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1 Introduction

Document decomposition is a basic but crucial step for marguchent related tasks,
such as document classification, recognition, and retriEea example, given a techni-
cal article, after itis decomposed into zones, the zoneggnties can be used as indices
for efficient document retrieval. Hence, an accurate, roand efficient framework for
document decomposition is a very important and demandirduteaf document anal-
ysis, which ensures success of subsequent tasks.

The goal of document image decomposition is to segment deatiimages into
zones. Each zone is a perceptually compact and consistéifaucertain scale), e.g. a
paragraph of text, a textural image patch. Methods for d@sirmage decomposition
can be classified into three categories: bottom-up metbp#s]5], top-down meth-
ods[1, 7, 8], and combination of the two[13]. Typical exaagbf bottom-up methods
utilize detected connected components, and progressiggyegate them into higher
level structures, e.g. words, text lines, and paragraptise®. Conversely, top-down
methods decompose larger components into smaller onegidatyop-down approach
is the X-Y tree method [14], which splits a document imag® irgctangular areas
(zones) recursively by alternating horizontal and veltmas along spaces. Usually,



both approaches heavily depend on detecting connectedoents, separating graph-
ics and white space, or certain document generating ru@$euristics. Both param-
eters for detecting document components and rules/hiesrissed to segment docu-
ments are often manually tuned and defined by observing datad development set.
Thus, the adaptability and robustness of these methodénated. It is hard for them
to be generalized from document to document. When there axibiguities (e.g. text
in document is noisy or has accidental proximity), neitlypetof method decomposes
pages reliably. Methods based on statistical pattern aisatiychniques [6, 10] are gen-
erally more robust. However, current reported methodsasafe still relatively naive.
For example, features are ad hoc, and computation engieegeady.

This paper proposes a hovel approach to decomposing dotimeges using ma-
chine learning and pattern recognition techniques. Moeeifipally, given a document
image, it first proposes over-complete overlapping zon@thgses in a bottom-up way
based on generic visual feature classifiers. Then, eachdzaadone is evaluated and
assigned a cost according to a learned generative praftabidone model. Finally, a
zone inference module implemented as a heuristic searohithlg selects the optimal
set of non-overlapping zones that covers the given documeage corresponding to
the global optimal page decomposition solution.

The most outstanding advantage of the proposed methodtiis tiiganically com-
bines a convenient document representation, an elabaateplutational data structure,
and an efficient inference algorithm together to solve thgepecomposition problem.
In other words, it seamlessly incorporates data(docuentslels(representation) and
computing (data structure and algorithm) into an integt&temework. Thus, it makes
the model effective for data representation and computatind it also makes the
computation efficient due to the convenient model and coatjmunal data structure.
Moreover, this method is one of the very few methods progditobally optimal
multi-column document decomposition solutions, besilestY-tree-like context free
grammar methods. Based on page decomposition resulteefuibcument analysis
tasks, such as meta-data tagging, document recognitioretiel/al, are expected to be
more convenient.

We first introduce a document image representation in Seide discuss data
preparation, document models and learning in Section 3 aldSkection 5, we imple-
ment zone inference by a well informed heuristic searchrélgn. Some results are
shown in Section 6. Finally, we summarize the proposed naeth&ection 7.

2 Document Image Representation

We represent a document image by a 2-layer hierarchical imbDoke first layer is called
the primitive layer Given a document imagg we apply standard techniques, such as
[17], to detect “words” as atomic primitives, and conneetstawords into a word-graph,
denoted ag7,,.

Gy =<V, E >,

whereV = {v;;i = 1,...,N,}, each “word” is a graph node. N,, is the number
of “words” in a document. The edge sé, = {(e = (i,7),w;;) : vi,v; € V,w;; €
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Fig. 1. Two layers of a document image model. a) Layout layer - segmenteeszb) Primitive
layer - detected word bounding boxes.

R}, tells the neighborhood relation of pairs of “words.” Eaclye is associated with a
weight,w;;, representing bounding force between a pair of “words.”

Note that these detected “words” need not be lexical worffsction of a word or
an image patch is fine. The only purpose of this step is to ethe image represen-
tation from pixels to a compact atomic “word” representatfior the sake of computa-
tional efficiency.

