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It has long been known that visual attention and saliency mechanisms

play an important role in human visual perception. However, there have been

no computational principles that could explain the fundamental properties of bi-

ological visual saliency. In this thesis, we propose, and study the plausibility

of a novel principle for human visual saliency, which we denote as discriminant

saliency hypothesis. The hypothesis states that all saliency decisions are opti-

mal in a decision-theoretic sense. Under this formulation, optimality is defined in

the minimum probability of error sense, under a constraint of computational par-

simony. The discriminant saliency hypothesis naturally adapts to both stimulus-

driven (bottom-up) and goal-driven (top-down) saliency problems, for which we de-

rive the optimal discriminant saliency detectors, in an information-theoretic sense.

Statistical properties of natural stimuli are also exploited in the derivation for the

constraint of computational parsimony.

To study the biological plausibility of discriminant saliency, we show that,

under the assumption that saliency is driven by linear filtering, the computations

of discriminant saliency are completely consistent with the standard neural archi-

tecture in the primary visual cortex (V1). The discriminant saliency detectors are

also applied to the set of classical displays, used in the study of human saliency

xix



behaviors, and shown to explain both qualitative and quantitative properties of

human saliency. These results not only justify the biological plausibility of the

discriminant hypothesis for saliency, but also offer explanations to the neural or-

ganization of perceptual systems. For example, we show that the basic neural

structures in V1 are capable of computing the fundamental operations of statis-

tical inference, e.g., assessment of probabilities, implementation of decision rules,

and feature selection.

Finally, we evaluate the performance of the derived discriminant saliency

detectors for computer vision problems. In particular, we apply the top-down

saliency detector to the problem of weakly supervised learning for object recogni-

tion, and show that the detector outperforms the state-of-the-art saliency detectors

in 1) capturing important information for object recognition tasks, 2) accurately

localizing objects of interest from image clutter, 3) providing stable salient loca-

tions with respect to various geometric and photometric transformations, and 4)

adapting to diverse visual attributes for saliency. We then evaluate the perfor-

mance of the bottom-up discriminant saliency detector in the applications where

no recognition is defined. In particular, we show that the bottom-up discrim-

inant saliency implementation accurately predicts human eye fixation locations

on natural scenes. In another application of discriminant saliency, we discuss a

Bayesian framework to integrate top-down and bottom-up saliency outputs, where

the top-down saliency is interpreted as a focus-of-attention mechanism. Experi-

mental results show that this framework combines the selectivity of the top-down

saliency with the localization ability of the bottom-up interest point detectors, and

improves the object recognition performance.

Overall, the excellent performance of discriminant saliency in both bi-

ological and computer vision evaluations justifies the plausibility of discriminant

hypothesis as an explanation for human visual saliency.
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Introduction
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I.A Human visual saliency

Biological vision systems, such as the human vision system, have a re-

markable ability to automatically select and allocate attention to a few “rele-

vant” locations in a scene [229, 149, 33, 86, 228]. This ability enables organisms

to focus their limited perceptual and cognitive resources on the most pertinent

subset of the available sensory data, facilitating learning and survival in every-

day life. The deployment of visual attention is believed to be driven by visual

saliency mechanisms, which is a fundamental, yet hard to define, property of

vision systems, that had been known to exist for a number of elementary at-

tributes of visual stimuli, including color, orientation, depth, and motion, among

others [195, 222, 225, 22, 64, 133, 143].

In general, the saliency of a stimulus can be interpreted as its state or

quality of standing out (relative to other stimuli) in a scene. As a result, a salient

stimulus will often “pop-out” at the observer [195, 190, 196, 138], such as a red

dot in a field of green dots, an oblique bar among a set of vertical bars, a flickering

message indicator of an answering machine, or a fast moving object in a scene

with mostly static or slow moving objects. Another direct effect of the saliency

mechanism is that it helps the visual perceptual system to quickly organize visual

information, such as texture segmentation [11, 12, 95, 97, 147], or grouping [10,

168]. For example, it was shown in [140] that upon the brief inspection of a pattern,

such as that depicted in the leftmost display of Figure I.1, subjects report the global

percept of a “triangle pointing to the left”. This percept is quite robust to the

amount of (random) variability of the distractor bars, and to the orientation of the

bars that make up the vertices of the triangle. In fact, these bars do not even have

to be oriented in the same direction: the triangle percept only requires that they

have sufficient orientation contrast with their neighbors. Another example of this

type of perceptual grouping, as well as some examples of texture segregation, are

shown in Figure I.1. Below each display we present the saliency maps produced
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Figure I.1 Four displays (top row) and saliency maps produced by the algorithm

proposed in this article (bottom row). These examples show that saliency analysis

facilitates aspects of perceptual organization, such as grouping (left two displays),

and texture segregation (right two displays).

by the saliency detector proposed in this work. Clearly, the saliency maps are

informative of either the boundary regions or the elements to be grouped.

I.A.1 Two components of saliency

One common property of the above examples is that saliency is driven

solely by the stimuli in each scene. However, psychological studies of visual atten-

tion have also shown that human saliency is not a single mechanism, but an inter-

action of two complementary mechanisms [90], bottom-up and top-down saliency.

Bottom-up saliency is a fast, stimulus-driven process, which accounts for all of the

aforementioned saliency examples. This mechanism is independent of any high-

level visual tasks (such as recognition goals), and drives attention only by the

properties of the stimuli in a visual scene. As another example, when you walk

on a street, the traffic signs (or signals) always attract your attention, irrespective

of whether you intend to look for them or not. Since it is purely stimulus-driven,

bottom-up saliency is commonly believed to be a feed-forward visual processing in
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a nonconscious level, which is memory-free and reactive [106, 86, 115, 199]. Stud-

ies also indicate that the bottom-up saliency mechanism involves mostly localized

processing: it typically arises from contrasts between a stimulus and its neighbor-

hood. In fact, all of the pop-out examples mentioned above are accounted for by

local stimulus contrast.

The other mechanism that guides the deployment of visual attention is a

slower memory-dependent process, namely top-down saliency, which is determined

by the (high-level) activities and visual tasks in which an organism is engaged.

One important hallmark of top-down saliency is that, given the same scene (or

the same pattern of visual stimuli), the most salient item(s) changes depending

on the observer’s tasks. For example, in a study of human eye movements [229],

Yarbus recorded fixations and saccades that observers made while viewing natural

objects and scenes. He showed that the patterns of saccades varied considerably

for different questions that were asked to the observers prior to viewing the scene,

for example, to estimate the economic level of the people in the scene, or to judge

their ages. The studies of visual search experiments also indicate that for some

types of displays, knowing the basic properties of a target (e.g. its color, shape,

etc.) beforehand helps subjects to find a target much more efficiently than without

the knowledge [135, 197, 29, 219, 222, 22].

Under the two-component saliency framework, both mechanisms can op-

erate simultaneously and, for a given scene, the deployment of attention is believed

to be determined by an interaction of the scene properties and the observer’s set

of attentional goals [228].

I.B Computational models for visual saliency

In recent years, there have been increasing efforts in introducing computa-

tional models for saliency mechanisms in both computer and biological literatures.

In the computer vision community, although inspired by biological visual atten-
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tion, little emphasis was given to replicating the psychophysical or physiological

properties of human saliency. Instead, the majority of the research has been to de-

velop saliency algorithms that are of direct interest to machine vision applications,

such as object tracking and recognition. These studies are focused on extract-

ing salient points (often called “interesting points”) and applying them to build

computer vision systems. On the other hand, in biological vision, most research

addresses the understanding of how attentional mechanisms work, either through

psychophysics experiments in psychology, or neural recordings in neurophysiology.

Although a tremendous amount of knowledge about saliency has been amassed in

this way, this literature is not rich in computational models. When such models

are proposed, they tend to focus on high-level justifications for specific attention

mechanisms, and do not necessarily translate into computer vision algorithms. In

the following, we give an overview of the most popular saliency models/detectors

in both literatures.

I.B.1 Saliency models in computer vision

The design of saliency detectors (often called interest point detectors) has

been a significant subject of study in computer vision for several decades. Saliency

detectors have been widely adopted in applications such as object tracking and

recognition, and more recently, learning object detectors from weakly supervised

(unsegmented) training examples [56, 184, 55, 111, 230, 32, 158]. In these appli-

cations, saliency is often justified as a pre-processing step that saves computation

and improves robustness, facilitating the design of subsequent stages. As a result,

most of the existing saliency formulations proposed in this literature do not tie the

optimality of saliency judgments to the specific goal of recognition, i.e. they are

only bottom-up, but focus on the extraction of image locations (interest points),

that exhibit some universally desired, and mathematically well defined, properties

such as stability under certain geometrical transformations.

Broadly speaking, saliency detectors in this literature can be divided into
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three major classes. The first, and most popular, class of saliency detectors treats

the problem as the detection of specific visual attributes . Many detectors in this

class emerged from research areas, such as structure-from-motion, or tracking [68,

60, 181, 200]. The most prevalent examples are edges and corners [68, 60, 181,

171, 200], but there have also been proposals for other low-level attributes, e.g.

contours [177, 77, 4, 3, 150, 218], local symmetries [160, 72], and blobs [118]. These

basic detectors can also be embedded in scale-space [116], to achieve detection

invariance with respect to transformations such as scaling [126, 127], or affine

mappings [127]. These bottom-up detectors have nice properties. For example,

the salient image attributes can often be defined in mathematically explicit and

optimal forms (e.g. [68]), which is desirable for the design of saliency detectors.

The bottom-up detectors are also free of training, and mostly can be computed

very efficiently. They, however, have significant limitations. Since the goals and

constraints in object recognition are very different from those in the original domain

where these detectors were proposed, the visual attributes deemed as salient may

exist equally in a target and a background, and do not necessarily include any useful

information for the recognition task at hand. Experimentally, a major drawback

of these saliency detectors is that they do not generalize well for object recognition

problems.

(a) (b) (c) (d)

Figure I.2 Challenging examples for existing saliency detectors. (a) apple among

leaves; (b) turtle eggs; (c) a bird in a tree; (d) an egg in a nest.

For example, a corner detector will always produce a stronger response in

a region that is strongly textured than in a smooth region, even though textured

surfaces are not necessarily more salient than smooth ones. This is illustrated by
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the image of Figure I.2(a). While a corner detector would respond strongly to the

highly textured regions of leaves and tree branches, it is not clear that these are

more salient than the smooth apple. We would argue for the contrary. Similarly,

in the image of Figure I.2(b), we present an example where contour-based saliency

detection would likely fail. The image depicts a turtle laying eggs in the sand.

While the eggs are arguably the most salient object in the scene, contour-based

saliency would ignore them in favor of the large contours in the sand.

Some of these limitations are addressed by more recent, and generic, for-

mulations of saliency. One idea that has recently gained some popularity is to

define saliency as image complexity . Various complexity measures have been pro-

posed in this context. For example, Yamada & Cottrell [226] defines saliency by

the variance of Gabor filter responses over multiple orientations, while Sebe &

Lew [174] equates saliency to the absolute value of the coefficients of a wavelet

decomposition of the image, and Kadir & Brady [99] to the entropy of the distri-

bution of local intensities. The major advantage of these data-driven definitions of

saliency is a significant increase in flexibility, as they can detect any of the low-level

attributes above (corners, contours, smooth edges, etc.), depending on the image

under consideration. It is not clear, however, that saliency can always be equated

with complexity. For example, Figure I.2 (c) and (d) show images containing com-

plex regions, consisting of clustered leaves and straw that are not terribly salient.

On the contrary, the much less complex image regions containing the bird or the

egg appear to be significantly more salient. As with the first class, a key limitation

of this class of detectors is that their salient points do not necessarily include any

useful information for the recognition task at hand.

With respect object recognition applications, the third class of top-down

saliency detectors is more interesting. The detectors of this class are normally

trained for specific recognition problems under consideration. For example, authors

in [66, 170, 214, 19] designed detectors based on the discriminant power of image

regions (or features) for the classifications of an object class and a background
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class. In [136], top-down saliency is also measured by the signal-to-noise ratio

(SNR) between target and background. Although top-down saliency detectors

have been shown to have better performance for object recognition, especially in

coping with image clutter, than bottom-up saliency detectors (see e.g., [66, 73, 65]),

they are currently less popular in computer vision.

Finally a common limitation of all these saliency detectors in computer

vision is that, although they are inspired by the saliency mechanisms of human

vision, they seldom show any connection to biological vision, in terms of either the

biological plausibility, or prediction of human saliency behaviors.

I.B.2 Saliency models in biological vision study

In the biological vision community, both the neurophysiological basis and

psychophysical properties of visual saliency mechanisms have been extensively

studied. Guided by these studies, most computational saliency models in this

literature emphasize biological plausibility, and aim to replicate what is known

about visual saliency and attention. With a few notable exceptions [219, 137], the

overwhelming majority of these models have only considered bottom-up saliency

mechanisms [106, 88, 163, 89, 115, 24, 67, 103, 85, 119], following the fact that the

bottom-up visual pathway is better understood than its top-down counterpart, in

terms of both the neural circuits involved and the resulting subject behavior.

Among the saliency models in this literature, three popular components

are commonly adopted. The first component, which is also the first processing stage

in most saliency models, is the extraction of early visual features. Inspired by the

early visual pathway in biological vision, these features usually include low-level

simple visual attributes, such as intensity contrast, color opponency, orientation,

motion, and others (see e.g. [86, 88]). The second common component of many

saliency models is the adoption of a “center-surround” formulation for bottom-up

saliency (e.g. [88, 115, 219, 24, 67, 103, 85]). The “center-surround” formulation as-

sumes that, in the absence of high-level (recognition) goals, saliency is determined
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by how distinct the stimulus at each location of the visual field is from its surround-

ing. This formulation is motivated by the ubiquity of “center-surround” mecha-

nisms in the early stages of biological vision [108, 53, 81, 2, 98, 28, 104, 144], and

has become dominant in this literature. The third common practice in the design of

saliency detectors is the hypothesis of the existence of a saliency map [106], which

can be generated through either the combination of intermediate feature-specific

saliency maps [88, 219, 86], or the direct analysis of feature interactions [115].

The saliency map is a scalar, two-dimensional map whose activity topographically

represents visual saliency, irrespective of the feature dimension that makes the

location salient. On the basis of this scalar topographical representation, biasing

attention to focus onto the most salient locations is reduced to drawing attention

towards the locus of highest activity in the saliency map.

Given these commonly shared components, what differs between the com-

putational saliency models is the strategy used to compute the saliency map. In

what is perhaps the most popular model for bottom-up saliency [88], saliency is

measured as the absolute difference between feature responses at a location and

those in its neighborhood, in a center-surround fashion. This model has been shown

to successfully replicate many observations from psychophysics [89, 151, 153], for

both static and motion stimuli, and has been applied to the design of computer

vision algorithms for robotics and video compression [84, 215, 182]. In [163], Rosen-

holtz measured the motion saliency of a target in a display as the number of stan-

dard deviations between the target velocity and the mean distractor velocity, and

showed that it replicated a number of motion pop-out and asymmetry phenomena.

On the other hand, in the famous Guided Search model [219], Wolfe emphasized

the modulation of the bottom-up activation maps by top-down, goal-dependent,

knowledge. In [115], Li argued that saliency maps are a direct product of the pre-

attentive computations of primary visual cortex (V1), and implemented a saliency

model inspired by the basic properties of the neural structures found in V1. This

model has been shown to reproduce many psychophysical traits of human saliency,
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establishing a direct link between psychophysics and the physiology of V1. Lastly,

in a recent proposal [103], Kienzle et al. relied on machine learning techniques

to build a saliency model from recordings of human eye fixation on natural im-

ages, and showed that a center-surround receptive field emerged from the learned

classifier.

While many of these saliency models are able to reproduce, to a certain

extent, various known properties of biological vision, they lack a formal justifica-

tion for their image processing steps in terms of a unifying computational principle

for saliency. For example, it is not clear if these models are optimal in a well defined

sense, whether that optimality is subject to any type of constraints (e.g., sparse-

ness, computational parsimony, etc.), or whether they have any connection to the

statistics of perceptual stimuli. With the absence of such a criterion it is difficult

to evaluate, in an objective sense, the goodness of the proposed algorithms or to

develop theories (and algorithms) for optimal saliency. Some more recent models

have tried to address this problem, by deriving saliency mechanisms as optimal

implementations of generic computational principles, such as the maximization of

self-information [24], or “surprise” [85]. It is not yet clear how closely these models

comply with classical psychophysics, since existing evaluations have been limited

to the prediction of human eye fixation data. Finally, to the best of our knowledge,

there has been few previous effort in either computer or biological vision litera-

ture to develop a unified formulation for both bottom-up and top-down saliency

mechanisms (see, e.g., [231]).

I.C Contributions of the thesis

In this thesis we propose and investigate a new hypothesis for saliency

mechanisms, which we refer to as the discriminant saliency hypothesis ; saliency is,

first and foremost, a discriminant process. Under this formulation, the saliency of a

set of visual features is equated to the discriminant power of these features with re-
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spect to a classification problem, whose optimality is defined in a decision-theoretic

sense under a constraint of computational parsimony. To justify the plausibility of

the discriminant saliency hypothesis, one must address the following fundamental

questions. First, what are the computational principles underlying the discrim-

inant saliency hypothesis? Can it be applied to both bottom-up and top-down

saliency mechanisms? How will it be implemented for each? Second, are the im-

plementations biologically plausible, either physiologically or psychophysically, or

both? For a valid formulation of saliency, this question is indispensable given the

biological root of the saliency problem itself. Third, will the hypothesis lead to

saliency detectors that significantly benefit problems in computer vision, especially

recognition problems? This is very important for assessing the practical value of

a saliency formulation. In this thesis, we answer each of the questions, by 1) pro-

viding a fully developed discriminant saliency formulation based on information

theoretic principles, 2) investigating the biological plausibility of the hypothesis,

and 3) studying the effectiveness of the derived saliency detectors in computer

vision applications. The main contributions of this thesis are as follows.

I.C.1 Discriminant saliency hypothesis and its computational princi-

ples

As for the first contribution of the thesis, we propose the discriminant

hypothesis for saliency: all saliency processes are optimal in a decision-theoretic

sense with the constraint of computational parsimony. Under this formulation, the

saliency of each location in the visual field is equated to the discriminant power

of the image features with respect to a classification problem that opposes two

classes of stimuli. The discriminant power of image features is measured in an

information-theoretic sense, and the well known statistical properties of natural

scenes are exploited to achieve computational parsimony. We then show that

this hypothesis can be naturally implemented for both bottom-up and top-down

saliency detectors.



12

I.C.2 Biological soundness of discriminant saliency

The second contribution lies in our efforts in collecting evidence to show

the biological plausibility of the discriminant saliency hypothesis. In particular, we

show that, by combining the discriminant saliency formulation with natural image

statistics, the implementations of discriminant saliency are consistent with both

neurophysiology and psychophysics of human saliency. With respect to neurophys-

iology, we show that under the assumption of natural image statistics, the com-

putations of discriminant saliency can be implemented with a multi-layer neural

network, which is consistent with the standard neural architecture in the primary

visual cortex (V1), i.e., a combination of divisively normalized simple cell and com-

plex cell [26, 71, 27, 1]. With respect to psychophysics, the ability of discriminant

saliency to reproduce the classical behaviors of human saliency is evaluated. The

experimental results show that discriminant saliency not only explains qualitative

observations (such as pop-out for single feature search, disregard of feature con-

junctions, and asymmetries between the existence and absence of a basic feature),

but also makes surprisingly accurate quantitative predictions (such as the nonlin-

ear aspects of human saliency perception, influence by the heterogeneity of the

background, and the compliance of saliency asymmetries with Weber’s law).

The significance of the consistency with neurophysiology and psychophysics

is three-fold. First, these observations demonstrate, for the first time, a unifying

computational principle of saliency that can be applied to explain both neuro-

physiological and psychophysical observations of early visual processing. Second,

it provides a holistic functional justification for the standard architecture of V1;

V1 has the capability to optimally detect salient locations in the visual field, when

optimality is defined in a decision-theoretic sense and sensible simplifications are

allowed for the sake of computational parsimony. Finally, the consistency im-

plies that the basic neural structures in the early visual processing are capable

of computing the fundamental operations of statistical inference (e.g., assessment

of probabilities, implementation of decision rules, and feature selection) for visual
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signals that comply with the statistics of the natural world.

I.C.3 Applications of discriminant saliency in computer vision

In addition to comparisons with psychophysical and physiological prop-

erties of human saliency, we also evaluate the effectiveness of discriminant saliency

detectors in solving various saliency problems of interest for computer vision. As

object recognition is one of the most popular applications of saliency detectors,

we first applied the top-down discriminant saliency detector to object recognition,

particularly, the problem of learning from weakly supervised (unsegmented) train-

ing examples with cluttered background. Through extensive experiments, we show

that the top-down discriminant saliency detector outperforms the state-of-the-art

saliency principles with respect to a number of properties that are desirable for

recognition: 1) the amount of information relevant for the recognition task which

is captured by the salient points, 2) the ability to localize objects embedded in

significant amounts of clutter, 3) the robustness of salient points to various im-

age transformations and pose variability, and 4) the richness of the set of visual

attributes that can be considered salient. We also compared the performance of

the bottom-up discriminant saliency detector with other state-of-art saliency detec-

tors, for the prediction of human eye movements on natural scenes in a free-viewing

task. It is shown that the bottom-up discriminant saliency detector outperforms

previously proposed methods.

I.C.4 Bayesian framework for integration of top-down and bottom-up

saliency mechanisms

The final part of the thesis consists of an effort to study the connec-

tions between top-down and bottom-up saliency mechanisms. Since how the two

mechanisms interact in biological vision, e.g., the underlying neural mechanisms,

is not clearly understood, in this work, we only discuss applications in computer

vision. In particular, we introduce 1) a probabilistic representation of salient lo-
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cations, and 2) a Bayesian inference principle for the integration of bottom-up and

top-down saliency estimates. The proposed Bayesian formulation is shown to have

various interesting properties. First, it produces intuitive rules for the integration

of the two saliency modes. Second, it supports the interpretation of top-down

saliency as a focus-of-attention mechanism, which suppresses bottom-up salient

points that are not relevant for the task of interest. Third, it provides evidence

that bottom-up saliency has an important role when top-down routines are inaccu-

rate (e.g. because they are learned from cluttered examples), but is not necessarily

useful when the opposite holds. Fourth, it enables an explicit control of the rela-

tive weight of each saliency component in the final saliency estimates. Finally, it

has a non-Bayesian interpretation as the simple multiplication of the two saliency

maps, which enables a non-parametric extension of trivial computational complex-

ity. The advantages of the Bayesian solution, over both top-down and bottom-up

saliency in isolation, are illustrated in the context of recognition problems, both

in terms of improving the ability to localize and segment objects from background

clutter and preserving a great selectivity (recognition rate).

I.D Organization of the thesis

The rest of the thesis is organized as follows. In Chapter II, we in-

troduce the discriminant saliency hypothesis and its computational principle in

information-theoretic senses. We then investigate the statistical properties of natu-

ral scenes to achieve computationally efficient implementations of the discriminant

saliency principles. The bottom-up and top-down implementations of the hypoth-

esis are provided. In Chapter III, the question of the biological plausibility of the

discriminant saliency, especially its neurophysiological plausibility, is investigated.

The investigation reveals a functional justification of the basic neural structures

in early visual processing. The study of the biological plausibility of discriminant

saliency continues in Chapter IV, where we evaluate the ability of discriminant
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saliency to reproduce and explain the basic psychophysics of human saliency. Both

the qualitative and quantitative properties of human saliency are considered in the

context of classic visual search experiments. Chapter V and Chapter VI present re-

sults of various experiments designed to evaluate discriminant saliency as a solution

for many saliency problems of significant interest in computer vision. In particu-

lar, we evaluate the performance of the top-down discriminant saliency detector

on the problem of weakly supervised object detection from cluttered background

in Chapter V, and the performance of the bottom-up discriminant saliency detec-

tor in other saliency problems, such as human fixation prediction, in Chapter VI.

In Chapter VII, we discuss the Bayesian framework to integrate the output of the

top-down and the bottom-up saliency detectors, and evaluate the resultant detec-

tor in the context of object recognition tasks. Conclusions are provided in Chapter

VIII.



Chapter II

Discriminant saliency hypothesis

and its computational principles
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II.A Discriminant saliency hypothesis

The principle of discriminant saliency is rooted in a decision-theoretic

interpretation of perception. Under this interpretation, perceptual systems evolve

under the goal of producing decisions about the state of the surrounding environ-

ment that are optimal in a decision-theoretic sense, e.g. that have minimum prob-

ability of error. The evolutionary advantages of this type of optimality are evident:

organisms that are less error-prone in identifying potential threats in the environ-

ment, are most likely to survive. This goal is complemented by the constraint,

so called computational parsimony, that the brain has only limited computational

power, and thus the perceptual mechanisms should be as efficient as possible. This

constraint is essential to the sensory systems, and generally results in various rep-

resentations, such as redundancy reduction [6], and sparse coding [146]. Saliency is

one of the first steps of a visual system towards achieving the goal of understand-

ing the surrounding environment, and is itself one representation of computational

parsimony: it enables the organism to devote most computational resources to the

locations of the visual field that are likely to provide most information of use to

the decision-making process1.

Compatible with the decision-theoretic interpretation of perception, we

propose a hypothesis that saliency is a discriminant process. More specifically,

saliency is defined with respect to two classes of stimuli: a stimulus of interest and

a null hypothesis, composed of all the stimuli that are not salient. Given these

two classes, the locations of the visual field that can be classified, with lowest

expected probability of error , as containing the stimulus of interest are denoted as

salient. In decision-theoretic terms, this is accomplished by 1) defining a binary

classification problem that opposes the stimulus of interest to the null hypothesis,

and 2) equating the saliency of each location in the visual field to the discriminant

power (with respect to the classification problem) of the visual features extracted

1Note that, in this context, information does not necessarily correlate with signal information in the
sense of Shannon [178].
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from that location.

