
a well-informed search strategy, which is also verified by the experiments.

Convenient Data Structures for Search To enforce zones’ non-overlapping con-
straint, we create a matrix calledcandidate zone overlapping matrixO to encode can-
didate zones’ overlap. It is very easily generated as follows: Say, there aren candidate
zones.O is initialized as an × n matrix, each entry is set to 0. Then, for each pair of
overlapping zones, say zone-i and zone-j, we setO(i, j) = 1 andO(j, i) = 1. During
the search, whenever a candidate zone, say zone-i, is selected as a part of the solution,
we check thei-th row of O, and exclude every candidate zone-j whereO(i, j) = 1
from future selection. In this way, it is guaranteed that no overlapping zones can possi-
bly appear in the solution.

Another factor making the search efficient is due to a data structure calledword-to-
candidate-zone indexIw→z. After n candidate zones are proposed, for each word in the
document, there are pointers to the candidate zones that cover it. Note that each word
can be covered by a number of overlapping candidate zones. But in the final solution,
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only one of them is selected. At each search state, sayx, we check each word which has
not been covered by selected candidate zones so far to see anyavailable candidate zones
covers it. The number of available candidate zones is decreasing when more and more
candidate zones as selected because the more candidate zonethat are selected, the fewer
available candidates; and the more overlapping candidate zones are excluded from the
candidate list.Iw→z needs to be updated dynamically at each search step. If thereexists
an uncovered word neither covered by any available not-selected-yet candidate zones,
h(x) = ∞. It means that this search path is terminated earlier, even though there are
possible additional non-overlapping rectangles to be partitioned solely based on the
current shape of polygon (current configuration of decomposed document). This step
makes the search much more efficient by pruning spurious search paths at an earlier
stage.

6 Data Set and Experimental Results

We train and test our model on the first page of articles from NLM’s MEDLINE database.
We randomly select a set of first pages for training and a different set for testing. Some
inference results are shown in Fig.6. We can see that our results are very accurate and
robust to document layout variations and noise, and it is also free from connect compo-
nent restriction. Moreover, we claim that due to the convenient document representation
and computational data structure, together with the well informed heuristic search strat-
egy, the algorithm is capable of efficiently solving most page decompositions within a
second. This efficiency is also because we limit the number ofcandidate zones by only
considering the top 20 to 50 proposals from the generative zone model. Otherwise, the
search space grows exponentially with the number of candidates.

7 Conclusions

We have proposed a novel, generic and efficient learning and inference framework to
solve a fundamental challenging problem of document analysis. It organically integrates
data, models and computing to search for globally optimizedmulti-column document
decomposition solutions. The learning part learns robust probabilistic models based on
generic features. The inference module casts an expensive statistical inference to a well
informed heuristic search problem. As a result, the proposed framework is very general,
and it can be extended to a lot of machine learning applications.
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Fig. 6. Page decomposition results. Note that the 1st result shows that the methodis robust to
noise and free from connected component restriction.