The second layer is thHayout layer where the detected “words” are grouped into
zonesand form a zone-map, denoted4s

Z:(Nz,{Zjlj:L...,Nz}), (1)

whereNN, is the number of zones. Each zone is defined as
(19— ) (j)'k=1 ) 2
zj = ({¢; i N S 2 Lo see s Mg b)), 2

which is a polygon representatiorﬁ) is a corner of a zone bounding polygon,;

is the number of vertices/corners of zojig-bounding polygonn,,; is the number of
“words” comprising zoner. Fig.1 shows the hierarchical representation of a document
image.

Most conventional zoning algorithms heavily depend on eaited component and
white-space analysis, which involeal hocparameter tuning and rigid rule based rea-
soning. Consequently, the adaptability and robustnessedlgorithms are limited. Our
zone representation is based on corners, which is a welldkrgeneric low-level ro-
bust visual feature, and it is independent of language.r(€@srof the textural image
bounding polygon is still obtained by connected componaatyesis.) Note that this
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Fig. 2. (a) Harr-wavelet features. (b) An illustration of zone bounding bayeetlitting spans.

polygon representation for zones is not necessarily amglgaOur method is capa-
ble of handling diverse layout styles under a common gerzete model as shown in
Fig.6.

From generative model point of view, we have the followingisa dependence
Z — G,,. We integrate the two layers into a joint probability@f, (derived from an
input document imagé) and the hidden representatign

P(Guw, Z) = p(Guw|2)p(Z), )

wherep(G.,,|Z) is a generic zone likelihood model, apfl?) is a prior model for zone
relations.

3 Data preparation

3.1 Features

Generic visual features In this project, we adopt 21 Harr-like filters to extract
features from document images. These 21 filters are derieed 5 prototype Harr-
filters (shown in Fig.2.(a), including a horizontal step edg vertical step edge, a hori-
zontal bar(ridge), a vertical bar, and a diagonal blocksydoying their size and scale.
These features are generic and important visual featundgha filter responses can be
computed in constant time at any scale and location usiegiatimages[16].

“Word” related features  “Word” related features are very important and con-
venient features for document analysis. In this projectjdeatified six types of such
feature on the word-graph We introduce the definition of each feature as follows.

1. “word” compactnessin a zonﬁfvo) (9) = % whereg; is theith connected
component of the word-graph within a candidate zone. Ugual= 1 in a zone,
i.e. words are highly connected to one another within a zeaite. is the area of
a connected component bounding box. This word-graph ceed@omponent is
not the pixel-based connect component adopted by convehtitocument image
analysis methodsl < f&o) (g9) < 1.
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2. “word” height(size) consistency in a zon]éjl)(g) =nd(g)/nw(g), wheren,(g)
is the number of “words” in a zone, and! (g) is the number of “words” with
dominant height in the zone. Usually< £\ (g) < 1. This feature tells the ratio
of dominant sized “words” in a zone, which indicates the feiae consistency of
the zone.

3. zone bounding box top border edge-cutting sp%j‘?:(g) = lgt)/lz, wherel. is the
width of a zone, andét) is length of part of the zone bounding box top border that
cuts word-graph edges. A graphical illustration of thiddieais shown in Fig.2.(b).
0< £ (9) < 1.

4. zone bounding box bottom border edge-cutting span: irdilthe abovef,(f) (9) =
léb)/lz, wherel!” is length of part of a zone bounding box bottom border tha cut

word-graph edges as shown in Fig.2(®)x fff’)(g) <1
2ot wl?
Tl

5. zone bounding box vertical border average edge-cutteight: fff) (9) =

wheren'”) is number of edges cut by the two vertical borders of a zonadiog
box. wéi) is theith edge weightn,; is the number of text lines in the zone. This
feature indicates the connection force of a proposed zotte itg surroundings.
The larger edge weight cut, less likely it is a valid zone.

6. text line alignment in a zong:.\”’ (9) = min(var(x;), var(x.), var(x,)). It gives
the minimum variance of the text lines’ left, center and tighcoordinates in a
zone. The smaller the variance, the better the alignment.

These features are heuristic but independent of languagklaygout style, as we try to
avoid extracting syntax information from document to make model more general-
izable. These features are not necessarily independehthay are utilized to evaluate
the "goodness” of proposed zones.