This discriminant formulation for saliency is clearly a departure from the

other principles, and advances in at least two aspects. First, the definition is

more generic and flexible. Because saliency is now defined with respect to two

sets of visual stimuli, a set of salient visual features and the other set of the rest

composing the null hypothesis, it is possible to apply this formulation to a broad

class of saliency problems by assigning these two sets under different context. For

example, by choosing appropriate instances of interest stimuli and null hypothesis,

it is possible to specialize the discriminant saliency principle to either top-down

or bottom-up saliency detection. If the saliency and null hypotheses are chosen

respectively as the visual object class to be recognized and all other visual classes

to be distinguished from the former in the visual recognition problem, the resulting

saliency detector becomes top-down saliency detection. In this top-down context,

saliency is contingent upon the existence of a collection of classes, and therefore

for a given object, different visual attributes will be salient in different recognition

contexts. For instance, while contours and shape will be most salient to distinguish

a red apple from a red car, color and texture will be most salient when the same

apple is compared to an orange. As illustrated by Figure II.1, this is consistent

with perceptual saliency judgements. When a white fox is viewed against a forest,

its color becomes very salient and recognition is easy. On the other hand, when

the fox is presented against a background of white snow, color is no longer a salient

feature and recognition becomes a lot more difficult. With respect to bottom-up

applications where saliency is considered within one scene, the two sets of stimuli

in discriminant saliency can be defined locally to oppose image attributes in one

location from its surrounding regions, i.e. in a center-surround manner. In this

set-up, saliency becomes contingent to the local context. For example, while a red

dot looks very salient among a set of green dots, it is much less salient if embedded

in a set of orange points. In this sense, discriminant saliency is flexible enough

to detect any type of image features as salient for either top-down or bottom-up
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Figure II.1 The saliency of features like color depends on the viewing context.

implementations.

The second, and perhaps the most important, property of discriminant

saliency is that it equates optimal saliency to the search for the most discriminant

visual features for a binary classification problem. In particular, this is naturally

formulated as an optimal feature selection problem: optimal features for saliency

are the most discriminant features for the binary classification problem that opposes

the class of interest to the null classes. From a computational standpoint, the

search for discriminant features is a well-defined, and computationally tractable,

problem that has been widely studied in the literature of decision-theory . We

next consider efficient solutions to this problem.

II.B Computational principles for discriminant saliency

II.B.1 Minimum Bayes error

We start by recalling the well known result that, for the classification

problem defined by 1) a feature space X , and 2) a random variable Y that as-

signs x ∈ X to one of M classes, i ∈ {1, . . . ,M}, the minimum probability of

classification error is achieved by the Bayes classifier [47]

g∗(x) = arg max
i
PY |X(i|x). (II.1)

This probability of error is denoted as the Bayes error (BE)

L∗ = 1 − Ex[max
i
PY |X(i|x)], (II.2)
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where Ex means the expectation with respect to PX(x). Since 1) the BE depends

only on X , not on the implementation of the classifier itself, 2) it lower bounds

the probability of error of any classifier on X , and 3) there is at least one classifier

(the Bayes classifier) that achieves this lower bound, the minimization of BE is a

natural optimality criteria for feature selection.

In practice, however, the feasibility of applying such criterion is con-

strained by its computational complexity. In particular, the implementation of

discriminant saliency requires 1) the design of a large number of classifiers, for

example, as many as the total number of object classes to recognize for a top-

down context, or the number of image locations for a bottom-up context; and

2) classifier tuning whenever the visual concepts included in the two hypothetical

sets changes, such as adding and deleting new classes to the recognition problem

for top-down applications. It is therefore important to adopt criteria that are

computationally efficient, preferably reusing computation from the design of one

classifier to the next. It has, however, long been known that direct minimiza-

tion of the BE is a difficult problem, due to the non-linearity associated with the

max(·) operator in (II.2). Consider, for example, the popular strategy of feature

selection by sequential search, where at iteration n the previous best feature sub-

set, Xn−1, is augmented with the feature set Xa to obtain the best new solution

Xn = (Xa,Xn−1). When the goal is to minimize BE, such algorithms cannot be

implemented efficiently because the max(·) operator makes it impossible to express

EXn
[maxi PY |Xn

(i|xn)] as a modular combination of EXn−1 [maxi PY |Xn−1(i|xn−1)]

and a function of Xa.

II.B.2 Infomax

An alternative optimality criteria is to select the features that are most

informative about the class label [8, 18, 227, 156, 207, 212, 46]. This is frequently

referred as the infomax criteria, due to its connections to the infomax principle for

the organization of perceptual systems [117, 5, 7].
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Definition 1. Consider a M-class classification problem with observations drawn

from a random variable Z ∈ Z, and a feature transformation T : Z → X . X is an

infomax feature space if and only if it maximizes the mutual information

I(X;Y ) =
∑

i

∫

pX,Y (x, i) log
pX,Y (x, i)

pX(x)pY (i)
dx (II.3)

between class Y and feature vector X.

The mutual information can also be written as

I(X;Y ) =
∑

i

PY (i)KL
[

PX|Y (x|i)||PX(x)
]

(II.4)

where

KL[px||qx] =

∫

p(x) log
p(x)

q(x)
dx (II.5)

is the Kullback-Leibler (K-L) divergence between the distributions p(x) and q(x).

This is a measure of the average distance between each of the class conditional

distributions PX|Y (x|i) and their average, PX(x) =
∑

i PY (i)PX|Y (x|i) and gives

an intuitive discriminant interpretation to the infomax solution: the infomax space

is that in which the distribution of each class is as different as possible from the

mean distribution over all classes. It therefore favors spaces where the classes are

as separated as possible.

With respect to computation, it has been shown in [206] that the infomax

criterion enables efficient feature selection strategies. For example, consider for the

strategy of feature selection by sequential search, where at iteration n the previous

best feature subset, X1,n−1 = {X1, . . . , Xn−1}, is augmented with the feature Xn

to obtain the best new solution X1,n = (X1,n−1, Xn). Authors in [206] showed that

mutual information can be decomposed as following, by applying the chain rule of

relative entropy [37] to (II.4),

I(X1,n;Y ) =
〈

KL
[

PX1,n|Y (x1,n|i)||PX1,n
(x1,n)

]〉

Y

=
〈

KL
[

PXn|X1,n−1,Y (xn|x1,n−1, i)||PXn|X1,n−1(xn|x1,n−1)
]〉

Y

+
〈

KL
[

PX1,n−1|Y (x1,n−1|i)||PX1,n−1(x1,n−1)
]〉

Y

= I(Xn;Y |X1,n−1) + I(X1,n−1;Y ). (II.6)
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This allows an efficient implementation of the sequential search strategy, since the

mutual information at iteration n can be computed as a sum of the same quantity

at iteration n − 1 and a term that depends on the additional feature Xn. This

therefore makes the infomax principle more tractable than the minimization of BE.

Finally, the two solutions are closely related and frequently similar [207, 206]. For

all these reasons, we adopt the infomax principle as a criterion for salient features

in this work.

II.C Computational parsimony and natural image statis-

tics

While (II.6) enables the reuse of computation between consecutive feature

selection iterations, the term I(Xn;Y |X1,n−1) can still be prohibitively expensive

as the dimension of X1,n−1 increases since it requires high-dimensional density

estimates. As we have previously mentioned, the constraint of computational

parsimony suggests the search for approximations of (II.6) that enable efficient

computations.

II.C.1 Natural image statistics for feature dependency

To achieve computational efficiency, we resort to the proposal of Attneave,

Barlow, and others [5, 6, 7], that perception is tuned to the environment and is

able to exploit the statistics of natural stimuli to reduce computational complexity.

Of particular interest is a known statistical property of band-pass features, such

as Gabor filters or wavelet coefficients, extracted from natural images: that such

features exhibit strongly consistent patterns of dependence across a wide range

of imagery [25, 79, 187]. One example of these regularities is illustrated by Fig-

ure II.2, which presents three images, the histograms of one coefficient of their

wavelet decomposition, and the conditional histograms of that coefficient, given

the state of the co-located coefficient of immediately coarser scale (known as its
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“parent”). Although the drastically different visual appearance of the images af-

fects the scale (variance) of the marginal distributions, their shape, or that of the

conditional distributions between coefficients, is quite stable. The observation that

these distributions follow a canonical (bow-tie) pattern, which is simply rescaled

to match the marginal statistics of each image, is remarkably consistent over the

set of natural images. This “bow-tie” shaped distribution, in fact, has been widely

observed for many natural image feature pairs [25], other than the “parent/child”

feature pairs shown in Figure II.2. This consistency indicates that, even though

the fine details of feature dependencies may vary from scene to scene, the coarse

structure of such dependencies follows a universal statistical law that appears to

hold for all natural scenes. This, in turn, suggests that feature dependencies are

not greatly informative about the image class. The following theorem shows that,

when this is the case, (II.3) can be drastically simplified.

Theorem 1. Let X = {X1, . . . , Xd} be a collection of features, and Y the class

label. If
∑d

i=1 [I(Xi;X1,i−1) − I(Xi;X1,i−1|Y )]
∑d

i=1 I(Xi;Y )
= 0 (II.7)

where X1,i = {X1, . . . , Xi}, then

I(X;Y ) =
d
∑

i=1

I(Xi;Y ). (II.8)

Proof. The proof of the theorem is given in [206].

The left hand side of (II.7) measures the ratio between the information

for discrimination contained in feature dependencies and that contained in the

features themselves. While this ratio is usually non-zero, it is generally small for

band-pass natural image features, and smallest in the locations where the features

are most discriminant. Hence, the approximation of

I(X;Y ) ≈
∑

k

I(Xk;Y ) (II.9)
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Figure II.2 Constancy of natural image statistics. Left: three images. Center: each

plot presents the histogram of the same coefficient from a wavelet decomposition

of the image on the left. Right: conditional histogram of the same coefficient,

conditioned on the value of its parent. Note the constancy of the shape of both

the marginal and conditional distributions across image classes.

is a sensible compromise between decision theoretic optimality and computational

parsimony. Note that this approximation does not assume that the features are

independently distributed, but simply that their dependencies are not informative

about the class. This approximation has been widely tested in computer vision

literature. For example, it has been shown that, for image classification problems,

accounting for dependencies between feature pairs can be beneficial but their ap-

pears to be little gain in considering larger conjunctions [209, 206]. The gains from

single feature to pairwise conjunctions are also not overwhelming. It has also been

shown that large classes of texture can be synthesized from models that only enforce

constraints on the marginal distributions of wavelet-like features [70, 232, 187]. In
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summary, the reduced infomax cost, in (II.9), enables a substantial computational

simplification: because the mutual informations on the right hand side of (II.9)

only require marginal density estimates, this computational cost can be drastically

reduced.

II.C.2 The generalized Gaussian distribution

In the previous section, we showed that by exploiting the dependence

properties of natural image features, the computation of the infomax principle can

be drastically simplified. In fact, one important idea this work seeks is, in the

spirit of Attneave, Barlow, and others [5, 6, 7], an interpretation of the optimal

saliency detector as a mechanism that exploits the regularities of the visual world

to implement the optimal solution to the saliency problem in a computationally

efficient manner. In this section, we continue to apply other well known statistics

of natural scenes to increase computational efficiency.

We start by noticing that the computation of (II.9) requires empirical

estimates of the marginal mutual information I(Xk;Y ). These, in turn, require

estimates of the marginal probability densities of features Xk, PXk
(x), and their

class-conditional probability densities, PXk|Y (x|i). Various studies in natural image

processing showed that the probability densities of band-pass image features are

well approximated by a generalized Gaussian distribution (GGD) [129, 54, 122, 34,

79, 16],

PX(x;α, β) =
β

2αΓ(1/β)
exp

{

−

(

|x|

α

)β
}

, (II.10)

where Γ(z) =
∫∞
0
e−ttz−1dt, t > 0, is the Gamma function, α a scale parameter,

and β a shape parameter. The parameter β controls the decaying rate from the

peak value, and defines a sub-family of the GGD (e.g. the Laplace family when

β = 1 or the Gaussian family when β = 2).

The GGD has various interesting properties. First, various low-complexity

methods exist for the estimation of the parameters (α, β), including the method
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Figure II.3 Examples of GGD fits obtained with the method of moments.

of moments [179], maximum likelihood (ML) [43] and minimum mean-square-

error [79]. In the implementation presented in this article, we have adopted the

method of moments for all parameter estimation, because it is computationally

more efficient. Under the method of moments, α and β are estimated through the

relationships

σ2 =
α2Γ( 3

β
)

Γ( 1
β
)

and κ =
Γ( 1

β
)Γ( 5

β
)

Γ2( 3
β
)

, (II.11)

where σ2 and κ are, respectively, the variance and kurtosis of X

σ2 = EX [(X − EX [X])2], and κ =
EX [(X − EX [X])4]

σ4
.

This method has been shown to produce good fits to natural images [79]. Fig-

ure II.3 shows two examples of the fits that we obtained, with this method, for the

responses of two Gabor filters.

Second, it leads to closed form solutions for various information theo-

retic quantities. For example, when both the class-conditional densities PX|Y (x|i)

and the marginal density PX(x) are well approximated by the GGD, the mutual

information I(X;Y ) has a closed form. This follows from (II.4)

I(X;Y ) =
∑

i

PY (i)KL
[

PX|Y (x|i)||PX(x)
]

,

and [43],

KL[PX(x;α1, β1)||PX(x;α2, β2)] =

log

(

β1α2Γ(1/β2)

β2α1Γ(1/β1)

)

+

(

α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
−

1

β1

. (II.12)
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It can also be shown that

H(X|Y = i) =
1

βi

+ log
2αiΓ( 1

βi
)

βi

(II.13)

where H(X|Y = i) = −
∫

PX|Y (x|i) logPX|Y (x|i)dx is the entropy of feature X

given its class label Y = i. These closed forms play an important role in the

efficient implementation of discriminant saliency. In the following, we present

top-down and bottom-up implementations of the discriminant saliency principle.

These implementations are used to produce all saliency detection results presented

in later chapters.

II.D Top-down discriminant saliency detector

We start with the implementation of a top-down discriminant saliency

detector aiming at object recognition. As we have previously discussed, the dis-

criminant saliency principle is intrinsically grounded on a classification problem,

and thus can be naturally applied to top-down saliency detection. In the context of

object recognition, the two classes of stimuli of discriminant saliency, the stimulus

of interest and the null hypothesis, are simply the object class to be recognized

and all other visual classes to be distinguished from the former in the visual recog-

nition problem. Note that this assignment is applicable for either the single-class

recognition problem which consists of an object class and a generic background

class, or a multi-class recognition problem where more than one object classes are

of interest. For the latter, a saliency detector is learned for each object class based

on a one-vs-all classification problem, which opposes the object class under con-

sideration to all other classes of interest. The design of a top-down discriminant

saliency detector has two components: feature selection and saliency detection.

II.D.1 Discriminant feature selection

We have seen in Section II.C that, given a space X of band-pass features

extracted from natural images, the best K-feature subset can be selected by com-
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puting the marginal mutual informations Mk = I(Y ;Xk), for all k, and selecting

the K features of largest Mk. Note that such a simple feature selection strategy

is possible also due to the fact that mutual information is always positive. The

marginal mutual informations can be computed efficiently with (II.4) and (II.12).

One final issue is that none of the feature selection costs considered so far is asym-

metric: in general, discrimination does not differentiate between situations where

1) the feature is present (strong responses) in the object class of interest, but

absent (weak response) in the null hypothesis, and 2) vice versa. Although both

cases lead to low probability of error, feature absence is less interesting for saliency,

which is an inherently asymmetric problem.

However, detecting if a feature is discriminant due to presence or absence

in the class of interest is usually not difficult. For generalized Gaussian features,

it suffices to note that feature absence produces a narrow GGD, close to a delta

function, while feature presence increases the variance of the distribution (see Fig-

ure II.4 for an example). Since the former has lower entropy than the latter,

discriminant features which are absent from the class of interest fail the test

H(Xk|Y = 1) > H(Xk|Y = 0), (II.14)

or, using (II.13),

log
α1

α0

>

(

1

β0

−
1

β1

)

+ log
Γ( 1

β0
)β1

Γ( 1
β1

)β0

. (II.15)

Such features should not be considered during feature selection.

II.D.2 Saliency detection

Given a set of selected salient features, in saliency detection, to be com-

patible with the biological plausibility and the central idea of discriminant saliency

that takes band-pass features as basic elements, we adopt the classical proposal

by Malik and Perona [119], which consists of a nonlinearity based on half-wave
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Figure II.4 Illustrations of the conditional marginal distributions (GGDs) for the

responses of a feature with horizontal bars (a), when (b) it is present (strong

responses) in the object class (Y = 1) but absent (weak responses) in the null

hypothesis (Y = 0), or (c) vice versa. Note that the absence of a feature always

leads to narrower GGDs than the presence of the feature.

rectification, leading to the saliency map

SD(l) =
2n
∑

j=1

wjx
2
j(l), (II.16)

where l is an image location, xj(l), j = 1, . . . , 2n a set of channels resulting from

half-wave rectification of the outputs of n saliency filters Fk, k = 1, . . . , n

x2k−1(l) = max[(−I ∗ Fk)(l), 0]

x2k(l) = max[(I ∗ Fk)(l), 0], (II.17)

I the input image, ∗ the convolution operator, and wk weights which we set to the

marginal mutual information. Salient locations are then located on the saliency

map SD by feeding it to a non-maximum suppression module, which has been

shown to be prevalent in biological vision [154, 106, 149, 104]. In particular, the

location of largest saliency is found, and its spatial scale set to the size of the

region of support of the saliency filter with strongest response at that location. All

neighbors within a circle of radius determined by this scale are then suppressed

(set to zero) and the process is iterated. The overall procedure is illustrated in Fig-

ure II.5. We emphasize that, with respect to the Malik-Perona model, this saliency
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Figure II.5 Implementation of the top-down discriminant saliency detector.

detector contains a simple but very significant conceptual difference: both filters

Fk and pooling weights w are chosen to maximize discrimination between the class

of interest and the all class.

Determining the number of salient features

One parameter, required for the implementation of the top-down dis-

criminant saliency detector, is the number of features, or filters, to include in the

detector. To determine this parameter we start by noting that, if the output of a

saliency detector is highly informative about the presence (or the absence) of the

class of interest in its input images, it should be possible to classify the images

(as belonging to the class of interest or not) by classifying the associated saliency

maps. This suggests the use of a saliency map classifier as a means to determine

the optimal number of features, using standard cross-validation procedures. We

rely on a very simple saliency map classifier, based on a support vector machine

(SVM) [205], which is applied to the histogram of the saliency map of (II.16) (from

here on referred to as the saliency histogram) derived from each image. The accu-

racy of this classifier is also an objective measure of saliency detection performance

that can be used to compare different detectors.
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II.E Bottom-up implementation of discriminant saliency

As we have mentioned before, one nice property of discriminant saliency is

that, by changing the definitions of the stimulus of interest and the null hypothesis,

it can also be applied to bottom-up saliency detection. In this section, we consider

the implementation of a bottom-up discriminant saliency detector.

II.E.1 Center-surround saliency

Recall that bottom-up saliency is a stimulus-driven mechanism which is

memory free, and drives attention only by the properties of visual attributes in

a scene. Biological vision studies have shown that bottom-up saliency is tightly

connected to the the ubiquity of “center-surround” mechanisms in the early stages

of visual processing. A significant body of psychophysical evidence suggests that

an important role of this mechanism is to detect stimuli that are distinct from

the surrounding background. For example, it has long been established that the

simplest visual concepts, e.g. bars, can be highly salient when viewed against a

background of similar visual concepts, e.g. other bars, that differ from them only

in terms of low-level properties such as color or orientation. This center-surround

property has been recognized as one of the fundamental guiding principles for the

design of many psychophysical experiments, in the area of visual attention [195,

222, 225, 22, 64, 133, 143].

In addition to psychophysics, the same observations also emerged from

neurophysiological studies of human vision [108, 53, 81, 2, 28, 104, 144]. For

instance, anatomy studies of the primary visual cortex (V1) have shown that cells

from this part of the brain are highly sensitive to oriented edges falling inside

their receptive fields. In general, a cell in V1 fires vigorously when an edge of

a certain orientation angle (so called preferred orientation) is inside its receptive

field. However, the response of the same cell to the same orientation stimulus

can be significantly inhibited, or excited, when some other orientation stimulus is
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Figure II.6 Illustration of the discriminant center-surround saliency. Center and

surround windows are analyzed at each location to infer the discriminant power of

features at that location.

present immediately outside the receptive field [2, 104, 28, 102, 114].

Inspired by this evidence from biological vision, the center-surround for-

mulation of bottom-up saliency has been widely exploited for the design of com-

putational models for saliency (e.g., [88]). Interestingly, this center-surround for-

mulation is also plausible under the discriminant saliency definition, where the

background (surround) stimulus defines a null hypothesis, and salient visual fea-

tures are those that best discriminate a foreground (center) stimulus from that

null hypothesis. In particular, under the assumption that bottom-up saliency is

driven by linear filtering, the visual stimulus is first linearly decomposed into a set

of feature responses, and the saliency of each location is inferred from a sample

of these responses. In this discriminant center-surround saliency, we hypothesize

that the goal of the pre-attentive visual system is to optimally drive the deploy-

ment of attention and that, in the absence of high-level objectives, this reduces

the saliency of each location to how distinct it is from the surround background.

In decision-theoretic terms, it corresponds to 1) identifying the null hypothesis for

the saliency of a location with the set of feature responses that surround it, and

2) defining bottom-up saliency as optimal discrimination between the responses at

the location and its surround.

Mathematically, as illustrated in Figure II.6, discriminant saliency is mea-

sured by introducing two windows, W0
l and W1

l , at each location l of the visual

field. W1
l is an inner window that accounts for a center neighborhood, and W0

l
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an outer annulus that defines its surround . The responses of a pre-defined set

of d features, henceforth referred to as feature vectors, are measured at all image

locations within the two windows, and interpreted as observations drawn from

a random process X(l) = (X1(l), . . . , Xd(l)), of dimension d, conditioned on the

state of a binary class label Y (l) ∈ {0, 1}. The feature vector observed at location

j is denoted by x(j) = (x1(j), . . . , xd(j)), and feature vectors are independently

drawn from the class-conditional probability densities PX(l)|Y (l)(x|i). Learning is

supervised, in the sense that the assignment of feature vectors to classes is known:

x(j) is drawn from class Y (l) = 1 when j ∈ W1
l and from class Y (l) = 0 when

j ∈ W0
l . For this reason, class Y (l) = 1 is denoted as the center class and class

Y (l) = 0 as the surround class. Discriminant saliency defines the classification

problem that assigns the observed feature vectors x(j),∀j ∈ Wl = W0
l ∪W1

l , into

center and surround. The saliency judgement at an image location l is quantified

by the sum of marginal information of (II.9), i.e.

S(l) =
d
∑

k=1

Il(Xk;Y )

=
d
∑

k=1

1
∑

i=0

PY (l)(i) ·KL
[

PXk(l)|Y (l)(xk(l)|i)||PXk(l)(xk(l))
]

(II.18)

Note that the l subscript emphasizes the fact that the mutual information is defined

locally, within Wl. The function S(l) is referred to as the saliency map and saliency

detection consists of identifying the locations where (II.18) is maximal. These are

the most informative locations with respect to the discrimination between center

and surround. The overall implementation of the bottom-up saliency detector

is summarized in Figure II.7, whose components are described in detail in the

following sections.

II.E.2 Extraction of intensity and color features

As illustrated in Figure II.7, an input image is subject to a stage of

feature decomposition. The choice of a specific set of features is not crucial for the
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Figure II.7 Bottom-up discriminant saliency detector. The visual field is projected

into feature maps that account for color, intensity, orientation, scale, etc. Center

and surround windows are then analyzed at each location to infer the expected

classification confidence power of each feature at that location. Overall saliency is

defined as the sum of all feature saliency.

proposed saliency detector. We have obtained similar results with various types of

wavelet or Gabor decompositions. In this work, we rely on a feature decomposition

proposed in [88], which was loosely inspired by the earliest stages of biological visual

processing. This establishes a common ground for comparison with the previous

saliency literature. In this process, the input image is first decomposed into an
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intensity map (I), and four broadly-tuned color channels (R,G,B, and Y ),

I = (r + g + b)/3,

R = br̃ − (g̃ + b̃)/2c+,

G = bg̃ − (r̃ + b̃)/2c+,

B = bb̃− (̃r + g̃)/2c+,

Y = b(r̃ + g̃)/2 − |r̃ − g̃|/2c+,

where r̃ = r/I, g̃ = g/I, b̃ = b/I, and bxc+ = max(x, 0). The four color channels

are in turn combined into two color opponent channels, R − G for red/green and

B−Y for blue/yellow opponency. These and the intensity map are then convolved

with three Laplacian of Gaussian (LoG; also known as Mexican hat wavelet) filters,

l(x, y) = −
1

πσ4

(

1 −
x2 + y2

2σ2

)

exp

(

−
x2 + y2

2σ2

)

,

with central frequencies (ω = 1√
2πσ

) at 0.04, 0.08 and 0.16 cycles/pixel, to generate

nine feature channels.

II.E.3 Gabor wavelets

The second set of features adopted in the implementation are orientation

filters implemented by 2-D Gabor filters. A 2-D Gabor function is a sinusoid

modulated by a Gaussian,

g(x, y) = K exp(−π(a2(x− x0)
2
r + b2(y − y0)

2
r))

· exp(j(2πF0(x cosω0 + y sinω0) + P )), (II.19)

with

(x− x0)r = (x− x0) cos θ + (y − y0) sin θ

(y − y0)r = −(x− x0) sin θ + (y − y0) cos θ.

K, (a, b), θ, and (x0, y0) control the orientation and shape of the Gaussian envelope,

and (F0, ω0) and P the spatial frequency and phase of the sinusoidal carrier. These
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parameters are usually defined so as to produce a tiling of the space/frequency

volume.

It has been suggested that the linear components of simple cells in the

primary visual cortex (V1) of higher vertebrates can be modeled by 2-D Gabor

functions that satisfy certain neurophysiological constraints [38, 39, 124, 40, 109,

217, 41]. To produce an admissible wavelet basis, these Gabor functions are some-

times further constrained to have zero mean [112]. Gabor tilings have also been

shown to be complete [39] and optimal for image representation, in the sense of min-

imizing joint uncertainty in space and frequency [112]. Finally, it has been shown

that filters learned from natural images (including intensity, color and stereo),

by sparse coding or independent components analysis (ICA), tend to be Gabor-

like [146, 13, 78, 44, 203, 204].

In the context of discriminant saliency detection, our experience is that

the precise choice of the Gabor function does not influence the overall saliency

judgements in a significant manner. Rather than a particular wavelet, it appears

to be more important to apply the wavelet decomposition across a wide range of

scales, as these tend to produce different types of salient attributes. Figure II.8

shows an example of discriminant saliency for a texture from the Brodatz database.

It can be seen from the figure that, while at the coarsest scale (4th image from the

left) the parallelism between the two horizontal lines and the symmetry between

the two t-junctions on the left are deemed most salient, at the intermediate scale

(3rd image) the t-junction at the top-right of the image becomes more salient, and

at the finer scale (2nd image) the vertical bar located at the top-right of the image

becomes dominant. By combining the various scales according to (II.9) all these

attributes are deemed salient (see the rightmost saliency map in Figure II.8), even

though the top right t-junction and the symmetry between the other two appear

to dominate.

Therefore, in all experiments reported in this work, the Gabor decompo-

sition was implemented with a dictionary of zero-mean Gabor filters at 3 spatial
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Figure II.8 Saliency maps for a texture (leftmost image) at 3 different scales (center

images - fine to coarse scales from left to right), and the combined saliency map

(rightmost). Note: the saliency maps are gamma corrected for best viewing on

CRT displays.

scales (centered at frequencies of 0.08, 0.16, and 0.32 cycles/pixel) and 4 directions

(evenly spread from 0 to π)2. Its algorithmic implementation follows the work of

[123], and all Gabor channels are also subject to optimal least-squares denoising,

implemented with soft-thresholding [31].

II.E.4 Other parameters

Given the feature decomposition of an input image, its saliency map is

computed from (II.18), (II.4) and (II.12), with the parameters, α and β, of the

GGD distribution estimated through the method of moments (II.11). It is worth

to mention that the saliency detection performance does not depend critically on

this parameter, e.g. our preliminary experiments showed that arbitrarily setting

β = 1 produced qualitatively similar results.

The discriminant saliency detector has two free parameters: the size of

the center and the surround windows. The choice of these two parameters is guided

by available evidence from psychophysics and neurophysiology, where it is known

that 1) human percepts of saliency depend on the density and size of the items

in the display [144, 104], and 2) the strength of neural response is a function of

2Following the tradition of the image processing and computational modeling literatures, we measure
all filter frequencies in units of “cycles/pixel (cpp)”. For a given set of viewing conditions, these can
be converted to the “cycle/degree of visual angle (cpd)” more commonly used in psychophysics. For
example, in all psychophysics experiments discussed later, the viewing conditions dictate a conversion
rate of 30 pixels/degree of visual angle. In this case, the frequencies of these Gabor filters are equivalent
to 2.5, 5, and 10 cpd.
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the stimulus that falls in the center and surround areas of the receptive field of a

neuron [104, 2, 28, 114]. In particular, we mimic the common practice of making

the size of the display items comparable to that of the classical receptive field

(CRF) of V1 cells (see, e.g., [195, 81]), by setting the size of the center window to

a value comparable to the size of the display items.

With respect to the surround, it is known that 1) pop-out only occurs

when this area covers enough display items [144], and 2) there is a limit on the

spatial extent of the underlying neural connections [104, 2, 28, 114]. Considering

this biological evidence, the surround window was made 6 times larger than the

center, at all image locations. Preliminary experimentation with these parameters

has shown that the saliency results are not significantly affected by variations

around the parameter values adopted.

Finally, to improve their intelligibility, the saliency maps shown in all

figures were subject to smoothing, contrast enhancement (by squaring), and a

normalization that maps the saliency value to the interval [0, 1]. This implies that

absolute saliency values are not comparable across displays, but only within each

saliency map.
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We have, so far, considered efficient computer implementations of the

discriminant saliency detectors. In a broad sense, the biological plausibility for the

framework of discriminant saliency comes from the fact that its implementations

(in Figure II.5 and Figure II.7) are compatible with most popular models for

the early stages of biological vision, which consist of a multi-resolution image

decomposition followed by some type of nonlinearity, and feature pooling [14, 119,

167, 106, 88, 219, 188, 59, 110]. For example, the central idea of discriminant

saliency that the basic elements of saliency are features is fully consistent with

the adoption of a multi-resolution decomposition as a front-end in these low-level

vision models. The pooling of feature maps in the saliency measure of (II.16) and

(II.18), can also be easily mapped into neural hardware by encoding them as firing

rates of the pooled cells. Therefore, the remaining question is whether the saliency

measures, i.e. the mutual information of (II.4), is biologically plausible. In the

following sections, we will show that it is completely compatible with the widely

accepted neural structures of early visual processing.

III.A Network representation of discriminant saliency

III.A.1 Maximum a posteriori (MAP) estimation for mutual informa-

tion

In Chapter II, we saw that the bulk of the computations of discriminant

saliency is based on the mutual information I(X;Y ) between a feature X and

class label Y . We have also seen that, under the GGD assumption and parame-

ter estimation with the method of moments, I(X;Y ) can be computed efficiently

with (II.4) and (II.12). In this section, we consider the alternative of maximum a

posteriori (MAP) estimation. We note that, for natural images, the shape parame-

ter β is constrained to a range of values (in the vicinity of 1) that guarantees sparse

distributions. The fact that, in the GGD, these values only change the exponent

of |x|, indicates that a precise estimate of β is not critical. We have confirmed this
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with a number of preliminary experiments, which have shown that assuming β = 1

(Laplacian distribution) does not produce qualitatively significant differences from

those achieved with the estimate of (II.11). Hence, in the following derivation, we

assume that the shape parameter β of a GGD is known, and consider the computa-

tion of I(X;Y ) based on the estimate of the scale parameter α. When the sample

size is small, accurate estimates frequently require some form of regularization,

which can be implemented with recourse to Bayesian procedures. The parameter

α is considered a random variable, and a distribution Pα(α) introduced to account

for prior beliefs in its configurations. Conjugate priors are a convenient choice,

that produces simple estimators which enforce intuitive regularization. It turns

out that, for the GGD, it is easier to work with the inverse scale than the scale

itself.

Lemma 1. Let θ = 1
αβ be the inverse scale parameter of the GGD. The conjugate

prior for θ is a Gamma distribution

Pθ(θ) = Gamma

(

θ, 1 +
η

β
, ν

)

=
ν1+η/β

Γ(1 + η/β)
θη/βe−νθ, (III.1)

whose shape and scale are controlled by hyper-parameters η and ν, respectively.

Under this prior, the maximum a posteriori (MAP) probability estimate of α,

with respect to a sample D = {x(1), . . . , x(n)} of independent observations drawn

from (II.10), is

α̂MAP =

[

1

κ

(

n
∑

j=1

|x(j)|β + ν

)]1/β

, (III.2)

with κ = n+η
β

.

Proof. The likelihood of the sample D = {x(1), . . . , x(n)} given θ is

PX|θ(D|θ) = Πn
j=1PX|θ(x(j)|θ) =

(

βθ1/β

2Γ(1/β)

)n

exp

(

−θ
n
∑

j=1

|x(j)|β

)

.
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For the Gamma prior, application of Bayes rule leads to the posterior

Pθ|X(θ|D) =
PX|θ(D|θ)Pθ(θ)

∫

θ
PX|θ(D|θ)Pθ(θ)dθ

=
1

Z
θ(n+η)/β exp

(

−(
n
∑

j=1

|x(j)|β + ν)θ

)

,

where Z is a normalization constant that does not depend on θ. Since this is a

Gamma distribution, (III.1) is a conjugate prior for θ. Setting the derivative of

logPθ|X(θ|D) with respect to θ to zero1, it follows that the MAP estimate is

θ̂MAP =
n+ η

β

(

n
∑

j=1

|x(j)|β + ν

)−1

.

Applying the change of variable from θ to α, leads to the MAP estimate of α,

α̂MAP =

[

1

κ

(

n
∑

j=1

|x(j)|β + ν

)]1/β

.

Given this estimate, for each of the classes, estimates of the posterior

class probabilities PY |X(c|x), c ∈ {0, 1} can be computed as follows.

Lemma 2. For a binary classification problem, with generalized Gaussian class-

conditional distributions PX|Y (x|c) of parameters (αc, βc), c ∈ {0, 1}, the posterior

distribution for class c = 0 is

PY |X(0|x) = s

[

(

|x|

α1

)β1

−

(

|x|

α0

)β0

−K

]

, (III.3)

where

K = log a+ log π + T, (III.4)

a = α0/α1, (III.5)

π =
π1

π0

(III.6)

T = log

(

β1Γ( 1
β0

)

β0Γ( 1
β1

)

)

, πc = PY (c), c ∈ {0, 1}, are the prior probabilities for the two

classes, and s(x) = (1 + e−x)−1 is a sigmoid.

1It can also be shown that the second order derivative is non-negative, and strictly positive for θ > 0.
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Proof. Using Bayes rule and (II.10),

PY |X(0|x) =
PX|Y (x|0)PY (0)

PX|Y (x|0)PY (0) + PX|Y (x|1)PY (1)

=
1

1 +
PX|Y (x|1)PY (1)

PX|Y (x|0)PY (0)

=
1

1 +
β1π1α0Γ( 1

β0
)

β0π0α1Γ( 1
β1

)

exp

{

−
(

|x|
α1

)β1
}

exp

{

−
(

|x|
α0

)β0
}

=
1

1 + exp

(

(

|x|
α0

)β0

−
(

|x|
α1

)β1

+K

) , (III.7)

where K = log a + log π + T , a = α0/α1, π = π1

π0
, T = log

(

β1Γ( 1
β0

)

β0Γ( 1
β1

)

)

. The lemma

follows from the definition of the sigmoid, s(x) = (1 + e−x)−1.

The combination of these two lemmas, and some information theoretic

manipulation, lead to the desired estimates of the mutual information of I(X;Y ).

Theorem 2. Consider a binary classification problem with generalized Gaussian

class-conditional distributions PX|Y (x|i) of parameters (αi, βi), i ∈ {0, 1}, where βi

is known and αi is estimated, according to (III.2), from two samples, D0 for class

Y = 0 and D1 for class Y = 1. The mutual information I(X;Y ) is,

I(X;Y ) =
1

|D|

∑

x∈D
φ[g(x)], (III.8)

with D = D0 ∪ D1,

φ(x) = s(x+ log π) log
s(x+ log π)

π1

+ s(−x− log π) log
s(−x− log π)

π0

, (III.9)

s(x) = (1 + e−x)−1 is a sigmoid function, and

g(x) = log
PX|Y (x|1)

PX|Y (x|0)
= ψ(x; Φ0) − ψ(x; Φ1) + log a+ T, (III.10)

where

ψ(x; Φc) =
|x|βc

ξc
, (III.11)

ξc =
1

κc

(

νc +
∑

k∈Dc

|x(k)|βc

)

, (III.12)
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Φc = (κc, νc)
T is the vector of prior hyperparameters of class c, as defined in

Lemma 1, and π, a and T are given in Lemma 2.

Proof. Let

g(x) = log
PX|Y (x|1)

PX|Y (x|0)
(III.13)

=

(

|x|

α0

)β0

−

(

|x|

α1

)β1

+ log a+ T,

(III.10) follows from substituting α0 and α1 with their MAP estimates of (III.2).

Combining with (III.3) of Lemma 2 leads to

PY |X(1|x) = s[g(x) + log π],

and

PY |X(0|x) = s[−g(x) − log π].

From the definition of mutual information,

I(X;Y ) = EX

[

∑

i

PY |X(i|x) log
PY |X(i|x)

PY (i)

]

,

it follows that

I(X;Y ) = EX {φ[g(x)]} , (III.14)

with φ(x) defined in (III.9). Given the set of feature responses x ∈ D = D0 ∪ D1,

(III.14) can be estimated empirically by replacing expectation with sample means,

i.e.

I(X;Y ) =
1

|D|

∑

x∈D
φ[g(x)], (III.15)

where the summation pools all feature response over the two sample sets.

III.B Neurophysiological plausiblity

To analyze the biological plausibility of the computations of mutual in-

formation, we note that for the values of a (defined in (III.5)) typical of natural
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Figure III.1 A network representation of the computation of mutual information,

I(X,Y ), between feature X and its class label Y .

image patches (a ≈ 1), the computations of Theorem 2 can be implemented with

the network of Figure III.1. In this section, we show that this is consistent with

a number of well known properties of the neurophysiology of pre-attentive vision,

particularly, the standard neural architecture of the primary visual cortex (V1).

III.B.1 Standard neural architecture of V1

The studies of biological vision have shown that early vision occurs mostly

in V1, where cells are usually classified as simple and complex [80, 186, 26]. Classi-

cal studies focused on stimuli incident on the cell’s receptive field, and simple cells

were modeled as cascades of a linear filter and a rectifying non-linearity [132, 92]

(as illustrated in Figure III.2 (a)). More recently, extensive physiological record-

ings have shown that simple cell responses can be strongly non-linear, including

effects such as saturation [27], orientation masking [185], and cross-orientation

suppression [17]. To explain these observations, an alternative view of simple
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Figure III.2 Classical (a) and divisively normalized (b) models of simple cells in

primary visual cortex.

cell response has emerged over the last two decades. Under this view, all of the

above non-linearities are explained by the ability of V1 neurons to perform gain

control [71]. Besides expanding their dynamic range, gain control enables simple

cells to scale orientation tuning with contrast, i.e. to maintain a constant ratio

between responses to stimulus of different orientations, independently of stimulus

contrast [185, 27]. The implementation of this gain control requires an additional

stage of divisive normalization of the cell response by that of others [71, 27, 173],

as illustrated in Figure III.2 (b). The basic idea is to normalize the classical cell

response through the division of its output by the pooled responses of a number

of other cells, i.e.

x′ =
x

σ +
∑

j∈N wjx(j)
(III.16)

where x is the classical response, N the cell’s pooling neighborhood, wj a weight

assigned to x(j) within the neighborhood, and σ a regularization constant that

controls the influence of N on the normalized firing rate x′. Note that (assuming

σ �
∑

j∈N wjx(j)), as stimulus contrast increases, the same happens to the de-

nominator of (III.16), and the cell response is divisively suppressed. Overall, the

classical linear stage defines cell selectivity (e.g. orientation tuning), and the divi-

sive stage guarantees that this selectivity holds over a large dynamic range of the

cell’s input. This enables the cell to significantly extend its input range, without

a proportional increase in energy consumption.

In addition to simple cells, there is another type of cell in V1, named
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complex cell. Complex cells are orientation sensitive but location invariant, i.e.

each complex cell responses to edges of a certain orientation within a large recep-

tive field, regardless of the exact location. Complex cells are frequently modeled

as units that pool squared and half-rectified outputs of simple cells with similar

orientation, the energy model proposed by Adelson and Bergen [1]. We refer to

the combination of complex and divisively normalized simple cells as the standard

V1 architecture [26].

III.B.2 Neurophysiological plausibility of the MI network

It follows from Theorem 2 that the computations of mutual information,

represented by the network of Figure III.1, are fully compatible with the stan-

dard architecture of V1. The theorem decomposes the computation of mutual

information into three basic operations: (III.11) divisively normalizes each fea-

ture response by the responses of the feature in the sample Dc, (III.10) computes

the differential between the responses divisively normalized by the two samples,

and (III.8) pools this differential response across the total sample D, after applica-

tion of the non-linearity φ(x) of (III.9). In general, the shape of φ(x) changes with

the prior probabilities of the class label Y , πi, i ∈ {0, 1}. In Bayes decision theory,

different prior choices correspond to different cost structures. Although it would

be interesting to consider an asymmetric setting when the classification problem

is cost-sensitive, in this work, we consider a symmetric cost structure with equal

prior probabilities, π0 = π1 = 1/2. Under this assumption, φ(x) of (III.9) can be

simplified as

φ(x;π1 = 0.5) = s(x) log s(x) + s(−x) log s(−x) + log(2) (III.17)

As shown in Figure III.3, this non-linearity is very close to a hard-limited version

of the quadratic function,

φ̃(x) = 0.07x2. (III.18)
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Figure III.3 Complex cell nonlinearity. φ(x;π1 = 0.5) and its approximation by a

quadratic function φ̃(x).

This quadratic form conforms to the quadratic non-linearity advocated by the

energy model of complex cells [1].

If the step of (III.10) is omitted, these are really just the computations of

the standard V1 architecture. This is probably best understood by momentarily

disregarding the top branch (dashed box) in the first layer of the MI network, which

accounts for the contribution of sample D0. The remaining network are exactly

the standard V1 architecture: a stage of simple cells, divisively normalized by the

outputs of their peers, subject to rectification by φ(·) and pooled, in a manner akin

to the classical energy model of complex cells. The implementation of the complete

network simply requires the replacement of the divisively normalized simple cell

by a cell which is differentially divisively normalized by the outputs of the cells

belonging to D0 and D1.

III.C Statistical inference in V1

In addition to proving the biological plausibility of discriminant saliency,

the consistency between the discriminant saliency computations and the basic neu-

ral architecture of V1 also offers a holistic functional justification for V1: that V1
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has the capability to optimally detect salient locations in the visual field, when

optimality is defined in a decision-theoretic sense and certain (sensible) approx-

imations are allowed, for the sake of computational parsimony. Obviously, it is

not likely that the whole of V1 would be uniquely devoted to saliency. This raises

the question of whether the computational architecture discussed so far could be

applied to the solution of generic inference problems. Answering this question, in

the most general form, requires the derivation of a functional justification for the

building blocks (cells) that compose V1. In what follows, we show that such a jus-

tification is indeed possible, but requires a minor extension of the current simple

cell model. We show, however, that under this extension the cells of the stan-

dard V1 architecture perform the fundamental operations of statistical inference,

for processes that conform to the statistics of natural images. We then discuss

some interesting consequences of this finding.

III.C.1 Extended simple cell model

In the discussion above, the optimality of the standard V1 architecture

for the maximization of (III.8) requires a ≈ 1 in (III.5). While this approximation

is acceptable for the saliency problem, it is possible to make the statistical inter-

pretation of the saliency network of Figure III.1 exact . In fact, this only requires

absorbing the two components of log a into ψ(x; Φ0) and ψ(x; Φ1), i.e. redefining

these quantities as

ψ̃(x; Φc) =
|x|βc

ξc
+ logαc. (III.19)

Combining (II.10), (III.2), and (III.11) it is straightforward to show that,

for generalized Gaussian stimuli, (III.19) is, up to a normalization constant, the

estimate of

− logPX|Y (x|c) (III.20)

resulting from the MAP estimation of the scale parameter αc. Physiologically, the

implementation of (III.19) requires a slight extension of the current standard simple
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Figure III.4 Extension of the standard simple cell model that makes the proba-

bilistic interpretation of the standard V1 architecture, summarized by Table III.1,

exact. a) The log of the contrast α that (divisively) normalizes the cell response

is added to it. b) The cell’s curve of response has slope proportional to 1/α and a

shift to the right that is approximately linear in α.

cell model, which is depicted in Figure III.4. This extension consists of adding the

log of the normalizing contrast αc to the output of the cell, complementing the gain

modulation of divisive normalization with a rightward shift of the response curve

by αc (log 1/αc)
1/βc . For the (small) values of αc typically found in natural scenes

this shift is approximately linear in αc. This extension is compatible with existing

cell recording data [75, 30, 45] and there is even evidence that, when adaptation is

considered, a shift occurs and is indeed proportional to the normalizing contrast

(constant shifts of log contrast for multiplicative contrast increases) [145].

III.C.2 Fundamental operations of statistical inference

The existence of a one-to-one mapping between (III.19) and (III.20) is

significant in the sense of showing that simple cells can be interpreted as proba-

bilistic inference units, tailored to the statistics of natural stimuli. In fact, revisit-

ing (III.8) after this modification, reveals that 1) all components of the standard V1

architecture have a statistical interpretation, and 2) this interpretation covers the
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three fundamental operations of statistical inference: probability inference, decision

rules, and feature selection. The fundamental operation of statistical learning, pa-

rameter estimation, is also performed within the architecture, through the divisive

normalization subjacent to all computations.

The statistical role of the different cell types is summarized in Table III.1,

which suggests a clear functional distinction between simple and complex cells.

While simple cells assess probabilities , differential simple cells implement decision

rules , and complex cells are feature detectors. Physiologically, this is consistent

with most aspects of the existing simple/complex cell dichotomy, e.g. the lack of

location and polarity sensitivity of complex cells, but suggests a novel refinement of

simple cells into two sub-classes: simple cells and differential simple cells. Simple

cells conform to the currently accepted model, which is well known to explain

most aspects of cell response within the classical receptive field (CRF) [173, 28].

Differential simple cells include additional divisive normalization from a region

external to the CRF. They could explain the well documented observation that

many cells are modulated by stimuli that fall outside this region [183, 175, 113, 28].

Note, in particular, that the subtraction of ψ̃(x; Φ1) from ψ̃(x; Φ0) can be either

excitatory or inhibitory, depending on the stimulus contrasts inside and outside the

CRF. The availability of two independent mechanisms to control the responses from

the two regions appears necessary to explain the recordings from cells that exhibit

this behavior. We intend to investigate this issue in detail, in future research.

Overall, the taxonomy of Table III.1 assigns much more credit to simple

cells than simply performing signal processing operations, such as filtering and gain

control. In fact, it suggests that the central operation for learning within V1 is the

divisive normalization that takes place in these cells, either in the log-likelihood

form of (III.19) or the log-likelihood ratio form of (III.10). The coincidence that

divisive normalization also solves the signal processing challenge of gain control

is an extremely fortunate one, arguably too fortunate for evolution to pass on

by. At a more generic level, the taxonomy of Table III.1 also makes a compelling
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Table III.1 V1 cells implement the atomic computations of statistical inference

under the assumption of GGD statistics. All operations are based on empirical

probability estimates derived from the regions used for divisive normalization. The

computations are exact for the extended simple cell model of Figure III.4.

.
cell type computation function description

simple ψ̃(x; Φc) − logPX|Y (x|c) negative log-likelihood

simple differential ψ̃(x; Φ0) − ψ̃(x; Φ1) log
PX|Y (x|1)

PX|Y (x|0)
log likelihood ratio

complex H(Y ) − 〈φ(g(x))〉D I(X;Y ) mutual information

argument for the interpretation of brains as Bayesian inference engines, tuned to

the statistics of the natural world. Note, in particular, that the exact shapes of the

probability distributions of Table III.1 are determined by the MAP estimates of

their parameters. These estimates are, in turn, defined by the two sample sets D0

and D1, specified by the lateral connections of divisive normalization. It follows

that all probabilities could be computed with respect to distributions defined by

arbitrary regions of the visual field, by simply relying on alternative topologies

for these connections. Furthermore, since all computations are in the log domain,

operations such as Bayes rule or the chain rule of probability can be implemented

through simple pooling. Hence, in principle, the architecture could implement

optimal decisions for many other perceptual tasks.
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While physiological plausibility is important, an ultimate test for saliency

models is whether it explains the psychophysics of human saliency. In this chapter,

we address this question and demonstrate the ability of discriminant saliency to

predict the well known psychophysical properties of human saliency. Due to the

fact that there has been wider agreement on the fundamental properties of bottom-

up saliency than its top-down counterpart in the literature, in this work, we only

consider properties of human bottom-up attention. In particular, discriminant

saliency is evaluated in the context of measuring stimulus similarity, which has

been believed to play a critical role in guiding human saliency perception.

IV.A Stimulus similarity and saliency perception

We start with a brief review of the existing theories, in psychophysics,

for visual saliency and its relation to the perception of stimulus similarity. The

psychophysics of saliency and visual attention have been extensively studied in

psychology literature. These studies have shown that the human perception of

saliency in the visual field is mostly influenced by the interaction between the

visual stimuli at a location and those surrounding it. For example, a significant

body of psychophysical evidence indicates that the saliency mechanisms rely on

measures of local contrast (dissimilarity) of elementary features, like intensity,

color, or orientation, into which the visual stimulus is decomposed. Such contrast

can produce perceptual phenomena such as texture segmentation [11, 12, 95, 97,

147], target pop-out [190, 196, 138], or even grouping [10, 168].

Motivated by these observations, many theories of visual saliency and

attention mechanisms emphasize the importance of measuring stimulus similarities.

For example, it is argued in [48] that the efficiency of a visual search task can

be largely explained by measuring the similarity relationships both between the

target item and the surrounding non-target items, and between different types of

non-target items. The theory, however, did not dictate how the similarity could
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possibly be quantified, which had led to the historic debate on the correctness

of the theory [192, 49, 193]. Part of the debate was focused on the question:

how can stimulus similarity be measured, and precisely controlled, in the design of

visual search experiments? Apparently, the answer to this question is not trivial. It

requires a good understanding of each feature space, and is “likely to be reasonably

complicated” [222, 219].

Since it is hard to define a good measure of stimulus similarity, a conve-

nient compromise is to simply take absolute difference between feature responses

to two different stimuli (e.g. [88, 192]). Since this difference-based measure is

quite intuitive and likely to be biologically plausible, the models based on this

measure [88, 86] have become quite popular, and have been applied to saliency de-

tection in both static imagery and motion analysis, as well as to computer vision

problems such as robotics, or video compression [215, 182, 84, 153].While it has

been shown that the difference-based saliency model [88] can replicate some ba-

sic observations from psychophysics, it has significant limitations in four aspects.

First, the difference-based saliency measure implies that visual perception relies on

a linear measure of similarity. Such a measure does not account for the well known

properties of higher level human judgements of similarity, which tend not to be

symmetric or even compliant with Euclidean geometry [202, 162, 161]. Second, it

does not provide functional explanations for the biological computations in visual

processing. Third, the psychophysics of saliency offers strong evidence for the exis-

tence of both nonlinearities and asymmetries which are not easily reconciled with

this measure. Fourth, even though the center-surround hypothesis intrinsically

poses saliency as a classification problem that distinguishes center from surround,

there exists little basis on which to justify difference-based measures as optimal

in a classification sense. Although it is possible to overcome some of these lim-

itations by adding nonlinear dynamics to the saliency models [89, 87] to mimic

the known properties of pre-attentive vision, what is fundamentally missing in the

difference-based models is a generic principle behind the neural organization of
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pre-attentive vision, or more general, a computational principle under the entire

cognitive system.