3.2 Generating word-graph — the primitive layer

Given a document imagk we first compute a word-gragh,, using a neighbor finding

algorithm based on the Voronoi tessellation algorithmfa§(3.(a)). Then, we compute
edge weights, which tell how likely a pair of connected woadls to belong to the

same zone. The edge weights are posterior probabilitiased by an edge classifier
discussed below. We adopt Support Vector Machines (SVMgaonl the binary edge
classifier from word-graphs of training images as follows:

1. Data Preparation: We manually label zone bounding boreh® training word-
graphs. Positive edge samples are the edges within zonelipgumoxes; negative
samples are those cut by bounding box borders.

2. Feature Extraction: We extract a 22-dimensional feataotor including a feature
accounting height difference of a pair of “words”, and thel24rr-like filter re-
sponses (described in Section.3.1) from an image patchiriadge patch is cut
from I centering at the mid-point of an edge, and its area is fouegifarge of the
union of the two “words” bounding boxes.

3. SVM Training: We train a LibSVM[2] classifier on the exttad feature vectors.
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Fig. 3. (a) A Voronoi word-graph. (b) The same word-graph after predges whose weighs are
less than 0.5 assigned by an edge classifier. Note that the edges bttespanagraphs that are
vertically adjacent to each other are not cut by the edge classifier.

Fig.3.(b) shows a word-graph after pruning edges whosehsedge less than 0.5 as-
signed by the SVM edge classifier. As the connection of a gdivords” is computed
based on generic features, the measure is more robust teatefined adhoc heuris-
tic rules. Note that, in the figure, the edges between thegpaphs that are vertically
adjacent to each other are not cut by the edge classifier.

3.3 Generating zone hypotheses

In Egn.2, the zone representation is a generic polygon.ignpiéper, we demonstrate
the power of the representation by simply using rectanglezénes without losing
much generality due to the data set. Thus, Eqn.2 is reduced $0 (c., ¢, {v,(j) :
k =1,...,n4;}), wherec, andc; are upper-left and lower-right corners of a zone
bounding box.

In order to propose candidate zones efficiently, we traindlassifiers, which detect
upper-left and lower-right corners in document imagespiews:

1. Data Preparation: We obtain positive samples of zong®ufeft and lower-right
corners using the labeled zones’ corners in training waoeghigs; Negative samples
are collected by randomly selecting “word” bounding boxa@sners, which are not
the corners of labeled zones.

2. Feature Extraction: We extract a 21-dimension genesgualifeature vector (de-
scribed in Section.3.1) from an image patch, which is cunffocentering at an
upper-left or lower-right corner, and its sizedi®) x 400 pixels.

3. SVM Training: We train LibSVM corner classifiers on therexted feature vectors.

We augment the corner set by including bounding box corrfex®ad-graph connected
components in order not to miss any possible corners. éj.4hows detected zone
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Fig. 4. (a) Detected corners. (b) Proposed top candidate zones.

corners. We propose all possible candidate zones by paitiitige detected upper-left
with all lower-right corners. If heuristics are used in tpi®cess, candidate zones can
be proposed more effectively by ruling out some bad configama such as a candidate
zone cannot cross line separators, etc. Fig.4.(b) showsph&l candidate zones with
least costs proposed by this method. For the sake of conmputafficiency, the rest
of zones with higher costs are discarded. The zone costssaignad by a learned
generative zone model introduced below.

4 Models and Learning

4.1 Alikelihood model for zones
In Eqn.3,p(G.,|Z) can be factorized into

N,

p(GulZ) = plga) [ plilz),

i=1

whereg,; is sub-graphs of “words” not covered by any zopgy; ) = exp(—|gs|), and
| - | denotes the cardinality functiop; is sub-word-graph(s) subsumed in zanend
p(gi|z;) is a generative model for zones.

Intuitively, p(g|z) governs how “words” are organized in zones in terms of the fea
turesff,f)(-) described in Section.3.1. We want to construct a probaibilisodelp on
word-sub-graphs, such that the expected value of eachrégatthe same as its average



value extracted from training data. That is, givelabeled zones,

B9 (512)] = Y plaile) S (oilz) = = D 1 il = g, 5=0,...5,

=1 =1
(4)
wherej indexes the zone features of Section.3.1. The observadéesthtistics serve as
constraints. Thus, based oraximum entropprinciple, the likelihood model for zones
is derived as

5
plglz) = cexp{=>_ NP (9]2)}, (5)
7=0
where\'s are Lagrange multipliers or, in this case, feature weidbtbe estimated:
is the normalizing constant. Note that as the featgfﬁéé f&B), 1(1}4 ) are “context sensi-
tive,” the zone model encodes a certain amount of contekit@mimation.