In terms of general computational principles for perception systems, the

discriminant saliency measure proposed in this work is very promising: it is not

only decision-theoretically optimal and biologically plausible but also, more impor-

tantly, provides a functional justification for the neural organization of biological

vision. In the following sections, we show that the proposed discriminant saliency

consistently reproduces many human saliency behaviors. All the experiments are

conducted in the context of visual search, where subjects are asked to detect a

target object embedded in a distractor field on a display. It is shown that the

center-surround discriminant saliency detector makes not only qualitative, but also

quantitative predictions for the fundamental properties of human saliency in visual

search experiments. It is our belief that quantitative predictions are essential to

understand the biological plausibility of the discriminant saliency hypothesis. For

example, we will see that the proposed discriminant saliency not only predicts, but

also provides analytical explanations to each of the following properties:

1. while a target that is different from the distractors by a single feature “pops

out” to an observer, the same does not happen when the difference is by a

conjunction of two features.

2. the saliency perception of a target (among distractors) is nonlinear to the

stimulus contrast, i.e. there exist threshold and saturation effects with the

increase of the stimulus contrast between the target and the distractors.

3. saliency is affected by the similarity relationships between target and distrac-

tors, as well as between distractors. This influence is particularly interesting

for heterogeneous distractors.

4. orientation categorization exists in visual search.

5. The saliency perception is asymmetric, and the saliency asymmetries exist
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not only for the presence and absence of a feature, but also for the quanti-

tative difference of a shared feature between target and distractor, and the

asymmetries comply with Weber’s law.

IV.B Single and conjunctive feature search

One classical observation from visual search experiments is that for basic

features, such as color and orientation, the search for a target which differs from a

set of distractors by a single feature is efficient, i.e. the target “pops-out”. In such

case, the response time is very short and independent to the number of distractors.

However, the same does not occur when the difference is defined by a conjunction

of two basic features. In this case, the response time is much longer, and also

increases linearly to the number of items in the display1. Some examples of this

behaviour are shown in the top row of Figure IV.1, where a target differs from

a set of distractors in terms of (a) orientation, (b) color, and (c) a conjunction

of orientation and color (green right-tilted bar among green left-tilted and red

right-tilted bars). The saliency maps produced by discriminant saliency are shown

below each display. Note that, like human subjects, the detector produces a very

unambiguous judgement of saliency for single feature search ((a) and (b)), but is

unable to assign a high saliency to the conjunctive target in (c) (bar in the 4th line

and 4th column).

IV.B.1 Discussion

Various theories have been proposed in the literature to explain the dif-

ference between single and conjunctive searches [195, 48, 219, 210]. Among these

explanations, the feature integration theory (FIT) [195, 197], is probably the most

1Note that although there were experimental evidences showing that, in certain cases, searching for
conjunction of features could also be done efficiently [135, 191, 197, 221, 29], such efficient conjunctive
feature search is unlikely to be driven by a purely bottom-up mechanism. It is likely to be a result of
of top-down guidance, such as feature inhibition [197], activation [221, 219, 222], or both [137], which is
beyond the scope of the current study.
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(a) (b) (c)

Figure IV.1 Saliency output for single basic features (orientation (a) and color

(b)), and conjunctive features (c). Brightest regions are most salient.

influential one. The theory predicts that the visual stimulus is projected into fea-

ture maps that encode properties like color or orientation [222, 225]. Feature maps

are then combined into a master , or saliency [106], map that drives attention,

allowing top-down (recognition) processing to concentrate on a small region of the

visual field. The saliency map is scalar and only registers the degree of relevance

of each location to the search, not which features are responsible for it. Hence

a target defined by a basic feature is highly salient and “pops-out”, but a target

defined by the conjunction of features does not.

While the theory explains why search for a conjunctive target is hard, it

does not provide a computational explanation of why pre-attentive vision would

choose to disregard feature conjunctions. However, discriminant saliency justi-

fies this behavior, by explaining it as optimal, in a decision-theoretic sense, under

sensible approximations that exploit the regularities of natural stimuli to achieve

computational parsimony. Among these approximations, that of the mutual infor-

mation by a sum of marginal mutual informations in (II.9) is the most significant
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one. It suggests that to the degree that (II.7) holds for natural scene statistics, i.e.

that feature dependencies are not informative for discrimination of image classes,

restricting search to the analysis of individual feature maps has no loss of opti-

mality. The importance of feature dependencies to image classification has been

tested in [209, 206], which showed that accounting for dependencies between fea-

ture pairs can be beneficial, but there appears to be little gain in considering larger

conjunctions. While noticeable, the gains of pair-wise conjunctions over single fea-

tures are not overwhelming, even for full-blown image classification. In the case of

pre-attentive vision, by definition subject to tighter timing constraints, evolution

could have simply deemed the gains of processing conjunctions unworthy of the

inherent complexity.

IV.C Nonlinearity of saliency perception

Although the above judgements of pop-out are interesting, they are purely

qualitative, and therefore anecdotal. Given the simplicity of the displays, it is not

hard to conceive of other center-surround operations that could produce similar

results. For example, it has been shown that a difference-based saliency detec-

tor [88, 89] can easily replicate the above observation on single and conjunctive

feature search. To address this problem, we introduce an alternative evaluation

strategy, in this section, based on the comparison of quantitative predictions, made

by the saliency detector and available human data. It is our belief that quan-

titative predictions are essential for an objective comparison of different saliency

principles, as well as for an analytical explanation of the saliency mechanisms.

We start the quantitative study with a well known observation that hu-

man saliency perception is nonlinear to local feature contrast between target and

distractors [15, 152, 48, 134, 192, 219, 61, 211, 143, 148]. Among various visual

stimulus modalities in the early visual processing, we consider orientation stimuli

in this experiment simply because they are most frequently studied in the psycho-
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logical literature [80, 82, 92, 132, 42, 11, 12, 95, 97, 147, 190, 196, 138, 10, 168]. We

also notice that although it has been shown that the human perception of saliency

is nonlinear with respect to local orientation contrast (the orientation differences

between a target and the distractors) [139, 61, 224, 219, 110, 22, 121], most of the

early studies pursued only the threshold at which these events occur. Examples

include the threshold at which a (previously non-salient) target pops-out [61, 139],

two formerly indistinguishable textures segregate [110, 96], a “serial” visual search

becomes “parallel”, or vice versa [195, 224, 130]. In the context of objective eval-

uation, these studies are less interesting than a posterior set, which also measured

the saliency of pop-out targets above the detection threshold [141, 131, 159].

A direct quantitative measure of human saliency perception is, however,

not trivial. For this, Nothdurft [141] designed experiments where he compared

pop-out from local orientation differences with pop-out from luminance differences.

In particular, each display contained both a luminance and an orientation target

(shown against background fields of distractors). Subjects were asked to report

which of the two targets were perceived faster (more salient) in each display. The

experiment was repeated with different luminance and orientation contrasts, and

the luminance scaling was carefully calibrated to ensure linear increments at all

levels. The luminance of the target which produced an equal preference rating

for the two targets was taken as a measure of saliency for orientation difference.

Nothdurft showed that the saliency of a target increases with orientation contrast,

but in a non-linear manner, exhibiting both threshold and saturation effects: 1)

there exists a threshold below which the effect of pop-out vanishes, and 2) above

this threshold saliency increases rapidly with orientation contrast, saturating after

certain point. The overall relationship has a sigmoidal shape, with lower (upper)

threshold tl (tu).

Figure IV.2 (a) presents the results of this experiment, which are repro-

duced from [141], where the saliency perception of orientation is measured for a set

of displays with a homogeneous distractor field. We repeated this experiment by
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applying the discriminant saliency detector to the similar set of displays with only

orientation targets. In particular, each display contains a distractor field of iden-

tical bars with a random orientation, and a target which is defined by orientation

contrast (one example display is illustrated in Figure IV.1 (a)). The discriminant

saliency is measured at the target, and averaged across all displays with the same

orientation contrast. The result is presented in Figure IV.2 (b), where the average

discriminant saliency of the target is plotted as a function of the orientation con-

trast. Interestingly, like the human saliency curve shown in Figure IV.2 (a), the

discriminant saliency curve increases slowly when the orientation contrast is below

a lower threshold tl ≈ 10◦, rising rapidly afterwards, and then is saturated after the

upper threshold tu ≈ 40◦. This strong nonlinear behavior matches human saliency

perception, and suggests that, up to certain normalization factor2, the discrimi-

nant saliency provides a good quantitative prediction of human visual saliency. The

same experiment was repeated for a popular difference-based saliency model [89]3

which, as illustrated by Figure IV.2 (c), exhibited no quantitative compliance with

human performance.

IV.C.1 Discussion

There have been various explanations for the threshold and saturation

effect, but most of them are highly hypothetical. For example, Nothdurft [141]

speculated that it is due to some mechanism nonlinearly related to target contrast,

particularly, which reflects the nonlinear properties of orientation tuning profiles

of cortical cells. The authors in [131], on the other hand, explained the satura-

tion effect as the consequence of the fact that the orientation contrast leads to

the perception surface boundaries (in texture segmentation), whose strength, once

perceived, is almost independent of the changes in the magnitude of orientation

contract. To the best of our knowledge, there has been no previous attempt for an

2Note that an exactly numerical comparison of the two plots is not meaningful since saliency was
measured under two different units.

3Results obtained with the MATLAB implementation by [215].
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Figure IV.2 The nonlinearity of human saliency responses to orientation contrast

(reproduced from Figure 9 of Nothdurft (1993)) (a) is replicated by discriminant

saliency (b), but not by the model of Itti & Koch (2000) (c).

analytical explanation of the nonlinear behavior of saliency. Discriminant saliency,

however, offers such an explanation: the nonlinearity originates naturally from the

adoption of mutual information as a measure of stimulus contrast. This is intuitive

from the fact that given any pair of class-conditional feature distributions for a bi-

nary classification problem, the mutual information between the feature and the

class label is alway bounded between 0 and log 2. Figure IV.3 illustrates a simple

example for the mutual information measured for the case of 1-D Gaussian con-

ditional densities. Suppose the two class-conditional probability density functions

both follow Gaussian distribution with unit variance, i.e. PX|Y (x|0) = N (x, 0, 1)

and PX|Y (x|1) = N (x, µ, 1). The mean of the class Y = 0 is fixed at 0, and that

of the class Y = 1 is a free parameter µ (as illustrated in Figure IV.3(a)). The
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Figure IV.3 Illustration of the nonlinear nature of mutual information. (a) Two

class-conditional probability densities, each is a Gaussian with unit variance. The

Gaussian of class Y = 0, PX|Y (x|0), has a fixed mean at 0, while that of class

Y = 1, PX|Y (x|1), takes various mean values, determined by µ. (b) The mutual

information between feature and class label, I(X;Y ), for (a) is plotted as a function

of µ.

mutual information between random variables X and Y is plotted, as a function

of parameter µ, in Figure IV.3(b). We can see that mutual information exhibits

a strongly nonlinear behavior, which resembles the shape of the human saliency

perception curve.

We can also analyze this property more rigorously, by studying the com-

putations of the discriminant saliency. In fact, one can show that the nonlinearity

is a result of combining mutual information with the generalized Gaussian marginal

distributions. Recall in Chapter III, we have shown, through Theorem 2, that the

computations of mutual information can be implemented by the saliency network

of Figure III.1. We redraw this network in Figure IV.4, and present, in each box

in the figure, the outputs at the intermediate stages of the network, for the above

experiment on orientation contrast. The computation, at each stage, corresponds

respectively to (up to some constant) the computations of negative log-likelihood,

−log(PX|Y (x|1)) ∼ ψ(x) =
(

|x|
α1

)β1

, absolute log-likelihood ratio between the center

and the surround classes,
∣

∣

∣
log
(

PX|Y (x|1)
PX|Y (x|0)

)∣

∣

∣
= |g(x)|, conditional mutual informa-
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Figure IV.4 Illustration of the output at each stage of the discriminant saliency

network for the orientation contrast experiment.

tion, I(Y ;X = x) = φ[g(x)], and the discriminant saliency, S(X) = I(X;Y ). We

present, within each box, the average output of the corresponding stage at the

target as a function of orientation contrast, as well as the entire output for one

example display shown to the left of the network.

At least two interesting observations can be drawn by comparing these

outputs. First, the nonlinear behavior exists to a certain extent throughout the

network, however, it is most strongly exhibited after φ(x) whose functional shape

is shown (only for x > 0) to the right of the network. Second, among all these

outputs, the saliency output (in the upper-right box) is the one that resembles the

human saliency perception the most. This observation not only supports the plau-

sibility of the discriminant saliency hypothesis, but also rules out the possibility of

some other principles as driving principles for saliency. For example, the output
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of ψ(x) represents a previous proposal that defines saliency as the negative log-

likelihood of feature responses (also referred to as self-information) (e.g., [163, 24]).

Intuitively the proposal is quite plausible, but, as we can see from the figure that

ψ(x) responded strongly to both the target and the distractors in the example

display, and did not make the target stand out as it should. This is because log-

likelihood considers only individual feature response, but not the discrimination

between target and distractors, which in turn does not suppress distractors in the

display. The plot of ψ(x) also appeared to be quite noisy and unstable, which

does not replicate human saliency perception. Another possible principle, the ab-

solute log-likelihood-ratio (|g(x)|), considers the discrimination between target and

distractors, so it is more robust at eliminating distractors in the background and

responds only to the target. However, its response curve does not show a strong

nonlinearity. In this aspect, the transformation of φ(x) significantly increases the

nonlinearity of the responses, especially the saturation effect. The final pooling

stage smoothed the previous output, and produced the saliency measure which

resembles human saliency perception. These comparisons indicate that although

each component of the saliency network contributes to the saliency detection, none

of them alone is a biologically plausible solution for saliency.

IV.D Distractor heterogeneity and search surface

Besides similarity relationships between target and distractor, human

saliency perception is also affected by similarity between distractors, i.e. the ho-

mogeneity of the distractor field. For example, it is shown in [191] that search for a

blue target bar among a set of distractors with randomly mixed colors (red, green

and white), or for a horizontal target bar among a set of vertical, left diagonal

and right diagonal bars, is significantly slower than the controlled case, where the

distractors contain only one type of stimulus, i.e. they are homogeneous. It is

also reported in a letter search experiment [48] that, when the target is an upright
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“L” and distractors are “L”s rotated 90◦ clockwise or counterclockwise from the

target position, the slope of the response time (RT), i.e., the average search time

for each item in a display, is much steeper than that with all distractors rotated in

the same direction. Similar observations have also been seen by various research

groups (e.g., [130, 192, 139, 140, 141, 224, 222, 131, 210, 164]).

Using the same protocol as in the previous orientation contrast experi-

ment, Nothdurft [141] quantitatively measured the influence of heterogeneous dis-

tractors to human saliency percepts. In particular, he showed subjects the displays

with the target defined by the orientation contrast, as described before, but with

respect to a heterogeneous distractor field. The homogeneity of the distractors, i.e.

the orientation directions of the background bars, was varied by adding a constant

angle value (bg) when going from element to element along rows or columns in the

raster. The “target-distractor orientation contrast” was defined as the difference

in orientation between the actual target and a virtual background element at the

target’s position. Three examples of such displays are shown in Figure IV.5 (a)-

(c), for bg = 0◦, 10◦, 20◦ with a target-distractor orientation contrast of 40◦. The

human saliency perception curves resulting from this experiment are presented

in Figure IV.5 (d), and the discriminant saliency predictions on the same set of

displays are plotted in Figure IV.5 (e). It is clear that both the human saliency and

the discriminant saliency drop continuously and exhibit weaker threshold and sat-

uration effects, when the the distractor field becomes heterogeneous (plots marked

with bg = 10 and bg = 20). For bg = 20◦, both curves show only slight thresh-

old and saturation effects. Comparing with the two plots, we can see that the

discriminant saliency provides quantitatively similar behavior as human.

IV.D.1 Heterogeneity in an irrelevant dimension

Although it is in general true that saliency is significantly reduced when

the distractor field becomes heterogeneous, various visual search experiments (e.g.,

[191, 48]) have shown that search is not affected if the heterogeneity of the distrac-
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Figure IV.5 Example displays of different orientation variations of distractor bars

((a) bg = 0◦, (b) bg = 10◦, and (c) bg = 20◦), and the corresponding saliency

judgements from (d) human subjects (Northdurft, 1993a), and (e) discriminant

saliency, plotted as a function of orientation contrast.

tors exists only in an irrelevant dimension (the feature dimension that does not

differentiate the target and the distractors). For instance, in the display shown

in Figure IV.6 (a), since the target is different from the distractors in color (the

relevant dimention), the variation of the distractor field in orientation (irrelevant

dimension) does not affect human performance of the search for the target. The

experiment on the discriminant saliency also produces the same observation. This

is illustrated in Figure IV.6 (b), where the target pops out in the discriminant

saliency map.

IV.D.2 Discussion

To explain the influence of the distractor heterogeneity on the efficiency

of visual search, Treisman et al. [191] resorted to the Feature Integration The-

ory [195]. They argued that for search with heterogeneous distractors, a distractor
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(a) (b)

Figure IV.6 A display with background heterogeneity in an irrelevant dimension

(a) does not affect the discriminant saliency measure at the target (b).

contrasts not only with the target, but also with other distractors within the rele-

vant dimension, it is therefore necessary to locate the specific map for the target.

On the other hand, the more different maps are activated due to the heterogeneity

of the distractors, the more similar to the target the nearer distractor value is likely

to be, which makes the localization of the specific map for the target even harder.

The two factors together produce a slow search for target with heterogeneous dis-

tractors.

In another influential attentional engagement theory (AET) for visual

search, Duncan and Humphreys [48] from a more interesting point of view, ex-

plained the effects of heterogeneous distractors in a unifying framework based on

two types of stimulus similarities, target-nontarget (T-N) similarity and nontarget-

nontarget (N-N) similarity. They proposed that the two types of similarities affect

not only the complexity of the target template in a top-down processing, but also

the local perceptual grouping of the items in the bottom-up processing. Both a

highly complex target template and less grouped nontargets increase the search

time significantly. Hence, by manipulating T-N and N-N similarity, it is possible

to make a search task arbitrarily easy or arbitrarily difficult. In particular, they

hypothesized that the influence of T-N similarity and N-N similarity to the slope

of RT in a visual search task can be described as a continuous search surface in

a three-dimensional parameter space, which is illustrated in Figure IV.7 (a). The
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Figure IV.7 The search surface for stimulus similarities hypothesized by Duncan

& Humpreys (1989) (a) is reproduced by discriminant saliency (b).

search surface has the following four basic properties: 1) when the T-N similarity is

low, the saliency prediction is high, and the search is always highly efficient, which

is irrespective of N-N similarity (curve AC in the figure); 2) when N-N similarity

is maximal (i.e., the distractors are identical, or homogeneous), T-N similarity has

a relatively small effect (curve AB); 3) when when N-N similarity is reduced (i.e.,

the distractor field becomes heterogeneous), T-N similarity becomes more impor-

tant (curve CD); and 4) when T-N similarity is high, N-N similarity has a very

substantial effect (curve BD). Overall the worst performance happens when T-N

similarity is high and N-N similarity is low (point D).

Although describing the efficiency of a search task by the similarity rela-

tionships between stimuli is in general unquestionable, quantifying these similar-

ities is not trivial at all. Unfortunately, the AET theory [48] did not propose a

solution. However, without an objective measure of stimulus similarity, precisely

controlling the similarity between the target and the distractors, in the design of vi-

sual search experiments, becomes hard and often controversial (see, [192, 49, 193]).

As pointed out by Wolfe [221, 224], “the lack of a proper similarity measure also

raises practical difficulties for models of visual search and attention”.

This controversy, nevertheless, can be resolved by introducing mutual

information as a measure of stimulus similarity. As we have shown in the last ex-

periments that the discriminant saliency quantitatively predicted human saliency
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perceptions of orientation contrast for both homogeneous and heterogeneous dis-

tractors. In fact, under a simple assumption between saliency and search time, the

discriminant saliency prediction on the orientation contrasts (Figure IV.5 (e)) can

be shown to consistently replicate the search surface depicted in [48]. Considering

the close relationship between saliency judgement and search time [219, 88, 89, 157],

we assume that the slope of RT is qualitatively inversely proportional to saliency

magnitude4, and draw the curves of RT slope in the space spanned by the T-N

similarity (orientation contrast) and N-N similarity (variation of the distractor ho-

mogeneity) as in [48]. Noting the fact that RT slope saturated at certain saliency

level after targets “pop-out” [61], we also upper bound the saliency by a proper

threshold, before converting it to RT slope. The surface presented by the discrimi-

nant saliency on orientation stimulus is illustrated in Figure IV.7 (b). The surface

suggests that when the orientation contrast between the target and the distrac-

tors is large, i.e. low T-N similarity, the RT slope is small and hardly affected

by the background variation. The latter, however, affects the quality of search

significantly when the orientation contrast is small, i.e. high T-N similarity. It is

clear that orientation contrast plays a more significant role when the background

variation is large (e.g. bg = 20) than when the nontarget is homogeneous (bg = 0).

All these observations match the proposal in [48] and the search surface illustrated

in Figure IV.7 (a), suggesting that the mutual information measure adopted in the

discriminant saliency provides a competent similarity measure for pre-attentive

visual features.

The influence of distractor heterogeneity on mutual information can be in

fact intuitively explained. To show this, we consider the case where the target does

not change when the distractors become heterogeneous, and assume that at each

image location, the center window covers only one item (either a target or a distrac-

tor). At the location of the target, since the center window contains only the tar-

get, the distribution of the feature responses within this region remains unchanged

4Note that this approximation is only for illustration purpose. No claim is made about the quantitative
relationship between the saliency judgement and RT slope, which is beyond the scope of this work.
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when the distractor becomes heterogeneous. However, the heterogeneous distrac-

tors contained in the surround window generate less consistent feature responses,

which in turn increases the variance of feature distribution in the surround. The

two distributions, therefore, have larger overlap compared with the homogeneous

case. From the decision-theoretic standpoint, this decreases the discrimination be-

tween the two classes, and leads to a smaller mutual information, i.e. a less salient

target. The whole process can, again, be illustrated by a simple example, where

the mutual information, I(X;Y ), is computed for a binary classification problem

with Gaussian conditional distributions. As illustrated in Figure IV.8 (a), chang-

ing the distractor heterogeneity is equivalent to changing the variance σ2 of the

distribution P (x|0), while keeping its mean and the distribution P (x|1) fixed. The

plot of Figure IV.8 (b) shows that I(X;Y ) decreases significantly as σ2 increases.

On the other hand, a similar analysis can be applied to infer the saliency

of distractors. When both the center and the surround windows cover only dis-

tractors, the distributions of feature responses in the two windows, which used to

be identical in the homogeneous case, become different. This difference increases

the saliency (or mutual information) at each distractor. The distractor saliency

increase is interesting for visual search experiments, especially when the search of

a target is guided by bottom-up saliency cues. In such a task, if a target is the

only item whose saliency value is significantly greater than those of the distractors

in the display, the subject’s attention will be immediately directed to the target

location, which leads to a fast search. If, however, the saliency value of the distrac-

tors increases so that it is comparable to that of the target, the subject’s attention

is likely to be directed first to distractors before reaching the target, resulting in

a slow search. This suggests that, in visual search, the relative saliency value be-

tween the target and the distractors is more important than their absolute values.

In fact, in some cases, the heterogeneous distractors may increase the saliency of

the target, but it also increases the saliency value of distractors, which altogether

reduces the search efficiency. The next experiment illustrates such an example.
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Figure IV.8 Illustration of the effect of distractor heterogeneity on the mutual

information. (a) Two class-conditional probability densities, each is a Gaussian

with mean values at x = 0 and x = 3, respectively. The Gaussian of class Y = 1,

PX|Y (x|1), has a unit variance, while that of class Y = 0, PX|Y (x|0), takes various

variance values, determined by σ. (b) The mutual information between feature

and class label, I(X;Y ), for (a) is plotted as a function of σ2.

The displays used in this experiment are illustrated in Figure IV.9 (a)-(c),

with the target in the center of each display. The displays represent three different

target-distractor orientation configurations:

Homogeneous : Target: 0◦; distractors: 15◦. Distractors are homogeneous.

Tilted right Target: 0◦; distractors: 15◦, 30◦. Distractors are heterogeneous,

but all distractors are tilted to the right of the target orientation, i.e. in

orientation dimension, target orientation is linearly separable from those of

the distractors.

Flanking Target: 0◦; distractors: 15◦, −30◦. Distractors are heterogeneous, and

the target orientation is flanked by those of the distractors: half of the dis-

tractors are tilted to the left of the target orientation, and the other half to

the right.

Note that for the two heterogeneous configurations, half of the distractors have 30◦

difference in orientation from the target, which is larger than the 15◦ orientation

contrast in the homogeneous case. As suggested by Figure IV.2, increasing orien-
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tation contrast should increase the target saliency. This is confirmed by the plot

of Figure IV.9 (d), which shows that the discriminant saliency of the target for the

homogeneous case is significantly weaker than those for the heterogeneous cases.

However, the heterogeneity of distractors also increases the saliency of the distrac-

tors, and therefore reduces the efficiency of the search. This can be seen from

the saliency maps shown under each display of Figure IV.9. For the homogeneous

case (display (a)), the target stands out against a clear background, while for the

heterogeneous cases (displays (b) and (c)), the targets are embedded in more noisy

distractor fields, which thus are less evident than the former. This example shows

that although heterogeneous distractors may sometimes increase the saliency of

the target, they always increase the difficulty of visual search, which is consistent

with human experimental data [164].

Another interesting property of saliency can also be observed from this

experiment by comparing the saliency maps for display (b) and (c) of Figure IV.9.

Although both displays have heterogeneous distractors, the target in display (b)

shows a much stronger saliency peak than those of the distractors, representing an

easier search task. The target in display (c), however, has much weaker saliency

value than the distractors, indicating a difficult search task. Such an observation

has been widely reported in human experiments, and is frequently explained as

the linear separability of the target and the distractors in the relevant feature

dimension [196, 50, 51, 9, 224, 220, 164]. From the discriminant saliency point of

view, however, we can explain this property by measuring the heterogeneity of the

distractors. For the two displays, although the orientation differences between the

target and the distractors within each display are both 15◦ and 30◦, the orientation

difference between the two types of distractors in each display are very different:

15◦ for tilted right, but 45◦ for flanking. It is almost obvious that the distractors

in the flanking display produce higher saliency values than those in the tilted right

display, suggesting a much harder search task.
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Figure IV.9 Orientation flanking and linear separability.

IV.E Orientation categorization and coarse feature coding

Although orientation is undoubtedly one of the few basic features that

are coded in the early visual processing, and neurons are tuned to all orientation

angles [92, 93, 94], it seems that not all orientations are equally coded in pre-

attentive vision. For example, it was shown in [61] that given a fixed orientation

difference between target and homogeneous distractors, different configurations of

the orientations of the target and the distractos lead to different discriminability.

In [192], it was discovered that while the search of targets that are defined by con-
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junctions of “standard” features (such as vertical and horizontal in orientations, or

red and blue in color) is very efficient, search of “non-standard” conjunction target

gave a much steeper RT and more illusory conjunctions. Similar behavior was

also observed in [224] that although, in general, the efficiency of searching for an

orientation target declines when the orientation of the distractors becomes hetero-

geneous, the search can be significantly facilitated if the orientations of the target

and the distractors fall into some special patterns, for example, if the orientations

of the distractors could be grouped into categories which are different from that of

the target orientation. In particular, the authors in [224] suggested that there are

at least four orientation categories, namely “steep”, “shallow”, “tilted-left”, and

“tilted-right”, are coded in pre-attentive vision.

Figure IV.10 presents the three displays used in [224] to justify the “steep”

as an orientation category. In each display, the orientation differences between a

target (the central bar) and the set of heterogeneous distractors (with two differ-

ent orientations) are constants, namely 40◦ and 60◦. The displays are different,

therefore, only in terms of the orientation configurations listed below,

Steep Target: −10◦; distractors: −50◦, 50◦. Target is the only “steep” item.

Steepest Target: 10◦; distractors: −30◦, 70◦. Target is “steepest” but not the

only steep item

Steep-right Target: 20◦; distractors: −20◦, 80◦. Target is defined conjunctively

by “steep” and “tilted to the right”.

It was found in [224] that while most of the subjects had shallow target trial slopes

(less than 3.0 ms/item) for the “steep” condition, few of them could perform so

efficiently for the “steep-right” and “steepest” conditions. In other words, when

the target is the only steep item, the search is significantly more efficient than

it is in other geometrically equivalent conditions. To examine how discriminant

saliency predicts this property, we applied the saliency detector to these displays.

The resulting saliency maps are presented, under each display, in Figure IV.10.
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In the figure, we also present a bar plot of the saliency magnitude at each target

for the three displays. Consistent with human behavior, the saliency map for the

“steep” display shows a single dominant saliency peak at the target, while the

other two maps show saliency peaks at both the targets and the distractors, where

the saliency values of the targets are much less dominant than it is in the “steep”

case. This indicates that the search for the “steep” target is efficient, but that

for the others are not. The fact that the “steep” target has a significantly higher

saliency value than the other targets also conforms to human data.

IV.E.1 Discussion

One popular explanation for these observations is the coarse coding hy-

pothesis which states that only a few broadly tuned “standard” feature detectors

are available in the pre-attentive level. This hypothesis was first illustrated by

Treisman in her original work of feature integration theory as a drawing of a few

orientation feature maps [195], and was later formalized as a hypothesis [194]. The

hypothesis suggests that coarse coding be “a general property of vision in con-

ditions that preclude focused attention, such as search tasks under time pressure

and discrimination judgments with brief exposures” [192]. In [61, 62], the authors

argued that only two broadly-tuned orientation channels, one vertical and one

horizontal, are required to explain some properties of simple orientation tasks, al-

though they later discovered that more orientations seem to be necessary for some

other pre-attentive orientation processing [63]. On the other hand, in [224], the

channels tuning to the orientation categories were assumed to be coded addition-

ally to the continuous orientationally tuned channels in early vision. Although this

assumption makes it easier to explain the efficient search of a unique orientation

category, it raises practical difficulties for developing saliency models that can be

simulated on real images [219]. In the implementation of discriminant saliency, we

have followed Treisman’s proposal and decompose the features into four broadly

tuned color channels (red, green, blue and yellow), and four Gabor channels with
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Figure IV.10 Orientation categories.

different preferred orientations (vertical, horizontal, left and right diagonal orien-

tations). Details of this implementation were introduced in Section II.E. The fact

that this discriminant saliency implementation reproduces the orientation cate-

gorization experiment indicates that the assumption of the additional orientation

category channels in [224] is not necessary. What is more critical, in our opinion, is

the choice of a proper measure of stimulus similarity that explains basic properties

of human pre-attentive vision which, in this case, turns out to be the combination
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of decision-theoretic formulation of feature similarity with the proposal of coarse

coding.

One remaining issue is the relationship between the specific orientations

adopted in the current implementation and those available to the pre-attentive

visual system. The fact that the discriminant saliency detector performs well in

the above experiment of orientation categorization, however, does not necessarily

mean that the four orientations adopted in the detector coincide with the ones

deployed in human pre-attentive processing. Nonetheless, we believe that given

the connections between discriminant saliency network and the neural structures

in V1, it would be interesting to use the discriminant saliency detector as a tool

to study these underlying feature channels. This will require more evidence on the

ability of the detector to predict psychophysical and physiological observations of

human pre-attentive vision, and is worth future investigation.

IV.F Visual search asymmetries

One other classic hallmark of human saliency perception is its asymme-

tries in visual search tasks: while a target with some stimulus A “pops-out” in a

distractor field of another stimulus B, the saliency of the target vanishes when the

two stimuli are exchanged for the target and the distractors. This phenomenon was

first thoroughly documented by Treisman and her colleagues through a series of vi-

sual search experiments [198, 196]. They found that while, in general, the presence

in the target of a feature absent from the distractors produces pop-out, the reverse

(pop-out due to the absence, in the target, of a distractor feature) does not hold.

For example, for the pair of examples illustrated in the first row of Figure IV.11,

they showed that the search for the target “Q” on the left display, which differs

from the distractor “O”s by the presence of an additional feature (a vertical bar),

produces only a flat RT slope, but the search for the target “O” among “Q”s, on

the right display, is difficult and gives a steep RT slope. Other examples of search
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asymmetries, such as single bar versus pair of bars and vertical bar versus tilted

bar, are also illustrated in Figure IV.11. The study of search asymmetries has

been made into an important diagnostic tool in studying the pre-attentive features

in visual attention [198, 196, 223], such as orientation [196, 61, 224], color [198],

motion [166, 165], curvature [107], 3-D depth [52, 155, 107], and others (see, [222]).

It worth to mention that there are possibly other sources of search asym-

metries, besides the presence versus absence of a basic feature. For example, it was

shown in [196] that it is easier to find deviations among canonical (or standard)

stimuli than vice versa, which could explain the observation of the search asym-

metry between a tilted item among vertical items and a vertical item among tilted

items. The authors of [58] also showed that subjects were faster to reject familiar,

normal letters than to reject unfamiliar, mirror-reversed letters. Hence, they were

faster to find the unfamiliar item among familiar items than vice versa. Similarly,

Nothdurft [142] presented evidence that it is easier to find the unfamiliar inverted

face among up-right faces than vice versa. Such search asymmetries have been

generalized to the argument that “novelty” should be regarded as a basic feature

(see, e.g., [91, 69, 216, 180, 120]). However, it is likely that these search asym-

metries involve higher level stages of visual processing, such as top-down learning,

and are beyond the scope of the current study, where we only consider comparisons

to search asymmetries caused by the presence and absence of the basic features.

As in previous experiments, we applied discriminant saliency to the set

of classic displays used in [196, 198], and present the resulting saliency maps under

each display in Figure IV.11. Interestingly, discriminant saliency exhibits strong

asymmetric behaviors. As can be seen from the saliency maps, there is always

a unique conspicuous saliency peak at the target location on the left displays,

indicating a “pop-out” effect. No such effect, however, is observed on the saliency

maps for the right displays.
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Figure IV.11 Examples of pop-out asymmetries for discriminant saliency. Left: a

target that differs from distractors by presence of a feature is very salient. Right:

a target that differs from distractors by absence of the same feature is much less

salient.

IV.F.1 Discussion

Consistent with the Feature Integration Theory, Treisman et al. [198]

argued that all these asymmetries can be explained by the presence and absence
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of a basic feature in the pre-attentive processing. In particular, when a target is

defined by the presence of an additional feature (absent in the distractors) that is

positively coded in pre-attentive vision, it generates unique activity on that feature

map, and hence can be detected without focused attention. On the other hand,

when the target is defined by the absence of a feature, the target feature must be

localized, therefore focused and serial scanning is required. While there are other

possible accounts of the search asymmetries(e.g., [61, 48, 210]), the explanation of

presence and absence of a feature has obtained a wide agreement [223].

Among all of the examples shown in Figure IV.11, the pair of examples

in the bottom row is particularly interesting. This search asymmetry was first

observed in [196], which showed that while a tilted bar is easy to find among a set

of vertical bars, a vertical bar among tilted bars is not. Such behavior of human

perception of orientation differences was observed by many others through visual

search experiments (e.g., [61, 224]). It is explained in [196] that the tilted orienta-

tion represents a deviating value from a standard or reference value represented by

the vertical orientation. The deviating stimulus produces substantial activity in

the standard channels, but is distinguished from the standards by the additional

activity it generates in detectors for a positively coded dimension of deviation from

the standards. Therefore, the asymmetry is due to the presence and absence of

the deviating stimuli. On the other hand, it is argued in [224] that this is due to

the fact that, preattentively, orientations were categorized as “steep”, “shallow”,

“tilted-left” or “tilted-right”. While both the vertical and the tilted item share the

category label “steep”, the vertical target is defined by its absence of the “tilted”

category.

Although varied in the assumptions of specific feature channels, all these

explanations seem to support the proposal of “coarse coding”. Implemented with

the “coarse coding” assumption, the discriminant saliency also gives a similar

explanation: the search asymmetry between tilted bar among vertical bars and

vertical bar among tilted bars comes from the fact that the tilted bar produces
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activity on the horizontal orientation filter, while the vertical bar does not. In other

words, it is the presence and absence of a horizontal feature which accounts for the

asymmetries. The fact that the asymmetries of discriminant saliency are consistent

with the asymmetries of visual search is quite interesting because the discriminant

saliency measures the similarity of the stimuli between the center and the surround

windows. This consistency not only indicates that the search of primitive visual

features is significantly affected by the similarities of the stimuli at the target and

the distractors, but also provides important evidences for the connections between

the asymmetry of similarity judgment [162, 202] and asymmetry of visual search.

The authors in [196] also discussed the possible connections between the two types

of asymmetries. However, due to the lack of a meaningful similarity measure, their

discussion was only hypothetical. In this work, the adoption of mutual information

as a measure of stimulus similarity bridges the two seemingly disjoint properties

of human perception.

To investigate, in more detail, the asymmetries of discriminant saliency,

we notice that it originates from the asymmetric changes of the distributions of

feature responses in the center and the surround window. The adoption of mutual

information for saliency makes it possible to capture these asymmetric changes.

This can be demonstrated by an experiment using the following two displays,

each of which contains two types of line stimuli, long and short vertical line seg-

ments. The long line segment is assigned to the target and the short ones to

the distractors in the display shown in Figure IV.12 (a), and vice versa for the

display of Figure IV.12 (b). The size of the center window of the discriminant

saliency detector was chosen such that, when placed at the target location, the

center window covers both the target and some of the distractors. To make the

demonstration more intuitive, only one vertical Gabor filter was used to compute

saliency. In Figure IV.12 (c), we plot the two conditional distributions of the filter

responses, which were estimated from the center and the surround windows at the

target location for the display of Figure IV.12 (a). Similarly, the two conditional
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Figure IV.12 Asymmetry of saliency measure for a target of a longer line segment

(a) and a shorter line segment (b) from background of line segments of the same

length. Plots (c) & (d) illustrate the estimated distributions of the responses of

a vertical Gabor filter at the target and the background for display (a) and (b)

respectively.

distributions at the target location for the display of Figure IV.12 (b) are plotted

in Figure IV.12 (d). Comparing the two plots, we can see that exchanging the

stimuli of the target and the distractor did not simply lead to a swap of the two

distributions of feature responses. Instead, it caused significant shape changes of

the distributions, indicating two distinct classification problems at the target lo-

cations of the two displays. Intuitively, the two conditional distributions of (c) are

more different than those of (d), which indicates an easier classification problem,

or a higher saliency value at the target for display (a) than (b). This asymmetry

is very well quantified by the discriminant saliency (0.0226 for (a) and 0.0121 for

(b)), another prediction consistent with human saliency behavior [196].

Compliance with Weber’s law

To explain the asymmetries between feature presence and absence, as well

as those between more and less of the quantitative change of a feature, Treisman

et al. proposed a pooled response and group-scanning hypothesis [190, 198, 196].

The hypothesis assumes that subjects check a pooled response to the relevant
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feature over a group of items, thus they are able to find the target if the pooled

response over a group containing the target becomes sufficiently larger than that

over a group containing only distractors. They also suggested that Weber’s law

determines the discriminability of groups of a given size when they do and do not

contain a target. This law states that the size of the just noticeable difference is

a constant proportion of the background activation level. According to Weber’s

law, with certain level of discriminability, subjects can compare groups of large

numbers of items when distractors produce a low level activity, but they can only

compare groups of smaller numbers of items, when the distractors produce a high

level of activity, in order to keep the same discriminability level. Scanning groups

of fewer items over the entire display requires more time than scanning groups of

larger numbers of items, which leads to the search asymmetries between more and

less of a feature as well as between its presence and absence. To show the evidence

that search asymmetries obey Weber’s law, Treisman et al. designed a set of

experiments (Experiment 1a in [196]) in which the subjects were presented with

displays, such as the one shown in Figure IV.13 (a), where the target (a vertical

bar) differed from the distractors (a set of identical vertical bars) only in terms of

its length. They showed that while interchanging the target and the distractors

led to asymmetry, the search time is approximately the same for a target either

longer or shorter than the distractors but of the same amount, when the length of

the distractor is fixed, i.e. obeying Weber’s law.

What is interesting is that the computations of discriminant saliency also

comply with Weber’s law. As we have seen in Chapter III, one important com-

putation of discriminant saliency is divisive normalization, |x(s)|β
1

|Ws|

∑

j∈Ws
|x(j)|β , which

normalizes the response of a filter location s by the responses, of the same feature,

at neighboring locations. Rewriting this term as
|x(s)|β− 1

|Ws|

∑

j∈Ws
|x(j)|β

1
|Ws|

∑

j∈Ws
|x(j)|β , we can see

it has exactly the form of Weber’s law. We repeated the Experiment 1a of [196]

described above with discriminant saliency, and confirmed the compliance with

Weber’s law. In Figure IV.13 (b), we present a scatter plot of the discriminant
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Figure IV.13 An example display (a) and performance of saliency detectors (dis-

criminant saliency (b) and the model of Itti & Koch (2000) (c)) on Treisman’s

Weber’s law experiment (Experiment 1a in [196]).

saliency measurements across the set of displays, as a function of the ratio be-

tween the difference of target/distractor length and distractor length. Each point

in the plot corresponds to the target saliency in one display, and the dashed line

shows that, like human perception, discriminant saliency follows Weber’s law: tar-

get saliency is approximately proportional to the difference of target/distractor

length, but subject to the normalization of the distractor length. For compari-

son, Figure IV.13 (c) presents the corresponding scatter plot for the model of [89],

which does not replicate human performance.

Following what we have been doing in the previous experiments, we ana-

lyze in the following how discriminant saliency changes as a function of the changes

of the target and distractor lengths. To simplify the computations without qualita-

tively changing the discriminant saliency measure, we used the following assump-

tions and approximations. First, in the GGD representation of feature responses,



87

we assume β = 1 for all GGD’s. Second, in the computation of discriminant

saliency, we used the fact that the nonlinear operation φ(x) of (III.9) can be (qual-

itatively) well approximated by a linear soft threshold operation, φ′(x),

φ′(x) = s0.35(0.14 ∗ x+ 0.35) + s0.35(−0.14 ∗ x+ 0.35). (IV.1)

This approximation is illustrated in Figure IV.14. Last, for simplicity, only one

Gabor feature (of vertical orientation) is assumed in the following derivation.
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Figure IV.14 The nonlinear operation φ(x) can be well approximated by a linear

soft threshold operation φ′(x).

As shown in Figure IV.14, when the change of the line length is small,

g(x) ∝ |x|
α0

− |x|
α1

of (III.10) falls mostly into the linear part of φ′(x), hence the

computation of saliency can be further approximated as

S(x) ≈ Ŝ(x) =< |g(x)| >W=

∣

∣

∣

∣

< |x| >W (
1

α0

−
1

α1

)

∣

∣

∣

∣

(IV.2)

where W = W0 ∩W1, < · >W means averaging over the neighborhood W , and α0

and α1 are estimated over the center and the surround by ML estimates,

α0 =< |x| >W0 , α1 =< |x| >W1 . (IV.3)

Noting that < |x| >W can be written as a linear combination of α0 and α1,

< |x| >W= τ · α0 + (1 − τ) · α1, (IV.4)
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with 0 < τ = size(surroundwindow)
size(centerwindow)+size(surroundwindow)

< 1, we rewrite Ŝ(x) as

Ŝ(x) = |[τα0 + (1 − τ)α1](1/α0 − 1/α1)|

= |2τ − 1 − τα0/α1 + (1 − τ)α1/α0| . (IV.5)

Assume that, in the above experiment, both the target and the distractor have

initial length L, which changes to L+ ∆L0 for distractor and L+ ∆L1 for target,

in each display. We also assume that, at the target location, the center window

covers not only the target, but also n neighboring distractors. Given the fact that

the Gabor feature is a linear filter, the following approximations can be used,

α0 ≈ K · (L+ ∆L0), (IV.6)

α1 ≈ K ·
L+ ∆L1 + n(L+ ∆L0)

n+ 1
, (IV.7)

whereK is a constant. The saliency approximation Ŝ(x) at the target, as a function

of the lengths of the distractor and the target, can be then written as

Ŝ(L+ ∆L0, L+ ∆L1)

=

∣

∣

∣

∣

2τ − 1 − τ
K · (L+ ∆L0)(n+ 1)

K · [(n+ 1)L+ ∆L1 + n∆L0]

+(1 − τ)
K · [(n+ 1)L+ ∆L1 + n∆L0]

K · (L+ ∆L0)(n+ 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2τ − 1 − τ
(1 + ∆L0

L
)(n+ 1)

n+ 1 + ∆L1

L
+ n∆L0

L

+ (1 − τ)
n+ 1 + ∆L1

L
+ n∆L0

L

(1 + ∆L0

L
)(n+ 1)

∣

∣

∣

∣

∣

let y0 = ∆L0

L
and y1 = ∆L1

L
, representing the relative length changes of the target

and the distractor, then

Ŝ(y0, y1) = |2τ − 1 − τ
(n+ 1)(1 + y0)

n+ 1 + y1 + ny0

+ (1 − τ)
n+ 1 + y1 + ny0

(n+ 1)(1 + y0)
|

=

∣

∣

∣

∣

y1 − y0

(n+ 1)(y0 + 1)
−

τ(y1 − y0)
2

(n+ 1)(y0 + 1)(ny0 + y1 + n+ 1)

∣

∣

∣

∣

. (IV.8)

The saliency representation in (IV.8) has some interesting properties.

First, when the distractor length is fixed, i.e. y0 = 0, it becomes

Ŝ(y1) =

∣

∣

∣

∣

y1

n+ 1
−

τy2
1

(n+ 1)(y1 + n+ 1)

∣

∣

∣

∣

, (IV.9)
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Figure IV.15 The target saliency Ŝ(y0) and Ŝ(y1).

which is plotted in Figure IV.15 (the solid line) for the parameters used in the

simulation (τ = 35/36 and n = 8). We can see that S(y1) is linear to the relative

change of the target length, and is also symmetric with respect to y1 = 0. This

is exactly compliant with the Weber’s law hypothesis in [196]. Second, if on the

other hand, we fix the target length, i.e. let y1 = 0, and only change the distractor

length, (IV.8) becomes

Ŝ(y0) =

∣

∣

∣

∣

y0

(n+ 1)(y0 + 1)
+

τy2
0

(n+ 1)(y0 + 1)(ny0 + n+ 1)

∣

∣

∣

∣

. (IV.10)

Drawing Ŝ(y0) in the same plot as Ŝ(y1) in Figure IV.15 (the dashed line), we

can clearly see the asymmetries of saliency. Considering two displays, where the

target and the distractor are exchanged from one to the other, they are equivalent

to increasing the lenth of the target by ∆L in one display, while increasing that

of the distractors by ∆L in the other diaplsy. The target saliency of the two

displays therefore corresponds to the values of Ŝ(y0) and Ŝ(y1) in Figure IV.15,

with the same ∆L/L on the x-axis. The plot indicates that the target saliency is

always higher when the target is longer than the distractor than the reverse, i.e.

an asymmetric behavior of discriminant saliency.

Finally, it is worth noting that the compliance of discriminant saliency
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with human search asymmetries provides a unified justification for the seemly dis-

joint observations from both neurophysiology and psychophysics, namely divisive

normalization and saliency asymmetries. These are, in some sense, the central

components of the neurophysiology of V1 and the psychophysics of visual search.

Divisive normalization explains a rich set of neural behaviors that cannot be ac-

commodated by the classic model of “linear filtering plus non-linearity”, search

asymmetries are one of the most heavily studied properties of visual search. Dis-

criminant saliency provides a unified functional justification to these observations:

optimal decision making, that exploits the statistical structure of natural images

to achieve computational efficiency, and is possible with biological hardware.

Group scanning theory

The derivation in the previous section provides another interesting prop-

erty of discriminant saliency that both (IV.9) and (IV.10) increases as the number

of distractors n, covered by the center window, decreases. In other words, reduc-

ing the size of the center window will always increase the saliency of the target so

that the search of the target becomes easier. Figure IV.16 plots Ŝ(y1) and Ŝ(y1)

for the following parameter settings: y1 = ∆L/L = −0.3, τ = 35/36 for Ŝ(y1),

and y0 = ∆L/L = −0.3, τ = 35/36 for Ŝ(y0). We can see that a short target

among long distractors can be as salient as a long target among short distractors,

if only the center window is small enough (e.g., n = 1). This property suggests

a strategy for search: start with a large center window (e.g., the whole display

as a group) to compute saliency, and then gradually reduce the size of the center

window until the saliency of the target “pops-out”. This strategy is, in fact, the

“group scanning” hypothesis suggested in [196]. The coincidence that discriminant

saliency supports not only the Weber’s law explanation of visual search, but also

the grouping scanning strategy confirms, once again, that discriminant saliency is

a biologically plausible measure of human saliency.
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Figure IV.16 Change of discriminant saliency as a function of the number of

distractors (n) covered by the center window.
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discriminant saliency
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We have seen, so far, that the discriminant saliency is 1) physiologically

plausible and 2) able to make accurate predictions of the psychophysical behaviors

of human saliency. This encourages us to examine its performance as a solution

for computer vision problems. In fact, in computer vision literature, it has re-

cently become quite popular to adopt saliency detectors as a front-end of object

recognition systems [56, 46, 73, 184]. In these applications, the use of saliency de-

tectors eliminates image regions that are not interesting for recognition, and often

significantly reduces the computational complexity of the recognition system.

Although it seems natural to adopt, in object recognition, top-down

saliency detectors which are expected to provide informative image regions for the

specific object to recognize, this has been rarely the case in computer vision. On

the contrary, the majority of the recognition systems in this literature use bottom-

up saliency detectors (e.g. [56, 46, 184, 111, 20, 32, 230, 158]). The frequently used

bottom-up detectors are, for example, Harris detector [68, 60, 127], scale saliency

detector [100], and MSER detector [125] (see Chapter I for an overview). Since

these detectors do not tie the optimality of saliency judgements to the specific

goal of recognition, the detected locations may not necessarily be informative or

discriminant for the objects to recognize.

In this chapter we report results of various experiments designed to char-

acterize the performance of the top-down discriminant saliency detector (described

in Section II.D), and compare it to alternative saliency principles adopted in com-

puter vision systems. In particular, the discriminant saliency detector (DSD) is

compared with some popular representatives from the literature, which we re-

fer to as classic saliency detectors: the scale saliency detector (SSD) [99], the

Harris-Laplace (HarrLap) [127], the Hessian-Laplace (HesLap) [127], and the max-

imally stable extremal region (MSER) detector [125]. The results presented for

SSD, HarrLap, HesLap and MSER were produced with the binaries available

from http://www.robots.ox.ac.uk/~timork/salscale.html and http://www.

robots.ox.ac.uk/~vgg/research/affine/detectors.html. The default param-
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eter settings, suggested by the authors, were used in all experiments.

V.A Detection of object categories

We start with a comparison on the problem of detecting object categories

in cluttered imagery.

V.A.1 Experimental set-up

This comparison is based on the popular Caltech image database1, using

the set-up proposed in [56]. In particular, six image classes, faces (435 images ),

motorbikes (800 images), airplanes (800 images), rear view of cars (800 images),

spotted-cats (200 images), and side view of cars (550 training and 170 test images)

were used as the class of interest (Y = 1). The Caltech class of “background”

images was used, in all cases, as the all class (Y = 0). Except for the class of car

side views, where explicit training and test assignments are provided, the images

in each class were randomly divided into training and testing sets, each containing

half of the image set. All saliency detectors were applied to the test images,

producing a saliency map per image and detector2. These saliency maps were

histogrammed and classified by an SVM, as described in section II.D.2. For each

saliency detector, the SVM was trained on the histograms of saliency responses

of the training set. Detection performance was evaluated with the 1 minus the

receiver-operating characteristic equal-error-rate (EER) measure, i.e., 1 minus the

rate at which the probabilities of false positives and misses are equal (1 − EER).

DSD was evaluated with three feature sets commonly used in the vision

literature. The first was a multi-scale version of the discrete cosine transform

(DCT). Each image was decomposed into a four-level Gaussian pyramid, and the

DCT features obtained by projecting each level onto the 8×8 DCT basis functions.