Learning feature weights A; In Eqn.5, generally, there is no closed fohax-
imum Likelihood EstimatiodMLE) solution for (A, ..., A5). We adopt a numerical
method calledseneralized Iterative Scalin@1S) proposed by [4] to solve them itera-
tively as follows:

1. Givenn labeled zones, compute each feature of each zﬁﬁécgi\zy;), (G =
0,...,5,i=1,...,n).
2. Compute the average of each feature extracted from timnigadata,

1 s ,
3. Startiteration of GISwith\” =1, j =0,....5.
4. Atiterationt, with current parametekgt), use Eqgn.5 to compute

EV D (g12)] = 3 p D (gil2) £ (gilz1), 5=0,...,5

i=1

for each feature.
5. Update parameters

(t+1) _ ), Lo
Aj =A; +CIOgE(t)7 7=0,...,5,
J

where C is the correction constant chosen large enough to cover diticathl
dummy feature[4]. = 8 in this project.)
6. Continue iteration from Step.4 until convergence.

4.2 A prior model for zone-map

The prior model of zone-maps governs not only each zone'peshiaut also spatial
distribution of zones in a page, e.g. similarity, proximgymmetry. It is characterized



by a statistical ensemble call€kstalt ensemblfor various Gestalt patterns[18]. The
model makes zone evaluation context sensitive. Howevamileg such a prior model
is very expensive. In this project, we take advantage of pleeificity of the document
set by simply enforcing that each zone is a rectangle ane tlkero overlap between
any two zones, such that{z1,...,zn.}) = [[,; 6(z N z;), whered(-) is the Dirac
delta function. Thus,

p(Z) =p(N:) [[ 6z N %), (6)

i#]

wherep(N.) is prior knowledge on zone cardinality, which we assume ta baiform
distribution.
In summary, the joint probability of a word-gragh, and zone partitior¥ is

p(Gw» Z) = p(Gwlz)p(Z)

N
= p(ga){] [ p(gilz:)} - (V) [ 6(2: 0 25) ()
i=1 i#]

5 Zone Inference by Heuristic Search

Documentimage decomposition can be formulated into a MaxirA Posteriori (MAP)
zone inference problem(Z|G.,)). However, to find the global optimal solution in this
high dimensional space can be very expensive. In this pagepropose a novel ap-
proach, which converts this challenging statistical iafere problem into an optimal
(covering) set selection problem by turning learned datfissics into costs and con-
straints. We design a well informed heuristic search alborj i.e. A* search, to seek
the global optimal page decomposition solution.

5.1 Generating costs and constraints from learned statists

Instead of assigning costs and defining constraints incahocway, we derive them
based on learned probabilistic models. In the page decatigroproblem, we learn
the following probabilistic models in Eqn.7: 1) a generatione modely(g|z), and 2)
a prior model about pairwise zone relatigif{ z1, . .., zn, }).

We convert a probability < P(-) < 1to a cost as

() = p(=log P(-)), (8)

wherep(z) is a robust function cutting off extreme values. WHefd) = 0 or P(-) = 1,
there generates a binary constraint for that event. As dtresthis project, we have the
following costs and constraints generated from the leamedels: 1) individual cost
for each zone, 2) a binary constraint that selected zonesr @hV“words” in a page,
and 3) a binary constraint of no overlap between any pair négo
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5.2 TheA* algorithm

A* algorithm is a best-first graph search algorithm, which fiagsath from an initial
node to a goal node. It maintains a set of partial solutiaespaths through the graph
starting at the start node, stored in a priority queue. Theripr assigned to a path
passing node is determined by the function,

f(x) = g(x) + h(z), ()

whereg(z) is acost functionwhich measures the cost it incurred from the initial node
to the current node;, and h(x) a heuristic functionestimating the cost to the goal
node fromz. To ensure the search algorithm find the optimal solutign;,) must be
admissible.

In this project, after candidate zones are proposed, pagmg®sition can be for-
mulated as a weighted polygon partitioning problem in cotafional geometry: given
a polygon (document page) and a set of candidate sub-pady@ames), each with a
weight(cost), the goal is to partition the polygon into asettofdisjoint sub-polygons
in the candidate set so as to cover every “word” in a docunmaagée with minimum
cost. This problem can be solved by 4di search algorithm, which exploit heuristics
from data to improve search performance.