1Available from http://www.vision.caltech.edu/archive.html.
2For detectors that do not produce a saliency map (e.g. HarrLap), the latter was approximated by

a weighted sum of Gaussians, centered at the salient locations, with covariance determined by shape of
the salient region associated with each location, and weight determined by its saliency.
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(a) (b) (c)

Figure V.1 Some of the basis functions in the (a) DCT, (b) Gabor, and (c) Harr

feature sets.

The so-called DC coefficient (average of the image patch) was discarded for all

scales, in order to guarantee lighting invariance. As shown in Figure V.1 (a),

many of the DCT basis functions can be interpreted as detectors of perceptually

relevant image attributes, including edges, corners, t-junctions, and spots. The

second was a Gabor wavelet based on a filter dictionary of 4 scales and 8 directions

(evenly spread from 0 to π, as shown in Figure V.1 (b)). It was also made scale-

adaptive by application to a four-level Gaussian pyramid. The third set was the

Haar wavelet based on the five basic features shown in Figure V.1 (c). By varying

the size and ratio of the width and height of each rectangle, we generated a set

with a total of 330 features. Haar wavelets have recently become very popular in

the vision literature, due to their extreme computational efficiency [213], which

makes them highly appealing for real-time processing. This can be important for

certain applications of discriminant saliency.

Overall, seven SVM-based saliency map classifiers were compared: three

based on implementations of DSD with the three feature sets, and four based on the

classic detectors. As additional benchmarks, we have also tested two classification

methods. The first is an SVM identical to that used for saliency-map classification,

but applied directly to the images (after stacking all pixels in a column) rather

than to saliency histograms. It is referred to as the pixel-based classifier . The

second is the constellation classifier of [56]. While the former is an example of the

simplest possible solution to the problem of detecting object categories in clutter,

the latter is a representative of the state-of-the-art in this area.
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Table V.1 Saliency detection accuracy in the presence of clutter.
DSD SSD Harr- Hes- MSER pixel constel-

DCT Gabor Harr Lap Lap lation

Faces 97.2 95.4 93.1 77.3 56.2 64.5 55.3 93.1 96.4
Bikes 96.3 96.0 93.5 81.3 86.0 88.5 81.5 87.8 92.5
Planes 93.0 93.5 94.8 78.7 75.3 81.5 87.8 90.3 90.2

Cars(rear) 100.00 98.1 99.9 90.9 89.0 86.3 75.5 99.5 90.3
Spotted-cats 95.0 92.8 94.3 79.0 56.0 52.0 65.0 81.0 90.0
Cars(side) 94.1 93.4 93.8 55.9 54.7 62.4 71.2 59.4 88.5

Average 96.2 94.9 94.9 77.2 69.5 72.5 72.7 85.2 91.3

V.A.2 Detection accuracy

Table V.1 presents the classification accuracy achieved by the seven clas-

sifiers. With respect to saliency principles, all classifiers based on classic detectors

(SSD, HarrLap, HesLap, and MSER) perform poorly. While the average rate

of DSD varies between 94.9 and 96.2% (depending on the feature set) the per-

formance of the classic detectors is between 69.5 (HarrLap) and 72.7% (MSER).

This shows that saliency maps produced by the latter are not always informa-

tive about the presence/absence of the class of interest in the images to classify.

Somewhat surprisingly, given that the Caltech images contain substantial clutter

(e.g., see Figure V.3), the performance of the simple pixel-based classifier is very

reasonable (average rate of 85.2%). It is, nevertheless, inferior to that of the con-

stellation classifier (average rate of 91.3%), for all but the “Car rear views” and

“Planes” classes. The final observation is that even the latter is clearly inferior

to all DSD-based classifiers, which achieve the overall best accuracies. While we

do not claim that the DSD-based saliency classifier is the ultimate solution to the

problem of detecting object classes in clutter, these results support the claims that

discriminant saliency 1) produces saliency maps that are informative about the

class of interest, and 2) is more effective in doing so than techniques, such as SSD

or HarrLap, commonly used in the recognition literature [56, 46, 184].

It should also be noted that the comparison above is somewhat unfair
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to the constellation classifier, which tries to solve a more difficult problem than

that considered in this experiment. While the question of interest here is “is class

x present in the image or not?” the constellation classifier can actually localize

the object from the class of interest (e.g. a face) in the image. The reasonable

performance of the pixel-based classifier in this experiment indicates that it is

probably not necessary to solve the localization problem to achieve good detection

rates on Caltech. In fact, the best detection rates published on this database are,

to the best of our knowledge, achieved by classifiers that do not even attempt to

solve the localization problem [176]. The question of whether discriminant saliency

can be used to localize the regions associated with the class of interest is analyzed

in the following section.

V.A.3 Features

Regarding the relative performance of the different feature sets, while

the DCT appears to be the clear winner, all feature sets achieved high accuracy.

This implies that discriminant saliency is not overly dependent on a unique set of

features. However, a close inspection of Table V.1 also suggests that further per-

formance improvements should be possible by designing specific features for each

class. Note, for example, that the Haar features achieved the top performance in

the “Airplane” class, where the elongated airplane bodies are very salient. This is

mostly due to the fact that one of the Haar basis functions (bottom left of Fig-

ure V.1 (c)) is close to a matched filter for this feature. An interesting question is,

therefore, how to augment the discriminant saliency principle with feature extrac-

tion, i.e. the ability to learn the set of features which are most discriminant for

the class of interest (rather than just selecting a subset from a previously defined

feature collection). This is discussed in [65]. In all subsequent experiments, the

DSD is based on the DCT feature set.

A final question is the sensitivity to the number of features declared salient

during feature selection. Figure V.2 presents the variation, with this number, of
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Figure V.2 Classification accuracy vs number of features used by the DSD for (a)

faces, (b) motorbikes and (c) airplanes.

the detection accuracy of the DCT set, for three of the classes (the curves for the

others are similar and were omitted for brevity, and similar results were observed

with the Gabor and Haar sets). In general, accuracy is approximately constant

over a range of feature cardinalities (as shown in (a) and (c)), but there are also

cases where it decays monotonically with cardinality (as in (b)). The rate of decay

is, however, slow and, in all cases, there is a significant range of cardinalities where

performance is close to the optimal, suggesting that discriminant saliency is robust

to variations of this parameter. Visual inspection of saliency maps obtained with

different numbers of features has also shown no substantial differences with respect

to the saliency maps obtained with the optimal cardinality.

V.B Object localization

Although the detection accuracies of the previous section are a good sign

for discriminant saliency, the ultimate performance measure for a saliency detector

is its ability to localize the image regions associated with the class of interest. To

evaluate the performance of the DSD under this criterion we conducted two sets

of experiments.

V.B.1 Subjective evaluation

We started by visually inspecting all saliency maps. As exemplified

by Figure V.3, this revealed that DSD is superior to the classic detectors in its



99

ability to localize instances of the class of interest. The figure presents examples of

saliency maps generated by DSD, and the locations of highest saliency, according

to the five detectors. While DSD is able to disregard background clutter, focus-

ing on instances of the target class, many of the locations detected by the other

methods are uninformative about the latter.

V.B.2 Objective evaluation

A second set of experiments targeted an objective evaluation of the lo-

calization ability of the various saliency detectors. It was based on a protocol

proposed in [100], which exploits the fact that, although there is a fair amount of

intra-class variation on Caltech (e.g., faces of different people appear with different

expressions and under variable lighting conditions), there is enough commonality

of pose (e.g., all faces shown in frontal view) to allow the affine mapping of the

images of each class into a common coordinate frame. The frame associated with

each class was estimated, by Kadir et al. [100], by manually clicking on correspond-

ing points in each of the images of the class. The stability of the salient locations

when mapped to the common coordinate frame is a measure of the localization

ability of the saliency detector. In particular, a mapped salient location, Ra, is

considered to match the reference image if there exists a salient location, Rf , in

the latter such that the overlap error is sufficiently small, i.e.

1 −
Ra ∩Rf

Ra ∪Rf

< ε, (V.1)

where ∩ represents intersection, and ∪ union. To avoid favoring matches between

larger salient points, the reference region was normalized to a radius of 30 pixels

before matching, as suggested by [128]. The matching threshold ε was set to 0.4.

The localization score Q is defined as

Q =
Total number of matches

Total number of locations
. (V.2)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure V.3 Original images (a) , saliency maps generated by DSD (b) and a

comparison of salient locations detected by: (c) DSD, (d) SSD, (e) HarrLap, (f)

HesLap, and (g) MSER. Salient locations are the centers of the white circles, the

circle radii representing scale. Only the first (5 for faces and cars, 7 for motorbikes)

locations identified by the detector as most salient are marked.

If N locations are detected for each of the M images in the database, the score Qi

of reference image i is

Qi =
N i

M

N(M − 1)
, (V.3)
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Figure V.4 Localization accuracy of various saliency detectors for (a) face, (b)

motorbike, and (c) car.

where N i
M is the total number of matches between that image and all other M − 1

images in the database. The overall score Q is the average of Qi over the entire

database, and is evaluated as a function of the number of detected regions per

image.

The localization ability of the five detectors was compared on the three

Caltech object classes (face, motorbike, and rear views of cars) for which alignment

ground truth is available [100]. As shown in Figure V.4, discriminant saliency

performed better than most other methods, for all classes. On faces, only SSD

produced competitive results, and only for a relatively large number of salient

points. On motorbike SSD performed best with a single salient point (SSD is

particularly good at finding the circular bike wheels) but its performance degraded
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Figure V.5 Examples of salient locations detected by HesLap on images of car

rear views.

quickly. On this class, only HesLap achieved a score consistently higher than half of

that obtained by DSD, which once again produced the best overall results. On car

rear views, DSD outperformed all methods but HesLap. It should be emphasized

that these results must be considered in conjunction with Table V.1. The fact that

a saliency detector produces highly localized salient points is not very useful if these

are not co-located with the target objects. This is illustrated in Figure V.5, where

it can be seen that, for car rear views, HesLap frequently produces salient points

which are stable but irrelevant for recognition. On the other hand, DSD tends

to produce salient points that are not only stable, but also localized within the

visual class of interest. This is illustrated by Figure V.6, which presents examples

of salient locations for all Caltech classes, illustrating the robustness of DSD-

based object localization to substantial variability in appearance and significant

amounts of clutter. Typically, high localization accuracy is achieved with a few

salient locations.

V.C Repeatability of salient locations

We have shown, so far, that the top-down discriminant saliency produces

salient locations which are more informative about the objects to recognize than

other saliency mechanisms. In what follows we evaluate its stability under various

generic image transformations. This is the task for which many bottom-up saliency

detectors are proposed to be optimal, or close to optimal.
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Figure V.6 Examples of discriminant saliency detection on Caltech image classes.

V.C.1 Experimental protocol

Ideally, the salient locations extracted from a scene should be unaffected

by variations of the (scene-independent) parameters that control the imaging pro-

cess, e.g. lighting, geometric transformations such as rotation and scaling, and so

forth. Mikolajczyk et al. [128] have devised an experimental protocol for evaluating

the repeatability of salient points under various such transformations. The proto-

col includes 8 classes of transformations, each class consisting of 6 images produced

by applying a set of transformations, from the same family, to a common scene.

The transformations include joint scaling and rotation, changes of viewpoint angle

(homographies), blurring, JPEG artifacts, and lighting. Scale + rotation, view
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point changes, and blurring are applied to sets of two scenes which can be roughly

characterized as textured (e.g. images of tree bark or of a brickwall) or structured

(e.g. an outdoors scene depicting a boat or a wall covered with graffiti).

To measure the repeatability of a saliency detector, the protocol uses the

first image of each class as a reference image, and maps the rest of the five images

to the coordinate frame of the reference. The salient points detected on each of

the five images are then matched with those detected on the reference image for

correspondences. Salient points falling out of the common frame of each pair of

images are eliminated before matching. Corresponding points between a pair of

images are mapped using the criterion of (V.1). Again, the reference region was

normalized to a radius of 30 pixels before matching, as suggested by [128]. The

matching threshold, ε, was set to 0.4. The repeatability score for a given pair of

images is computed as the ratio between the number of correspondences and the

smaller of the number of regions in the pair.

Extending the protocol for learning

Since the protocol of [128] does not define training and test images, we

propose an extension applicable to learning-based methods. This extended proto-

col is based on various rounds of experiments. At the kth round, the first k images

of a given class are treated as a training set for that class, and the repeatability

scores of the learned saliency detector are measured on the remaining 6−k images.

This is accomplished by matching the interest points detected on these images to

the reference image, which is the kth image. When k = 1, i.e. train on the first

image and test on all remaining images, this reduces to the protocol of [128], but

larger values of k enable a quantification of the improvement of stability with the

richness of the training set. The new protocol is illustrated in Figure V.7 for k = 1

and 2. In the experiment reported below, the repeatability score of DSD is mea-

sured for k = {1, 2, 3}, and compared to the bottom-up detectors (SSD, HarrLap,

HesLap, and MSER), operating under the same test protocol (i.e., using image
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Training Matching

k = 1

k = 2

Figure V.7 Extended protocol for the evaluation of the repeatability of learned

interest points. At the kth round, the detector is trained on the first k images,

and the repeatability score measured by matching the remaining images to the

reference, which is set to the last training image, and shown with thick boundaries.

k as a reference). To deal with the extreme variations of scale of this dataset,

we implemented a simple multi-resolution extension of DSD: discriminant salient

points were first detected at each layer of a Gaussian pyramid decomposition of the

image and, at each salient point location, the layer of largest saliency was selected.

This type of processing is already included in all other detectors.

V.C.2 Results

The average repeatability scores obtained (across the set of test images)

by each saliency detector are shown, as a function of the reference image number k,

in Figure V.8. A more detailed characterization, presenting the repeatability score

of each test image and each of the values of k, is shown in Figure V.9-Figure V.12.

The plots on the left columns of Figure V.9-Figure V.12 are equivalent to those

of [128], the ones on the center and right columns correspond to k = 2 and k = 3,

respectively. In all plots, the extent of the transformation between the reference

(image k) and the test image (whose number is shown) increases with the latter.

Note that Figure V.8 presents the average of the repeatabilities in Figure V.9-

Figure V.12. For example, Figure V.8 (a), presents the average of each curve in
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Figure V.8 Repeatability of salient locations under different conditions: scale +

rotation ((a) for structure & (b) for texture); viewpoint angle ((c) for structure &

(d) for texture); blur ((e) for structure & (f) for texture); JPEG compression (g);

and lighting (h).

the top row of Figure V.9, as a function of k.

The following conclusions can be reached from the figures. First, a richer

training set improves the performance of DSD for all transformations. This im-

provement occurs not only in absolute terms, but also comparatively to the other

methods. This shows that the principle of discriminant learning is a good idea

from a repeatability point of view. It enables the design of detectors which can be

made more invariant by simply increasing the richness of the transformations cov-

ered by their training sets. Second, DSD is competitive with the other techniques

even when the set of positive training examples is a single image. In this case,

DSD achieves the top repeatability scores for five of the eight classes ((d)-(h)), is

very close to the best for another (b), and is always better than at least two of the
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Figure V.9 Repeatability of salient locations under scale + rotation changes ((top)

structure & (bottom) texture) with different number of training images for DSD:

k = 1 (left), 2 (middle), and 3 (right).

classical algorithms. Finally, when the most diverse training sets are used (k = 3)

DSD has the top scores for all but one class.

It is also interesting to analyze these results by transformation and image

class. With respect to transformations, DSD is the most robust method in the

presence of blurring, JPEG artifacts and lighting transformations (Figure V.8 (e-

h)) independently of the degree of training. It also achieves the best performance

for changes of viewpoint angle, but this can require more than one example (c).

Its worst performance occurs under combinations of scale and rotation, where it is

always inferior to HesLap for small amounts of training data, and sometimes infe-
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Figure V.10 Repeatability of salient locations under viewpoint angle changes ((top)

structure & (bottom) texture) with different number of training images for DSD:

k = 1 (left), 2 (middle), and 3 (right).

rior even for the largest training sets. With respect to image class, it is interesting

to note that the robustness of DSD to geometric transformations is better for tex-

ture ((b) & (d)) than for structured scenes ((a) & (c)). While, for the former,

DSD achieves the best, or close to the best, performance at all training levels, for

structured scenes DSD is less invariant than at least one of the classic detectors in

all training regimes.
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Figure V.11 Repeatability of salient locations under blurring ((top) structure &

(bottom) texture) with different number of training images for DSD: k = 1 (left),

2 (middle), and 3 (right).

Invariance to 3D rotation

To evaluate invariance to more general transformations, such as 3D rota-

tion, we measured the repeatability of the salient points produced by all methods

on the Columbia Object Image Library (COIL-100) [74]. This is a library of im-

ages of 100 objects, containing 72 images from each object, obtained by rotating

the object in 3D by 5o between consecutive views. The appearance changes due

to 3D rotation make COIL more challenging than the database of [128], for meth-

ods that explicitly encode invariance. To avoid saliency ambiguities due to large
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Figure V.12 Repeatability of salient locations under JPEG compression (top) and

lighting (bottom) changes with different number of training images for DSD: k = 1

(left), 2 (middle), and 3 (right).

view-angle change (e.g. the front of an object is not visible from the rear) we used

six consecutive views of each object for training and the next three adjacent views

(subsampled from the next six adjacent original views so as to produce a separa-

tion of 10o of rotation between views) for testing. For each image, the ten most

salient locations were computed, and each salient location was considered stable

if it appeared in all three test images. The overall stability score was measured

with (V.2).

Table V.2 lists the stability score achieved by the five saliency detectors,
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Table V.2 Stability results on COIL-100.
DSD SSD HarrLap HesLap MSER

Stability(%) 74.7 52.2 46.5 47.0 57.3

Figure V.13 Examples of salient locations detected by DSD for COIL.

showing that all classic detectors produce less stable salient points than those

of DSD. Figure V.13 shows that the locations detected by the latter maintain a

consistent appearance as the object changes pose. This implies that discriminant

saliency selects features which are “consistently salient” for the whole set of ob-

ject views in the image class. These are features that exhibit small variability of

response within the class of interest, while discriminating between this class and

all others. On the other hand, the classical (bottom-up) definitions of saliency are

only optimally stable for specific classes of spatial transformations (e.g., affine),

which do not approximate well enough the transformations found in a database

like COIL-100.
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V.C.3 Discussion

Overall, the results of the repeatability test illustrate some of the trade-

offs associated with learning based (top-down) saliency detectors, such as DSD. On

one hand, the ability to select specific features for the class under consideration in-

creases not only the discriminant power but also the stability of saliency detection.

It appears that the principle of discriminant learning is a good idea even from a

repeatability point of view. It enables the design of detectors which can be made

more invariant by simply increasing the richness of the transformations covered by

their training sets. This is a property that bottom-up routines lack, sometimes

leading to dramatic variability of repeatability scores across classes (see the curves

of SSD on Figure V.8 for an example), or even a clear inability to deal with some

types of transformations (as is the case on COIL-100). On the other hand, the

generalization ability of a top-down detector depends on the quality of its training

data and the complexity of the mappings that must be learned. In Figure V.8,

this can be seen by the consistent loss of performance for smaller training sets,

and the greater difficulties posed by structured scenes, when compared to texture.

When little training data is available, or the mappings have great complexity, ex-

plicit encoding of certain types of invariance (as done by the classic bottom-up

detectors) can be more effective. In this sense, the combination of top-down and

bottom-up saliency detectors, to optimally balance the trade-off between learning

and pre-specification of invariance, could be beneficial. We will investigate this

point in detail in Chapter VII.

V.D The diversity of discriminant saliency attributes

We finalize with a qualitative experiment designed to illustrate the rich-

ness of the set of visual attributes that can be declared salient under the dis-

criminant saliency principle. This experiment was based on the Brodatz texture

database [23] which, in addition to a great variety of salient attributes - e.g. cor-
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ners, contours, regular geometric figures (circles, squares, etc.), texture gradients,

crisp and soft edges, etc - places two significant challenges to existing saliency de-

tectors: 1) the need to perform saliency judgments in highly textured regions, and

2) a great diversity of shapes for the salient regions associated with different tex-

ture classes. The Brodatz database was divided into a training and test set, using

a set-up commonly adopted for texture retrieval (described in detail in [208]). The

salient features of each class were computed from the training set, and the test

images used to produce all saliency maps. The process was repeated for all texture

classes, on a one-vs-all setting (class of interest against all others) with each class

sequentially considered as the “one” class.

As illustrated by Figure V.14, none of the challenges posed by Brodatz

seems very problematic for discriminant saliency. Note, in particular, that the

latter does not appear to have any difficulty in 1) ignoring highly textured back-

ground areas in favor of a more salient foreground object (two leftmost images in

the top row), which could itself be another texture, 2) detecting as salient a wide

variety of shapes, contours of different crispness and scale, or 3) even assigning

strong saliency to texture gradients (rightmost image in the bottom row). This

robustness is a consequence of the fact that salient features are selected according

to both the class of interest and the set of images in the all class.
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Figure V.14 Saliency maps obtained on various textures from Brodatz. Bright

pixels flag salient locations.
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In the previous chapter we have shown that the top-down discriminant

saliency leads to better localization and classification accuracy for object recog-

nition problems, than the existing saliency detectors. However, for applications

where no recognition problems is defined, the use of bottom-up saliency detectors

is more appropriate. In this chapter we present, for such circumstances, the appli-

cation of the bottom-up discriminant saliency detector described in Section II.E.

In particular, we consider the problems of predicting human eye fixations. The out-

put of the bottom-up discriminant saliency detector is compared to both human

performance, and state-of-the-art results.

VI.A Predicting human eye movements

To evaluate the ability of the bottom-up discriminant saliency detector to

predict human eye fixation locations, we compared the discriminant saliency maps

obtained from a collection of natural images to the eye fixation locations recorded

from human subjects, in a free-viewing task.

VI.A.1 Eye movement data and performance metric

The eye-fixation data were collected by Bruce and Tsotsos [24], from

20 subjects and 120 different natural color images, depicting urban scenes (both

indoor and outdoor). The images were presented in 1024×768 pixel format on a 21-

in. CRT color monitor. The monitor was positioned at viewing distance of 75 cm;

consequently, the image presented subtended 32◦ horizontally and 24◦ vertically,

i.e. approximately 30 pixels per degree of visual angle. All images were presented

in random order, to each subject for 4 seconds, with a mask inserted between

consecutive presentations. Subjects were given no instructions, and there were no

predefined initial fixations. A standard non-head-mounted gaze tracking device

(Eye-gaze Response Interface Computer Aid (ERICA) workstation) was applied

to record the eye movements. All participants had normal or correct-to-normal
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vision.

The comparison between saliency predictions and human eye movements

was based on a metric proposed in [189]. The basic idea is that, by defining a

threshold, a saliency map can be quantized into a binary mask that classifies each

image location as either a fixation or non-fixation. Using the measured human

eye fixations as ground truth, a receiver operator characteristic (ROC) curve is

produced by varying the quantization threshold. In this context, labeling a human

fixation as a non-fixation is a false negative and labeling a human non-fixation as

a fixation is a false positive. Overall, this procedure quantifies the goodness of the

saliency detector at predicting human performance. Perfect prediction corresponds

to an ROC area (area under the ROC curve) of 1, while chance performance reduces

it to 0.5. Since the metric makes use of all saliency information in both the human

fixations and the saliency detector output, it has been adopted in various recent

studies [24, 67, 103]. The predictions of discriminant saliency were compared to

those of the methods of [89] and [24]. As an absolute benchmark, we also computed

the “inter-subject” ROC area [67], which measures fixation consistency between

human subjects. For each subject, a “human saliency map” was derived from

the fixations of all other subjects, by convolving these fixations with a circular

2-D Gaussian kernel. The standard deviation (σ) of this kernel was set to 1◦ of

visual angle (≈ 30 pixels), which is approximately the radius of the fovea. The

“inter-subject” ROC area was then measured by comparing subject fixations to

this saliency map, and averaging across subjects and images.

VI.A.2 Results

Table VI.1 presents average ROC areas for all detectors, across the entire

image set1, as well as the “inter-subject” ROC area. It is clear that discrimi-

nant saliency achieves the best performance among the three saliency detectors.

1It should be noted that the results of [89, 24], for both this table and all subsequent figures, were
optimized for this particular image set, by tuning of model parameters. This was not done for discriminant
saliency, whose results were produced with the parameter settings of the previous section.
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Saliency model Discriminant Itti et al. [89] Bruce et al. [24] Inter-subject

ROC area 0.7694 0.7287 0.7547 0.8766

Table VI.1 ROC areas for different saliency models with respect to all human

fixations.

Nevertheless, because there is still a non-negligible gap to human performance, we

studied in greater detail the relationship between the output of saliency algorithms

and the subjects’ fixations. In [189], Tatler et al. observed that early human fixa-

tion locations are more consistent than later ones. As shown in Figure VI.1, this

observation holds for the fixation data used in these experiments. In particular,

the figure shows that the inter-subject ROC area decreases dramatically as the

number of fixated locations increases. The first two locations have significantly

higher ROC area than all others. This indicates that, while the first few eye move-

ments are most likely to be driven by bottom-up processing, top-down influences

dominate the viewing process after that. Given no specific task, the subjects’ at-

tention is likely to be dominated by the interpretation of the objects in the scene, or

other forms of top-down guidance. It is, therefore, questionable that any fixations

beyond the first or second should be used to evaluate bottom-up detectors.

The ROC area curves in Figure VI.1 also reveal that all bottom-up de-

tectors achieve the best performance at the second fixation. This is unlike the

inter-subject performance, which is more consistent for the first fixation. The dis-

crepancy is most likely due to a “central fixation bias” [189]: subjects tend to

be biased towards the image center even when there is no initial central fixation

point. This bias is illustrated in Figure VI.2, which shows the average inter-subject

saliency map for the first and second fixations (average taken across subjects and

images). It is clear that the first fixation is very likely to be near the image center,

while the second exhibits significantly more diversity.

Taking these observations into account, we compared the performance of

the three saliency detectors, using only the first two fixations, and as a function

of the inter-subject ROC area. The results are shown in Figure VI.3, where the
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Figure VI.1 ROC area for ordinal eye fixation locations.

thin dotted line represents perfect correlation with human performance. Note

that, for all detectors, best performance occurs when inter-subject consistency is

highest. Since saliency judgements driven uniquely by bottom-up, stimulus-driven,

processing are likely to be constant across subjects, this is the region where it makes

most sense to evaluate saliency detection with eye fixation data. In this region,

the performance of discriminant saliency (0.85) is close to 90% of that of humans

(0.95), while the other two detectors achieve close to 85% (0.81).

Overall, the bottom-up discriminant saliency detector performed best at

predicting human fixations among all compared saliency models, both for the entire

set of fixations, and for the first two. It also exhibited greater correlation with

human performance at all levels of inter-subject consistency, but especially when

the latter is large. This is the regime in which saliency is most likely to be due

uniquely to bottom-up, stimulus-driven, cues.
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Figure VI.2 Inter-subject saliency maps for the first (left) and the second (right)

fixation locations.
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In Chapter V, we briefly discussed the trade-off between top-down and

bottom-up saliency detection. In this chapter, we investigate this issue in more

detail. We note that, in the study of biological vision, although there has been

psychophysical evidence that the bottom-up (BU) and top-down (TD) attention

mechanisms can operate simultaneously, and, for a given scene, the deployment of

attention is determined by an interaction of the two modes, its underlying neural

mechanisms are not yet clear [21, 228, 33, 76, 36, 219, 201]. For this reason, in

the following, we focus our discussions only on computer vision applications, and

particularly, object recognition.

As we have mentioned before, for computer vision, both the BU and

the TD strategies have their advantages and limitations. BU routines can be made

mathematically optimal with respect to universally desirable properties for saliency

detection. For example, the popular Harris [68] and Förstner [60] interest point de-

tectors are optimal saliency detectors under a generic cost functional that equates

saliency with repeatability, or invariance to geometric image transformations, of

salient points [172]. BU saliency also tends to be free from computationally inten-

sive training requirements and can usually be implemented with very low complex-

ity. On the other hand, due to the absence of a task-driven focus, BU routines can

only be optimal in very generic senses, and the resulting salient points are rarely

the best for specific applications, such as object recognition. While this illustrates

the importance of task-specificity, there could also be clear inconvenience in the

adoption of purely TD principles. In particular, because the implementation of

these principles usually requires some form of learning from examples, their per-

formance can be sensitive to factors such as insufficient amounts of training data,

or training set noise. The latter is a major liability for applications involving clut-

tered imagery, where one of the main attentional goals is exactly to separate the

signal (e.g. objects of interest) from the noise (e.g. background clutter). When the

noise level is significant, it may be simply impossible to obtain accurate saliency

estimates, and TD mechanisms can, at best, behave as coarse focus of attention
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mechanisms. Combining these with stimulus-driven (BU) saliency (e.g. the detec-

tion of corners or contours) could lead to more localized, and therefore accurate,

saliency judgements.

There is, nevertheless, a poor understanding on how to combine these

TD models with those used for BU saliency in computer vision. The prevalent

solution is to either ignore the latter [213, 66] or simply use it as a pre-filter of

image locations to be processed by TD routines (e.g., [56, 46, 170], see also Chapter

V). Both of these strategies are somewhat problematic. Ignoring BU saliency

assumes that it is possible to accurately design all saliency stages under task-

specific goals. While the recent success in areas such as face detection shows

that this is possible when certain conditions are met, e.g. availability of clean

training sets and tolerance to large training complexity, there is little evidence

that it can be done when such conditions do not hold. Reducing BU saliency to

a pre-filter for TD saliency can be a solution to the problem of computational

complexity, but could be otherwise problematic. In general, the optimality criteria

that guide the design of BU mechanisms are completely unrelated to the task-

dependent definitions of TD saliency and it is, therefore, not uncommon for BU

pre-processors to summarily eliminate image information highly relevant for TD

saliency [66]. Intuitively, the importance of BU saliency should be larger when

TD estimates are not accurate, than when they are. This advises the adoption of

strategies that integrate saliency information derived from the two saliency modes,

rather than hard decisions based on BU saliency. Ideally, it should even be possible

to control the relative contribution of the two components.

This is the problem that we address in this chapter, where we 1) introduce

a probabilistic formulation of saliency, and 2) argue for the adoption of Bayesian

inference principles for the integration of BU and TD saliency estimates. The pro-

posed Bayesian formulation is shown to have various interesting properties. First,

it produces intuitive rules for the integration of the two saliency modes. Second,

it supports the interpretation of TD saliency as a focus-of-attention mechanism
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which suppresses BU salient points that are not relevant for the task of interest.

Third, it provides evidence that BU saliency has an important role when TD rou-

tines are inaccurate (e.g. because they are learned from cluttered examples), but is

not necessarily useful when the opposite holds. Fourth, it enables explicit control

of the relative weight of each saliency component in the final saliency estimates.

Finally, it has a non-Bayesian interpretation as the simple multiplication of the

two saliency maps, that enables a non-parametric extension of trivial computa-

tional complexity. The advantages of the Bayesian solution, over both TD and BU

saliency in isolation, are illustrated in the context of recognition problems, both in

terms of improved recognition rates and the ability to localize and segment objects

from background clutter.

VII.A Bayesian integration

We start from the view of perception as a problem of Bayesian infer-

ence [105], under which saliency is naturally formulated as a problem where an

observer tries to infer the location of salient scene features, from potentially noisy

visual observations. For this, the observer relies on mid-level vision routines that

combine information from low-level stages of the visual system (BU mechanisms)

with feedback from the higher-level areas (TD mechanisms). BU saliency detec-

tors produce task-independent estimates of saliency location which are well localized

(reduced uncertainty) but not necessarily relevant for achieving particular goals.

For example, a contour-based detector, that localizes with equally great accuracy

the outline of a face, a boulder, or a soccer ball. While, in the absence of high-level

feedback, the visual system will respond equally to all these stimuli, when goals

become available (e.g. the observer decides to look for faces but not boulders), TD

mechanisms are activated to modulate these responses. They produce goal-driven

saliency estimates which have greater selectivity for the image regions that are

relevant for the task at hand than those produced by bottom-up mechanisms.
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If, in addition to selective, TD mechanisms were also accurate (e.g. ca-

pable of localizing the outline of faces with great accuracy while being completely

non-responsive to boulders or soccer-balls), there would probably be no need for

BU mechanisms. In practice, however, a number of reasons may make this impos-

sible: there may be a limited amount of time or computation available for training

TD routines (in order to guarantee a plastic visual system), or the training data

may not be clean enough to enable highly accurate estimates (e.g. training is based

on cluttered examples). In such situations, it would seem logical for TD learning

to maximize selectivity (impossible to achieve with BU mechanisms), e.g. by pro-

ducing routines capable of coarsely identifying image regions containing faces but

not accurate enough to precisely outline their contours. The resulting saliency esti-

mates could then be combined with those produced by BU mechanisms to achieve

the desired combination of selectivity and accuracy .

This process is illustrated in Figure VII.1. The figure depicts (a) an image

from the Caltech database [56], and the associated saliency maps produced by two

saliency detectors, a BU Harris-Laplace detector [127], and a TD discriminant

saliency detector (see Chapter II and Chapter V)1. Note how the BU saliency

map is very accurate (highly localized responses) but not selective for the face

(responds strongly to a large number of corners in the background), while the TD

saliency maps are very selective for the face but less accurate. Note also how the

TD detector trained with carefully cropped examples is significantly more accurate

than that trained with cluttered images. While the former is not likely to benefit

greatly from the combination with the BU saliency map (it is accurate enough

by itself), this combination tremendously improves the accuracy of the latter,

as can be seen from (e). In this case, TD saliency becomes more of a focus of

attention mechanism that suppresses the spurious responses of BU saliency while

emphasizing the responses which fall inside the object of interest (in the example of

1Note that we adopt these two detectors for this, and all following, experiments in this chapter. The
choice of the detectors is mainly due to their simplicity and the fact that software for their implemen-
tations are publicly available. We do not claim that this is necessarily the best combination, and the
Bayesian formulation proposed in this work is in no way restricted to them.
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(a) (b) (c) (d) (e)

Figure VII.1 Illustration of non-parametric Bayesian saliency. (a) input image,

and saliency maps produced by (b) Harris-Laplace [127], (c) the TD discriminant

saliency detector when trained with cropped faces, (d) the TD discriminant saliency

detector when trained with cluttered images of faces (images such as (a)), and (e)

the combination of (b) and (d) with the method of section VII.B.5.

the figure, the net effect is to declare the eyes as the most salient image locations).

Given that there is always a degree of uncertainty associated with saliency

estimates, it seems natural to rely on a probabilistic formalism for the combination

of BU and TD saliency. Under this formalism, instead of salient locations , saliency

routines produce probability distributions of saliency location over the image plane.

The greater accuracy of BU mechanisms translates into distributions that decay

more quickly from their peaks (e.g. a mixture of a large number of components

of very small variance), while the greater selectivity of TD routines originates a

greater concentration of the probability mass (a mixture of a few components of

sizeable variance). Faced with a static scene2, e.g. a picture containing several

people in front of a rocky formation, the visual system starts by resorting to BU

mechanisms to produce a prior distribution for salient locations, e.g. one that as-

signs high probability to the contours of both faces in the foreground and boulders

in the background. As the observer establishes goals for saliency, e.g. looking

for faces, TD mechanisms produce a saliency distribution which is combined with

the BU prior through the principles of Bayesian inference. The resulting posterior

distribution combines the accuracy of the prior with the selectivity of the TD es-

timates, e.g. by assigning high probability to contours of faces but not those of

boulders. If the observer refines the goals, e.g. looking for a particular person, TD

2While the formalism could be extended to moving scenes, we only address the static case in this
work.
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mechanisms react by producing a distribution of smaller entropy, e.g. concentrated

around that person’s face. This distribution is then combined with the current pos-

terior as is usual in sequential Bayesian inference, e.g. methods commonly used for

visual tracking [83, 101, 35], to produce a new posterior distribution that assigns a

high probability to the outline of the face of interest and a low probability to the

rest of the image.

VII.B Bayesian saliency model

In this section, we introduce a concrete model for the implementation of

the Bayesian formulation discussed above. We start by outlining the main features

of the model, and then discuss the derivation of the posterior solution. The case

where both TD and BU saliency maps have a single salient point is considered

first, followed by the more general situation of multiple BU and a single TD point,

and finally the full-generality case where both maps have multiple salient points.

VII.B.1 Model outline

Location uncertainty is encoded by associating a Gaussian distribution

(defined over image coordinates) with each salient point. This lends itself to mathe-

matically tractable inference (saliency maps, containing salient locations and their

relative saliency strength, are represented as Gauss mixtures) and conforms to

the time honored psychophysical metaphor of visual attention as a spotlight (that

raises the observer’s awareness to portions of the visual field) [169, 154]. Given the

mixture distributions associated with the BU and TD components, the posterior

distribution for the true, but unknown, salient locations is also a Gauss mixture.

An analytical solution is derived for its parameters, which are expressed as closed-

form functions of the parameters of the component mixtures. A hyper-parameter is

introduced in the prior distribution to control the relative importance of the contri-

butions of BU and TD saliency to the posterior estimates. This enables adaptation
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of the prior’s influence according to the accuracy of the TD estimates. For exam-

ple, when training is based on cluttered examples, the TD estimates should be

considered less accurate and a larger weight given to BU saliency. On the other

hand, when training is clutter-free, the prior distribution should be made closer

to uniform, making its contribution to the posterior solution much less significant.

It is shown that this ability to control the balance between BU and TD saliency

estimates enables performance superior to that achievable in the absence of such

balance.

VII.B.2 Single salient point

A salient point s is characterized by three parameters: its saliency strength

α, image location x, and scale σ. In this work, it is assumed that both the strength

and scale are known3. When the application, to the image, of a TD saliency detec-

tor results in a salient point xtd, of scale σtd, this point is modeled as an observation

from a Gaussian random variable X = (x, y) of covariance Σ = (σtd)2I and cen-

tered on the true, but unknown, salient location µ,

PX|µ(xtd|µ) = G(xtd, µ, (σtd)2I).

As is usual in Bayesian inference, the uncertainty about the true location µ is

formalized by considering this parameter a random variable and introducing a

prior Pµ(µ), derived from a BU saliency principle. Assuming that a BU saliency

detector produced a salient point sbu = (αbu, µbu, σbu), this location prior is also

assumed Gaussian

Pµ(µ) = G(µ, µbu, (σbu)2I).

The posterior distribution for the true salient location is then

Pµ|X(µ|xtd) = G(µ, µs, (σs)2I), (VII.1)

3While, in practice, this is not strictly true, there is usually a fair amount of tolerance to errors in
these parameters. For example, it is common to simply classify points as salient or non-salient, in which
case a measure of saliency strength is not even required. With respect to the scale parameter, it is
common practice to consider only a finite set of possible scales. Since the selection of the best among
these with small error is usually feasible, the assumption of known scale is a reasonable one.
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Figure VII.2 The posterior distribution (circle) of the most salient location as a

function of the hyper-parameter σ. Brighter circles indicate larger values of σ: in

all images the black (white) circle represents the most salient point detected by

the BU (TD) detector.

with

µs =
(σbu)2

(σbu)2 + (σtd)2
xtd +

(σtd)2

(σbu)2 + (σtd)2
µbu, (σs)2 =

(σbu)2(σtd)2

(σbu)2 + (σtd)2
. (VII.2)

The relative importance of the TD and BU saliency maps, can be con-

trolled by multiplying the prior variance by a hyper-parameter σ, i.e. by replacing

σbu with σ · σbu in the equations above. Note that, as σ → ∞, µs = xtd and

σs → σtd, making the posterior distribution equal to the Gaussian associated with

the TD salient point std. On the other hand, when σ → 0, µs = µbu and σs → 0,

making the posterior distribution equal to the delta function centered in the lo-

cation of the BU salient point µbu. This is illustrated by Figure VII.2 where the

most salient point produced by a (BU) Harris-Laplace detector [127] is combined

with the most salient point produced by the (TD) discriminant saliency detector

of [66]. While, when σ ≈ 0, the posterior is highly localized around the BU point,

as σ increases it converges to the distribution resulting from TD saliency.

VII.B.3 Multiple bottom-up salient points

When there are various BU salient points {sbu
1 , . . . , s

bu
n }, any of them could

be responsible for the observed salient location xtd produced by the TD saliency

detector. To account for this we introduce a hidden variable Y , such that Y = k

when sbu
k is the responsible BU salient point, and the following generative model:

1. the kth BU salient point is chosen with probability PY (k) = αbu
k /
∑

j α
bu
j .
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(a) (b) (c) (d)

Figure VII.3 Modulation of the focus of attention mechanism, associated with

TD saliency, by σ. Images show salient locations detected by (a) Harris-Laplace,

(b) discriminant, (c) Bayesian (σ2 = 6), and (d) Bayesian (σ2 = 200) detectors.

Brighter circles indicate stronger saliency.

2. the prior density for location becomes Pµ|Y (µ|k) = G(µ, µbu
k , (σ

bu
k )2I).

3. the observed salient location xtd is sampled from the distribution PX|µ(x|µ).

Given xtd, the posterior for the unknown salient location can be shown to be

Pµ|X(µ|xtd) =
∑

k

G(µ, µs
k, (σ

s
k)

2I)π(xtd, sbu
k ) (VII.3)

with

π(xtd, sbu
k ) =

G(µbu
k ,x

td, [(σtd)2 + (σbu
k )2]I)αbu

k
∑

j G(µbu
j ,x

td, [(σtd)2 + (σbu
j )2]I)αbu

j

,

and µs
k and σs

k as given in (VII.2) with µbu and σbu replaced by µbu
k and σbu

k respec-

tively.

It is interesting to compare this distribution to that of the case of a

single BU salient point: the posterior is now a mixture of Gaussians of the form

of (VII.1), each weighted according to the link function π(xtd, ·). Up to a constant,

this is a Gaussian centered on the observed salient location xtd produced by the TD

detector, and penalizes the contributions of BU salient points which are located

far from this observation. It enables the interpretation of the TD saliency detector

as a focus of attention operator that suppresses BU salient points which are not

discriminant for the object of interest.

As before, the relative importance of the BU and TD saliency maps can

be controlled by multiplying all prior variances by a hyper-parameter σ. This can

be exploited to modulate the focus of attention mechanism as illustrated in Fig-

ure VII.3, where we present the top TD and the 40 top BU salient points for one



132

image, and the posterior distribution for the salient location obtained with two

values of σ. Note that, as σ increases, attention is more narrowly focused on the

salient points located inside the object of interest, in this case a face.

VII.B.4 Multiple TD and BU salient points

We have, so far, shown that a TD salient point can be interpreted as

a focus-of-attention operator that produces a Bayesian estimate of the true, but

unknown, salient location Pµ|X(µ|xtd) of the form of (VII.3). The TD salient point

std = (αtd,xtd, σtd) associated with xtd can, therefore, be viewed as an attentional

hypothesis about which image area is most likely to contain discriminant informa-

tion for the object of interest.

Under this interpretation, a collection of TD salient points {std
1 , . . . , s

td
m}

is nothing more than a set of attentional hypotheses regarding the location of the

target visual concept. This suggests the introduction of a second hidden variable

Y ′, such that Y ′ = l when the lth attentional hypothesis holds, and the following

generative model for salient locations:

1. the lth attentional hypothesis is chosen with probability PY ′(l) =
αtd

l
∑

j αtd
j

.

2. a salient observation xtd
l is then sampled according to the generative model

in the previous section, conditioning all probabilities on the value of Y ′, i.e.,

PX|µ,Y ′(x|µ, l) = G(x, µ, (σtd
l )2I).

Using the fact that BU saliency is independent of the attentional hypothesis, i.e.

Pµ|Y,Y ′(µ|k, l) = Pµ|Y (µ|k) and PY |Y ′(k|l) = PY (k), it follows that the posterior for

salient location, under the lth attentional hypothesis, is

Pµ|Y ′,X(µ|l,xtd
l ) =

∑

k

G(µ, µs
k,l, (σ

s
k,l)

2I)πl(x
td
l , s

bu
k )

with µs
k,l and σs

k,l as given by (VII.2) with µbu, xtd, σbu and σtd replaced by µbu
k , xtd

l ,

σbu
k , and σtd

l respectively, and πl(x, s
bu
k ) =

G(µbu
k

,x,[(σtd
l

)2+(σbu
k

)2]I)αbu
k

∑

j G(µbu
j ,x,[(σtd

l
)2+(σbu

j )2]I)αbu
j

. The overall
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posterior distribution is then

Pµ|X(µ|{xtd
1 , . . . ,x

td
m}) =

∑

k,l

G(µ, µs
k,l, (σ

s
k,l)

2I)β(xtd
l , s

bu
k ) (VII.4)

with

β(xtd
l , s

bu
k ) =

G(µbu
k ,x

td
l , [(σ

td
l )2 + (σbu

k )2]I)αbu
k α

td
l

∑

i,j G(µbu
i ,x

td
j , [(σ

td
j )2 + (σbu

i )2]I)αbu
i α

td
j

.

Note that this is a mixture of posterior distributions of the form of (VII.3),

i.e. a mixture of the n × m Gaussians associated with all pairs of BU and TD

salient points. As before, the link function β(xtd, ·) is, up to constants, a Gaussian

centered on the observed salient location xtd produced by the TD detector, and

penalizes the contributions of BU salient points located far from it. The relative

importance of the TD and BU saliency maps can still be controlled by multiplying

all prior variances by a hyper-parameter σ.

VII.B.5 Non-parametric interpretation

An interesting low-level interpretation of the posterior distribution (VII.4),

that does not require Bayesian inference, can be obtained by noting that, up to

constants,

G(x, µbu
k , (σ

bu
k )2I)G(x,xtd

l , (σ
td
l )2I) = G(x, µs

k,l, (σ
s
k,l)

2I)G(µbu
k ,x

td
l , [(σ

td
l )2 + (σbu

k )2]I)

with µs
k,l and (σs

k,l)
2 as given above. It follows that the posterior distribution

of (VII.4) is the product of the mixtures,

∑

k

αbu
k

∑

i α
bu
i

G(x, µbu
k , (σ

bu
k )2I), and

∑

l

αtd
l

∑

i α
td
i

G(x,xtd
l , (σ

td
l )2I),

associated with the two saliency detectors, when the true salient locations are µbu
k

and xtd
l . Noting that the mixture representation is a probabilistic approximation

to the observed saliency maps, this enables a completely non-parametric repre-

sentation of the posterior for the true salient location as the simple element-wise

multiplication of the two saliency maps (plus normalization). This was, in fact,
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the procedure used to create the Bayesian saliency map of Figure VII.1 (e). What

is lost, under this non-parametric interpretation, is the ability to introduce the

hyper-parameter σ that modulates the strength of the focus-of-attention mecha-

nism associated with TD saliency.

VII.C Experimental results

To evaluate the performance of Bayesian saliency, we relied on the Caltech

database [56]. Four image classes (faces, motorbikes, airplanes, and rear-cars)

were used as the classes of interest, and a set of background images was used as

the negative class, as proposed in [56]. Two representative saliency detectors, a

(BU) Harris-Laplace (HarrLap) detector [127], and the TD discriminant saliency

(DiscSal) detector, were selected to implement the Bayesian saliency detector. The

sets of salient points produced by the two detectors were first fused into a Bayesian

saliency (BayesSal) map according to (VII.4), and the centers of the resulting Gauss

mixture were then selected as salient points.

VII.C.1 Salient locations

We start by examining the salient locations detected for different object

classes. Figure VII.4 presents some examples of the salient locations produced by

the three detectors (locations with saliency strength lower than 50% of the largest

are omitted). Note how Bayesian saliency combines the two (BU and TD) saliency

components in an intuitive manner: while DiscSal forces HarrLap to focus in the

area of the object of interest, the addition of HarrLap improves the accuracy of

the TD location estimates by reducing the variance of the Gaussian components.

As a side benefit, it also helps “clean up” some of the unstable locations detected

by DiscSal (see columns 5-7).
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Figure VII.4 Examples of Bayesian saliency. (top) HarrLap, (middle) DiscSal and

(bottom) BayesSal.

VII.C.2 Accuracy

To obtain an objective characterization of the accuracy improvements

achievable with BayesSal, we designed two experiments. The first measured how

well the salient points produced by the three detectors were localized inside the

image region covered by the object of interest. The second measured how accu-

rately a segmentation algorithm based on the salient points could identify that

image region.

Salient point localization

The set of saliency map locations with saliency strength greater than a

threshold (set to Thsal∗(maximum saliency strength), with Thsal ∈ {0, 0.1, . . . , 1})

was first selected. The number of locations inside the ground truth (a manually

produced bounding box of the object) was counted, and accuracy was measured

by the ratio between the number of locations inside the ground truth and the

total number of locations. This measure was then averaged over all images in the

test set. Figure VII.5 shows the accuracy achieved, as a function of the threshold

Thsal, for faces and motorbikes (results on the other two classes were similar, and

are omitted for brevity), with the three saliency detectors (and various values of σ

for BayesSal). In (a) and (b) DiscSal was learned from cluttered examples, while

cropped faces were used in (c).
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Figure VII.5 Accuracy of salient locations produced by the BayesSal (with various

values of σ), DiscSal and HarrLap saliency detectors.

Several interesting observations can be made from the figure. First, Harr-

Lap performed quite poorly, confirming the expectation that BU detectors do not

provide much information about the object of interest. Second, in the cases where

TD saliency was learned from cluttered examples, (a) and (b), BayesSal achieved

the highest accuracy for a large range of values of σ. Note, in particular, the

significant improvements (up to 9% absolute points) over DiscSal. Third, BayesSal

did not improve over DiscSal when the latter was trained without clutter (c), in

fact exhibiting lower accuracy for most values of σ. These two observations support

the conclusion that BU saliency can play an important role in visual saliency, by

increasing the accuracy of TD saliency estimates when these cannot be reliably

learned, but can also be detrimental, when this is not the case.



137

VII.C.3 Segmentation of samples

After showing that the BayesSal achieved better localization performance

than the TD saliency alone, we tested its performance in object segmentation ex-

periments. In particular, a variation of the RANSAC algorithm [57] was imple-

mented to align and segment the object of interest from the test images. Image

locations were first sampled according to the distribution defined by each saliency

map. Locations from pairs of images were then matched, and an affine transforma-

tion between them estimated, using RANSAC. All images were then mapped into

a common coordinate frame to create an object template. Finally, the matched

image locations, which overlapped with the region of support of the template, were

segmented from each image. The algorithm was applied to two classes, face and

car-rear, and the quality of the segmented examples evaluated by comparing them

with manual ground truth. The relative overlap between the segmented example

and the ground truth was measured by

overlap(A,B) =
|A ∩B|

|A ∪B|
, (VII.5)

where A,B are two bounding boxes and |A| the area of A. The accuracy of the

different saliency detectors was measured by the cumulative distribution function

of the relative overlap of the segmented examples produced by them. Ideally, all

the examples would have 100% overlap, i.e. the cumulative distribution would

be a delta function located at 100%. Figure VII.6 shows cumulative distributions

achieved by the three detectors for the two image classes (in this experiment,

DiscSal is trained with cluttered images).

It is worth mentioning that, because RANSAC has some ability to reject

poor matches, many of the HarrLap salient points that land outside of the object

of interest are rejected. The poor performance of HarrLap is, in this case, due to

another problem: because the salient points it produces tend to be highly localized,

the resulting saliency maps tend to have holes, leaving a significant percentage of

the area of the target uncovered. While this is undesirable for the segmentation
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Figure VII.6 (a, b) Cumulative distribution of overlap between segmented exam-

ples and ground truth; (c) Illustrative examples of segmented faces with overlap

measures ranging from 0.5 to 0.9.

task considered in these experiments, it could be beneficial for other tasks. In

any case, it shows that HarrLap points tend to be highly localized. DiscSal, on

the other hand, suffers from the opposite problem. Because training was based on

cluttered examples, its saliency estimates are not very accurate and the saliency

maps tend to “bleed” beyond the boundaries of the objects of interest. Overall,

although the resulting segmentations are not perfect, they are better than those

produced by HarrLap. The best results are, however, achieved with BayesSal,

which further improves on the DiscSal performance. This is due to the ability of

BayesSal to use the highly localized HarrLap estimates as a regularizer for the

less accurate DiscSal estimates. In result, BayesSal estimates tend to exhibit less

“bleeding” beyond object borders, and produce better segmentations. To provide

a sense for the quality of the segmented patches, examples of faces segmented

with various values of overlap are also shown in Figure VII.6(c). Figure VII.7

shows segmented faces produced with DiscSal and BayesSal. Note how the faces

automatically extracted with the latter tend to cover a much larger region of the
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Figure VII.7 Face templates automatically extracted from saliency estimates pro-

duced by DiscSal (top) and BayesSal (bottom).

segmented template than those produced by the former.