As A* search algorithm is a standard algorithm in the searclatitee, here we only
introduce each term in the algorithm in the context of docundecomposition.

State Variable x: Suppose that there arecandidate zones, we introduced a binary
state vectox = (z1,...,z,), wherex; = 1 means zone-is selected; 0, otherwise.
Any specific choice of O's or 1's for the componentssxotorresponds to selecting a
particular subset of the candidate zones.

The Goal Stateis every “word” in a given document is covered by only one zone

The Cost Functiong(z): The cost of each path tois defined as,

g(x) =cl x, (10)

wherec, = (c.1,...,c.n)? isthe vector of individual zone costs, which was computed
by Eqn.5 & Eqn.8 immediately after candidate zones are egho

The Heuristic Function h(z): To insure thed* algorithm admissible (or optimal),
h(x) must never overestimate the actual cost of reaching the Goachieve this and
given the fact that both the document and the zones are eeskby rectangles, the
h-value of a path, fronx to the goal state, is estimated by finding the minimum number
of non-overlapping rectangles to partition the rest of tbewmnent page that has not
been covered by the selected zonegx),

h(X) =N, (X) * Cmin, (11)

wherec,,;, is the minimum zone cost learned from the training data. T§tenate
of n.(x) involves partitioning the complementary polygon of a statevhich is cre-
ated by removing the selected zones (rectangles) from thiendent page (a rectangle),
into minimum number of non-overlapping rectangles. Rartihg arbitrary polygons
is NP-complete, but becomes tractable if it is restrictedrnty orthogonalpolygons
(whose edges are either horizontal or vertical), and carstimated by the following
theorem [11].
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Fig. 5. An illustration of estimating a minimum rectangular partition of an document éngm
A document image (the outer rectangle) with selected zones remowedir{girectangles). The
black solid dots are reflex vertices. The vertical and horizontal chioetizseen reflex vertices
are labeled, each represented by a vertex of the bipartite graph irbYbjhé bipartite graph
constructed from the example in (a) and the derivation of a maximum émigmt set from a
maximum matching (dashed edges are in the matching): vertices in theeimdkayt set shown as
solid dots.

Theorem 1 An orthogonal polygon can be minimally partitioned info— L — H + 1
rectangles, wher@ is the number of reflex vertice#/ is the number of holes antlis
the maximum number of non-intersecting chords that can aemleither horizontally
or vertically between reflex vertices.

One key computation in the theorem is that of findihgthe maximum number
of non-intersecting chords that can be drawn either hotélynor vertically between
reflex vertices. In this section we will show that this is eglent to the problem of find-
ing themaximum number of independent vertices in the interse¢tigartite) graph
of the vertical or horizontal chords between reflex verti@esl derive a solution from
a maximum matching of the bipartite graph [11, 12].

As illustrated in Figure 5(a), the complementary of a docammage (the outer
rectangle), to be partitioned, is generated first by rengptlie selected zones (the shad-
ing rectangles) in a patk. To estimatel for this orthogonal polygon, a bipartite graph
is first constructed in the following steps:

1. find all possible horizontal and vertical chords that canlkawn between all reflex
vertices of the polygon (the black dots shown in Figure 5; (a))

2. include all horizontal chords obtained from Step.1 intaféeand vertical chords
in a setV;

3. construct a bipartite graph from the two sets by settingréex for each chord and
drawing an edge between vertices of two sets if their cooeding chords inter-
cept. Each edge is represented by a duplet,(é;9,) for edge between vertices

8 A reflex vertex is a vertex with interior angle greater tHa&0°.
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hy € H andwv; € V, and the set of all edges in the graphfis The constructed
bipartite graph is represented@s= ((H,V), E).

Figure 5 (b) illustrates the bipartite graph constructeninfiFigure 5 (a), wherél =
{hla h27 h3}1 V - {Ula U2, U3, U4}1 andE = {(hla vl)a (h2) U3)7 (h'27 U4)a (h?); U2)}-
The problem of findingl. converts, now, to that of finding the maximum independent
set of the bipartite grap&y'.

Definition 1 Maximum independent set problem Given a graphG, anindepen-
dent setis a subset of its vertices that are pairwise not adjacenh(exted by an edge).
The problem of finding the largest independent set in a g@ps called amaximum
independent set problem

The independent set problem of an arbitrary graph is knowmet®P-complete, but
a polynomial solution exists when the graph is a bipartitgyr This can be done by
solving amaximum bipartite matchingroblem [11, 12].

Definition 2 Maximum bipartite matching problem LetG = ((A4, B), E) be an
undirected bipartite graph, wheré and B are sets of vertices, anfd the set of edges of
the form(a, b) witha € A andb € B. A subsef\/ C FE is amatching if no two edges
in M are incident to the same vertex, that is no two edges sharevanum vertex.
A vertex is callednatchedif it is incident to an edge in the match, amthmatched
otherwise.Maximum bipartite matching is to find a matchingV/ that contains the
maximum number of edges of all possible matchings.

The maximum bipartite matching problem is a well studiedaadp graph theory, and
often appears as a algorithm textbooks (e.qg. [3]). As it imadard algorithm, we omit
the details for the sake of space limit.

In this project, we adopt graph-cut algorithm to solverteximum bipartite match-
ing for G = ((H,V), E), so as to find thenaximum independent setsolve L. Con-
sequently, according to Theorem 1, the heuristic functi¢x) can be computed by
Eqg. 11. As the heuristic estimation is grounded on a solidritéal foundation and
generally gives a tight upper bound, the proposed algoriiboomes very efficient and
a well-informed search strategy, which is also verified lgyakperiments.

Convenient Data Structures for Search To enforce zones’ non-overlapping con-
straint, we create a matrix calle@dndidate zone overlapping matrix to encode can-
didate zones’ overlap. It is very easily generated as fald®ay, there are candidate
zones O is initialized as an x n matrix, each entry is set to 0. Then, for each pair of
overlapping zones, say zonand zonef, we setO(¢, j) = 1 andO(j,¢) = 1. During
the search, whenever a candidate zone, say zadeeselected as a part of the solution,
we check the-th row of O, and exclude every candidate zopethereO(i,j) = 1
from future selection. In this way, it is guaranteed that werapping zones can possi-
bly appear in the solution.

Another factor making the search efficient is due to a datecttre calledvord-to-
candidate-zone indek,_. .. After n candidate zones are proposed, for each word in the
document, there are pointers to the candidate zones that itolote that each word
can be covered by a number of overlapping candidate zonesn Be final solution,
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only one of them is selected. At each search statexsewe check each word which has
not been covered by selected candidate zones so far to seeailaple candidate zones
covers it. The number of available candidate zones is dsicrgahen more and more
candidate zones as selected because the more candidatbaicare selected, the fewer
available candidates; and the more overlapping candiadeteszare excluded from the
candidate list/,, ., needs to be updated dynamically at each search step. Ifakiste
an uncovered word neither covered by any available nottezleyet candidate zones,
h(x) = oo. It means that this search path is terminated earlier, dvaugh there are
possible additional non-overlapping rectangles to beitaréd solely based on the
current shape of polygon (current configuration of decoragafocument). This step
makes the search much more efficient by pruning spuriousisgeths at an earlier
stage.

6 Data Set and Experimental Results

We train and test our model on the first page of articles fronvisLIMEDLINE database.

We randomly select a set of first pages for training and ardiffeset for testing. Some

inference results are shown in Fig.6. We can see that oultsese very accurate and
robust to document layout variations and noise, and it s faée from connect compo-

nent restriction. Moreover, we claim that due to the corsenhilocument representation
and computational data structure, together with the wldkrmed heuristic search strat-
egy, the algorithm is capable of efficiently solving most @agcompositions within a

second. This efficiency is also because we limit the numbeandflidate zones by only
considering the top 20 to 50 proposals from the generatine noodel. Otherwise, the

search space grows exponentially with the number of cateida

7 Conclusions

We have proposed a novel, generic and efficient learning ifiedeince framework to

solve a fundamental challenging problem of document aisaly®rganically integrates
data, models and computing to search for globally optimiedti-column document

decomposition solutions. The learning part learns robrgdigilistic models based on
generic features. The inference module casts an experatisisal inference to a well

informed heuristic search problem. As a result, the propésenework is very general,
and it can be extended to a lot of machine learning applioatio
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Fig. 6. Page decomposition results. Note that the 1st result shows that the niettatist to
noise and free from connected component restriction.