VII.C.4 Selectivity

While the previous experiments have already shown that BU saliency

maps are much less selective than those achievable with TD saliency, we designed

a final experiment to exclusively measure selectivity. This experiment consisted of

comparing the performance of the different saliency detectors on an object detec-

tion task. In particular, we used the simple SVM-based saliency maps classifier

proposed in Section II.D.2, which consists of feeding a histogram of saliency map

intensities to a support vector machine (SVM), and measuring the probability of

classification error. The experiment quantifies how relevant the extracted saliency

information is for recognition purposes, a measure of how selective the saliency

estimates are of the object of interest. The performance of each classifier was

measured by 1 minus the receiver-operating characteristic (ROC) equal-error rate

(EER), i.e., 1 minus the rate at which the probabilities of false positives and misses

are equal. As presented in Table VII.1, BayesSal produced better classification re-

sults than the two individual saliency detectors, DiscSal and HarrLap. Note, in

particular, how BayesSal explores the selectivity of DiscSal to significantly im-

prove on the prior saliency maps produced by HarrLap. On the other hand the

improvements of BayesSal over DiscSal are not stellar. This was expected, since

BU salient points have very little selectivity and are only rarely helpful from this
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Dataset BayesSal DiscSal HarrLap constellation [56]
Faces 98.5 97.2 61.9 96.4

Motorbikes 96.5 96.3 74.8 92.5
Airplanes 93.9 93.0 80.2 90.2
Car Rear 100.0 100.0 92.7 90.3

Table VII.1 SVM classification accuracy based on different detectors.

point of view. Finally, for completeness, the table also presents the results, on

this database, of a state-of-the-art method for recognition from cluttered scenes

(the constellation-based classifier of [56]). Despite its simplicity, the saliency-based

classifier achieves better recognition rates.
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The ability of human and other organisms to allocate their limited per-

ceptual and cognitive resources to a few most pertinent subset of sensory data,

significantly facilitates learning and survival. While it has long been known that

visual attention and saliency mechanisms play a fundamental role in this process,

the studies of saliency have been mostly restricted to collecting experimental ob-

servations or building heuristic models to replicate the former. There has not been

a definition of saliency that could explain the fundamental properties of biolog-

ical visual saliency. In this thesis, we proposed and studied a novel formulation

of saliency, which we denoted as the discriminant saliency hypothesis, that all

saliency mechanisms are discriminant processes. Our study provided answers to

three sets of questions: 1) How does the hypothesis translate into a computa-

tional formulation of saliency? What is the optimality of the formulation? how

can computational efficiency be achieved? And is the solution applicable to both

bottom-up and top-down saliency? 2) Is the discriminant saliency hypothesis bi-

ologically plausible? Can it be implemented by the known neural structures in

biological visual processing? Can it replicate, both qualitatively and quantita-

tively, psychophysics of human visual saliency? If so, does it provide any insights

or explanations to the neural computations in early visual processing? 3) Does the

discriminant saliency hypothesis lead to saliency detectors that benefit problems

of interest in computer vision? How do they compare to state-of-the-art saliency

detectors?

With respect to the first set of questions, we showed that the hypothesis

naturally defines saliency as discriminant feature selection for a classification prob-

lem. The optimal solution of this problem is provided by the Bayes decision theory

which can be approximated, efficiently and effectively, by the information-theoretic

solution, the maximization of mutual information. The mutual information solu-

tion is consistent with the previous proposals for the organization of perceptual

systems, i.e. the infomax principle. Resorting to the hypothesis that perception

is tuned to the statistical properties of the natural environment, we showed that
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the discriminant saliency can be implemented in an extremely computationally

efficient manner. Besides computational efficiency, the discriminant saliency hy-

pothesis is also suitable for different application domains. In this work, we derived

discriminant saliency detectors for both bottom-up and top-down applications by

relying on, respectively, center-surround and one-vs-all assignments of the oppos-

ing stimuli in the classification problem.

Regarding the biological plausibility of discriminant saliency, we showed

that under the assumptions of natural image statistics, the computation of discrim-

inant saliency is completely consistent with the standard neural architecture in the

primary visual cortex (V1), i.e. a combination of divisively normalized simple cells

and complex cells. We have also applied discriminant saliency to a set of classical

displays used in the studies of human saliency behaviors, and showed that discrim-

inant saliency not only explains the qualitative observations (such as pop-out for

single feature search, disregard of feature conjunctions, and asymmetries between

the existence and absence of a basic feature), but also makes surprisingly accurate

quantitative predictions. These include the nonlinear aspects of human saliency

perception, the influences of background heterogeneity on percepts of saliency,

and the compliance of saliency asymmetries with Weber’s law. Such consistency

between discriminant saliency and biological saliency not only demonstrates the

biological plausibility of the former, but also offers explanations to the latter. For

example, it provides a holistic functional justification for the standard architec-

ture of V1: that V1 has the capability to optimally detect salient locations in the

visual field, when optimality is defined in a decision-theoretic sense and sensible

simplifications are allowed for the sake of computational parsimony. Furthermore,

we showed that under a minor extension of the currently prevalent simple cell

model, the basic neural structures in V1 are capable of computing the fundamen-

tal operations of statistical inference: assessment of probabilities, implementation

of decision rules, and feature selection.
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Finally, with respect to computer vision applications, we first applied the

top-down implementation of discriminant saliency to the problem of weakly su-

pervised learning for object recognition. The detector was shown to outperform

the state-of-the-art saliency detectors in computer vision in terms of 1) capturing

important information for object recognition tasks, 2) accurately localizing objects

of interest in clutter, 3) providing stable salient locations with respect to various

geometric and photometric transformations, and 4) adapting to diverse visual at-

tributes for saliency. In the applications where no object recognition is defined,

we also showed that the bottom-up discriminant saliency detector accurately pre-

dicts human eye fixation locations on natural scenes during a free-viewing process.

In another application of discriminant saliency, we introduced a Bayesian frame-

work for the integration of top-down and bottom-up saliency, where the top-down

saliency is interpreted as a focus-of-attention mechanism. Experimental results

showed that this framework combines the selectivity of the top-down saliency with

the localization ability of the bottom-up interest point detectors, and improves

object recognition performance.



Bibliography

[1] E. Adelson and J. Bergen, “Spatiotemporal energy models for the perception
of motion,” Journal of the Optical Society of America A, vol. 2, no. 2, pp.
284–299, 1985.

[2] J. Allman, F. Miezin, and E. McGuinness, “Stimulus specific responses from
beyond the classical receptive field: neurophysiological mechanisms for local-
global comparisons in visual neurons.” Annual Review Neuroscience, vol. 8,
pp. 407–430, 1985.

[3] T. Alter and R. Basri, “Extracting salient curves from images: An analysis
of the saliency network,” Int’l J. Comp. Vis., vol. 27, no. 1, pp. 51–69, 1998.

[4] H. Asada and M. Brady, “The curvature primal sketch,” IEEE Trans. PAMI,
vol. 8, no. 1, pp. 2–14, 1986.

[5] F. Attneave, “Some Informational Aspects of Visual Perception,” Psycholog-
ical Review, vol. 61, pp. 183–193, 1954.

[6] H. B. Barlow, “Possible principles underlying the transformation of sensory
messages,” in Sensory Communication, W. A. Rosenblith, Ed. Cambridge,
MA: MIT Press, 1961, pp. 217–234.

[7] ——, “Redundancy Reduction Revisited,” Network: Computation in Neural
Systems, vol. 12, pp. 241–253, 2001.

[8] R. Battiti, “Using Mutual Information for Selecting Features in Supervised
Neural Net Learning,” IEEE Trans. Neural Networks, vol. 5, no. 4, pp. 537–
550, July 1994.

[9] B. Bauer, P. Jolicoeur, and W. B. Cowan, “Visual search for color tar-
gets that are or are not linearly separable fromdistractors,” Visual Research,
vol. 36, pp. 1439–1465, 1996.

[10] J. Beck, “Effect of orientation and of shape similarity on perceptual group-
ing,” Perception & Psychophysics, vol. 1, pp. 300–302, 1966.

[11] ——, “Perceptual grouping produced by changes in orientation and shape,”
Science, vol. 154, pp. 538–540, 1966.

145



146

[12] ——, “Similarity grouping and peripheral discriminability under uncer-
tainty,” American Journal of Psychology, vol. 85, pp. 1–19, 1972.

[13] A. J. Bell and T. J. Sejnowski, “The ‘independent components’ of natural
scenes are edge filters,” Vision Research, vol. 37, no. 23, pp. 3327–3338, 1997.

[14] J. R. Bergen and E. H. Adelson, “Early vision and texture perception,”
Nature (London), vol. 333, pp. 363–364, 1988.

[15] J. R. Bergen and B. Julesz, “Rapid discrimination of visual patterns,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 19, pp. 857–863, 1983.

[16] K. A. Birney and T. R. Fisher, “On the modeling of dct and subband image
data for compression,” IEEE Transactions on Image Processing, vol. 4, pp.
186–193, 1995.

[17] A. Bonds, “Role of inhibition in the specification of orientation selectivity of
cells in the cat striate cortex,” Visual Neuroscience, vol. 2, pp. 41–55, 1989.

[18] B. Bonnlander and A. Weigand, “Selecting input variables using mutual
information and nonparametric density estimation,” in Proc. IEEE Interna-
tional ICSC Symposium on Artificial Neural Networks, 1994.

[19] E. Borenstein and S. Ullman, “Learn to segment,” in Proc. European Con-
ference on Computer Vision. Springer, 2004, pp. 315–328.

[20] C. Bouveyron, J. Kannala, C. Schmid, and S. Girard, “Object localization
by subspace clustering of local descriptors,” in ICVGIP, 2006.

[21] J. Braun, “Visual search among items of different salience: removal of visual
attention mimics a lesion in extrastriate area v4,” J. Neurosci., vol. 14, pp.
554–567, 1994.

[22] M. Bravo and K. Nakayama, “The role of attention in different visual search
tasks,” Perception and Psychophysics, vol. 51, pp. 465–472, 1992.

[23] P. Brodatz, Textures: A Photographic Album for Artists and Designers.
Dover, NewYork, 1966.

[24] N. Bruce and J. Tsotsos, “Saliency based on information maximization,”
in Advances in Neural Information Processing Systems 18, Y. Weiss,
B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp.
155–162.

[25] R. Buccigrossi and E. Simoncelli, “Image compression via joint statistical
characterization in the wavelet domain,” IEEE Transactions on Image Pro-
cessing, vol. 8, pp. 1688–1701, 1999.



147

[26] M. Carandini, J. Demb, V. Mante, D. Tolhurst, Y. Dan, B. Olshausen, J. Gal-
lant, and N. Rust, “Do we know what the early visual system does?” Journal
of Neuroscience, vol. 25, pp. 10 577–10 597, 2005.

[27] M. Carandini, D. Heeger, and A. Movshon, “Linearity and normalization in
simple cells of the macaque primary visual cortex,” Journal of Neuroscience,
vol. 17, pp. 8621–8644, 1997.

[28] J. Cavanaugh, W. Bair, and J. Movshon, “Nature and interaction of sig-
nals from the receptive field center and surround in macaque V1 neurons,”
Journal of Neurophysiology, vol. 88, pp. 2530–2546, 2002.

[29] K. Cave and J. Wolfe, “Modeling the role of parallel processing in visual
search,” Cognitive Psychology, vol. 22, pp. 225–271, 1990.

[30] F. Chance, L. Abbott, and A. Reyes, “Gain modulation from background
synaptic input,” Neuron, vol. 35, pp. 773–782, 2002.

[31] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for
image denoising and compression,” IEEE Transactions on Image Processing,
vol. 9, no. 9, pp. 1532–1546, 2000.

[32] O. Chum and A. Zisserman, “An exemplar model for learning object classes,”
in Proc. IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, 2007, pp. 1–8.

[33] M. M. Chun and J. M. Wolfe, “Visual attention,” in Blackwell Handbook of
Perception, B. Goldstein, Ed. Oxford, UK: Blackwell Publishers Ltd., 2001,
pp. 272–310.

[34] R. Clarke, Transform Coding of Images. Academic Press, 1985.

[35] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid
objects using mean shift,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2000, pp. 142–149.

[36] M. Corbetta, J. M. Kincade, J. M. Ollinger, M. P. McAvoy, and G. L. Shul-
man, “Voluntary orienting is dissociated from target detection in human
posterior cortex,” Nature Neurosci., vol. 3, pp. 292–297, 2000.

[37] T. Cover and J. Thomas, Elements of Information Theory. New York: John
Wiley & Sons Inc., 1991.

[38] J. Daugman, “Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters,” Journal
of the Optical Society of America A, vol. 2, no. 7, pp. 1362–1373, 1985.



148

[39] ——, “Complete discrete 2-d gabor transform by neural networks for image
analysis and compression,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 7, pp. 1169–1179, 1988.

[40] R. De Valois, D. Albrecht, and L. Thorell, “Spacial frequency selectivity of
cells in macaque visual cortex,” Vision Research, vol. 22, pp. 545–559, 1982.

[41] R. De Valois and K. De Valois, Spacial vision. New York: Oxford University
Press, 1988.

[42] R. L. De Valois, E. W. Yund, and N. Hepler, “The orientation and direction
selectivity of cells in macaque visual cortex,” Vision Research, vol. 22, pp.
531–544, 1982.

[43] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using generalized
gaussian density and kullback-leibler distance,” IEEE Transactions on Image
Processing, vol. 11, no. 2, pp. 146–158, 2002.

[44] E. Doi, T. Inui, T.-W. Lee, T. Wachtler, and T. J. Sejnowski, “Spatiochro-
matic receptive field properties derived from information-theoretic analyses
of cone mosaic responses to natural scenes,” Neural Computation, vol. 15,
no. 2, pp. 397–417, 2003.

[45] B. Doiron, A. Longtin, N. Berman, and L. Maler, “Subtractive and divisive
inhibition: Effect of voltage-dependent inhibitory conductances and noise,”
Neural Computation, vol. 13, pp. 227–248, 2000.

[46] G. Dorko and C. Schmid, “Selection of scale-invariant parts for object class
recognition,” in Proc. IEEE ICCV, 2003, pp. 634–640.

[47] R. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley & Sons,
2001.

[48] J. Duncan and G. Humphreys, “Visual search and stimulus similarity,” Psy-
chological Review, vol. 96, pp. 433–458, 1989.

[49] ——, “Beyond the search surface: visual search and attentional engage-
ment,” Journal of Experimental Psychology: Human Perception and Perfor-
mance, vol. 18, no. 2, pp. 578–588, 1992.

[50] M. D’zmura, “color in visual search,” vision research, vol. 31, no. 6, pp.
951–966, 1991.

[51] M. D’Zmura and P. Lennie, “Attentional selection of chromatic mechanisms,”
Investigative Ophthalmology and visual science, vol. 29, p. 162, 1988.

[52] J. T. Enns and R. A. Rensik, “Preattentive recovery of three-dimensional
orientation from line drawings,” Psychological Review, vol. 98, no. 3, pp.
335–351, 1991.



149

[53] C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal gan-
glion cells of the cat,” Journal of Physiology, vol. 187, pp. 517–522, 1966.

[54] N. Farvardin and J. W. Modestino, “Optimum quantizer performance for a
class of non-gaussian memoryless sources,” IEEE Trans. Information Theory,
vol. 30, no. 3, pp. 485–497, 1984.

[55] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman, “Learning object cate-
gories from google”s image search,” in Proc. IEEE International Conference
on Computer Vision (ICCV). Washington, DC, USA: IEEE Computer
Society, 2005, pp. 1816–1823.

[56] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsu-
pervised scale-invariant learning,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition, vol. 2. IEEE Computer Society, 2003, pp.
264–271.

[57] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartog-
raphy,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[58] J. H. Flowers and D. J. Lohr, “How does familiarity affect visual search for
letter strings,” Perception & Psychophysics, vol. 37, pp. 557–567, 1985.

[59] I. Fogel and D. Sagi, “Gabor filters as texture discriminator,” Biol. Cybern.,
vol. 61, pp. 103–113, 1989.

[60] W. Förstner, “A framework for low level feature extraction,” in Proc. Euro-
pean Conference on Computer Vision. Springer, 1994, pp. 383–394.

[61] D. H. Foster and P. A. Ward, “Asymmetries in oriented-line detection in-
dicate two orthogonal filters in early vision,” in Proceedings: Biological Sci-
ences, vol. 243, 1991, pp. 75–81.

[62] ——, “Horizontal-vertical filters in early vision predict anomalous line-
orientation frequencies.” in Proceedings of the Royal Society London, ser.
B, vol. 243, 1991, pp. 75–81.

[63] ——, “Orientation contrast vs orientation in line-target detection,” Vision
research, vol. 35, no. 6, pp. 733–738, 1995.

[64] A. Found and H. J. Müller, “Searching for unknown feature targets on more
than one dimension:further evidence for a ‘dimension weighting’ account,”
Perception and Psychophysics, vol. 58, no. 1, pp. 88–101, 1995.

[65] D. Gao and N. Vasconcelos, “Integrated learning of saliency, complex fea-
tures, and object detectors from cluttered scenes,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition. IEEE Computer Society,
2005, pp. 282–287.



150

[66] ——, “Discriminant saliency for visual recognition from cluttered scenes,” in
Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss,
and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, pp. 481–488.

[67] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in Advances
in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and
T. Hoffman, Eds. Cambridge, MA: MIT Press, 2007, pp. 545–552.

[68] C. Harris and M. Stephens, “A combined corner and edge detector,” in Alvey
Vision Conference. University of Manchester, Manchester, UK, 1988, pp.
147–151.

[69] K. J. Hawley, W. A. Johnston, and J. M. Farnham, “Novel popout with non-
sense string: Effects of object length and spatial predictability,” Perception
and Psychophysics, vol. 55, pp. 261–268, 1994.

[70] D. Heeger and J. Bergen, “Pyramid-based Texture Analysis/Synthesis,” in
Proc. ACM SIGGRAPH, 1995, pp. 229–238.

[71] D. Heeger, “Normalization of cell responses in cat striate cortex,” Visual
Neuroscience, vol. 9, pp. 181–197, 1992.

[72] G. Heidemann, “Focus-of-attention from local color symmetries,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 7,
pp. 817–830, 2004.

[73] A. B. Hillel, D. Weinshall, and T. Hertz, “Efficient learning of relational
object class models,” in Proc. IEEE International Conference on Computer
Vision. IEEE Computer Society, 2005, pp. 1762–1769.

[74] H.Murase and S. Nayar, “Visual learning and recognition of 3-d objects from
appearance,” Int’l J. Comp. Vis., vol. 14, pp. 5–24, 1995.

[75] G. Holt and C. Koch, “Shunting inhibition does not have a divisive effect on
firing rates,” Neural Computation, vol. 9, pp. 1001–1013, 1997.

[76] J. B. Hopfinger, M. H. Buonocore, and G. R. Mangun, “The neural mecha-
nisms of top-down attentional control,” Nature Neurosci., vol. 3, pp. 284–291,
2000.

[77] R. Horaud, F. Veillon, and T. Skordas, “Finding geometric and relational
structures in an image,” in Proc. ECCV, 1990, pp. 274–384.

[78] P. O. Hoyer and A. Hyvärinen, “Independent component analysis applied to
feature extraction from colour and stereo images,” Network: Computation
in Neural Systems, vol. 11, pp. 191–210, 2000.



151

[79] J. Huang and D. Mumford, “Statistics of Natural Images and Models,” in
Proceedings IEEE Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society, 1999, pp. 541–547.

[80] D. H. Hubel and T. N. Wiesel, “Receptive field, binocular interaction, and
functional architecture of in the cat’s visual cortex,” Journal of Physiology,
vol. 160, pp. 106–154, 1962.

[81] ——, “Receptive fields and functional architecture in two nonstriate visual
areas (18 and 19) of the cat,” Journal of Neurophysiology, vol. 28, pp. 229–
289, 1965.

[82] ——, “Receptive field and functional architecture of monkey striate cortex,”
Journal of Physiology, vol. 195, pp. 215–243, 1968.

[83] M. Isard and A. Blake, “Condensation - conditional density propagation for
visual tracking,” Int’l J. Comp. Vis., vol. 29, no. 1, pp. 5–28, 1998.

[84] L. Itti, “Automatic foveation for video compression using a neurobiological
model of visual attention,” IEEE Transactions on Image Processing, vol. 13,
no. 10, pp. 1304–1318, 2004.

[85] L. Itti and P. Baldi, “A principled approach to detecting surprising events in
video,” in Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), San Siego, CA, Jun 2005, bu ; cv ; eye ; su, pp. 631–637.

[86] L. Itti and C. Koch, “Computational modeling of visual attention,,” Nature
Rev. Neurosci., vol. 2, no. 3, pp. 194–203, March 2001.

[87] ——, “Feature combination strategies for saliency-based visual attention sys-
tems,” Journal of Electronic Imaging, vol. 10, no. 1, pp. 161–169, 2001.

[88] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual atten-
tion for rapid scene analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

[89] L. Itti and C. Koch, “A saliency-based search mechanism for overt and covert
shifts of visual attention,” Vision Research, vol. 40, pp. 1489–1506, 2000.

[90] W. James, The Principles of Psychology. Cambridge, MA: Harvard Univ.
Press, 1981, Originally published in 1890.

[91] W. A. Johnston, K. J. Hawley, and J. M. Farnham, “Novel popout: Empir-
ical boundaries and tentative theory,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 19, pp. 140–153, 1993.

[92] J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional ga-
bor filter model of simple receptive fields in cat striate cortex,” Journal of
Neurophysiology, vol. 58, pp. 1233–1258, 1987.



152

[93] ——, “The two-dimensional spatial structure of simple receptive fields in cat
striate cortex,” Journal of Neurophysiology, vol. 58, no. 6, pp. 1187–1211,
1987.

[94] ——, “The two-dimensional spectral structure of simple receptive fields in
cat striate cortex,” Journal of Neurophysiology, vol. 58, no. 6, pp. 1212–1232,
1987.

[95] B. Julesz, “Experiments in the visual perception of texture,” Scientific Amer-
ican, vol. 232, no. 4, pp. 34–43, 1975.

[96] ——, “A theory of preattentive texture discrimination based on first order
statistics of textons,” Biology and Cybernetics, vol. 41, pp. 131–138, 1981.

[97] ——, “A brief outline of the texton theory of human vision,” Trends in
Neuroscience, vol. 7, pp. 41–45, 1984.

[98] ——, “Texton gradients: the texton theory revisited,” Biological Cybernetics,
vol. 54, pp. 245–251, 1986.

[99] T. Kadir and M. Brady, “Scale, saliency and image description,” Interna-
tional Journal of Computer Vision, vol. 45, pp. 83–105, 2001.

[100] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant saliency region
detector,” in Proc. ECCV, 2004, pp. 228–241.

[101] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Trans. ASME, J. Basic Eng., vol. 82D, pp. 35–45, 1960.

[102] M. K. Kapadia, M. Ito, C. D. Gilbert, and G. Westheimer, “Improvement
in visual sensitivity by changes in local context: parallel studies in human
observers and in v1 of alert monkeys,” Neuron, vol. 15, no. 4, pp. 843–856,
1995.

[103] W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A non-
parametric approach to bottom-up visual saliency,” in Advances in Neural
Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman,
Eds. Cambridge, MA: MIT Press, 2007, pp. 689–696.

[104] J. J. Knierim and D. C. Van Essen, “Neuronal responses to static texture
patterns in area V1 of the alert macaque monkey,” Journal of Neurophysiol-
ogy, vol. 67, no. 4, pp. 961–980, 1992.

[105] D. C. Knill and W. Richards, Perception as Bayesian Inference. OX: Cam-
bridge University Press, 1996.

[106] C. Koch and S. Ullman, “Shift in selective visual attention: towards the
underlying neural circuitry,” Human Neurobiology, vol. 4, pp. 219–227, 1985.



153

[107] A. Kristjánsson and P. U. Tse, “Curvature discontinuities are cues for rapid
shape analysis,” Perception and Psychophysics, vol. 63, no. 3, pp. 390–403,
2001.

[108] S. W. Kuffler, “Discharge patterns and functional organization of mamalian
retina,” Journal of Neurophysiology, vol. 16, pp. 37–68, 1953.

[109] J. Kulikowski and P. Bishop, “Fourier analysis and spatial representation in
the visual cortex,” Experientia, vol. 37, pp. 160–163, 1981.

[110] M. S. Landy and J. R. Bergen, “Texture segregation and orientation gradi-
ent,” Vision Research, vol. 31, pp. 679–691, 1991.

[111] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 2006.

[112] T. S. Lee, “Image representation using 2d gabor wavelets,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 18, no. 10, pp.
959–971, 1996.

[113] J. Levitt and J. Lund, “Contrast dependence of contextual effects in primate
visual cortex,” Nature, vol. 387, pp. 73–76, 1997.

[114] C. Li and W. Li, “Extensive integration field beyond the classical receptive
field of cat’sstriate cortical neurons-classification and tuning properties,” Vi-
sion Research, vol. 34, no. 18, pp. 2337–2355, 1994.

[115] Z. Li, “A saliency map in primary visual cortex,” Trends in Cognitive Sci-
ences, vol. 6, no. 1, pp. 9–16, 2002.

[116] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at
different scales,” J. Applied Statistics, vol. 21, no. 2, pp. 224–270, 1994.

[117] R. Linsker, “Self-organization in a perceptual network,” IEEE Computer,
vol. 21, no. 3, pp. 105–117, 1988.

[118] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc.
IEEE International Conference on Computer Vision. IEEE Computer So-
ciety, 1999, pp. 1150–1157.

[119] J. Malik and P. Perona, “Preattentive texture discrimination with early vi-
sion mechanisms,” Journal of the Optical Society of America A, vol. 7, no. 5,
pp. 923–932, May 1990.
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