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Vector spaces

• Definition: a vector space is a set H where

– addition and scalar multiplication are defined and satisfy:

1) x+(x’+x’’) = (x+x’)+x” 5) lx  H

2) x+x’ = x’+x  H 6) 1x = x

3) 0  H, 0 + x = x 7) l(l’ x) = (ll’)x

4) –x  H, -x + x = 0 8) l(x+x’) = lx + lx’

(l = scalar;  x, x’, x”  H ) 9) (l+l’)x = lx + l’x

• the canonical example is Rd with standard 

vector addition and     scalar multiplication
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Vector spaces

• But there are much more interesting examples

• E.g., the space of functions f:X → R with

(f + g)(x) = f(x) + g(x) (lf)(x) = lf(x)

• Rd is a vector space of 

finite dimension, e.g.

– f = ( f1 , ... , fd )T

• When d goes to infinity 

we have a function

– f = f(t )

• The space of all functions 

is an infinite dimensional

vector space



• In this course we will talk a lot about “data”

• Data will always be represented in a vector space:

– an example is just a point (“datapoint”) on such a space

– from above we know how to perform basic operations on datapoints

– this is nice, because datapoints can be quite abstract

– e.g. images:

▪ an image is a function 

on the image plane

▪ it assigns a color f(x,y) to

each image 

location (x,y)

▪ the space Y of images

is a vector space (note: assumes

that images can be negative)

▪ this image is a point in Y

Data Vector Spaces



• Because of this we can manipulate images by 

manipulating their vector representations

• E.g., Suppose one wants to “morph” a(x,y) into b(x,y):

– One way to do this is via the path along the line from a to b. 

c(a) = a + a (b-a)

= (1-a) a + a b

– for a = 0 we have a

– for a = 1 we have b

– for a in (0,1) we have a point

on the line between a and b

• To morph images we can simply 

apply this rule to their vector

representations!
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• When we make

c(x,y) = (1-a) a(x,y) + a b(x,y)

we get “image morphing”:

• The point is that this is possible because the images are 

points in a vector space.
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• Images are usually represented as points in Rd

– Sample (discretize) an image on a finite grid to get an array of pixels

a(x,y) → a(i,j)

– Images are always stored like this on digital computers

– stack all the rows into a vector.  E.g. a 3 x 3 image is converted into 

a 9 x 1 vector as follows:

– In general a n x m image vector is transformed into a nm x 1 vector

– Note that this is yet another vector space

• The point is that there are generally multiple different, but 

isomorphic, vector spaces in which the data can be 

represented
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Text

• Another common type

of data is text

• Documents are 

represented by 

word counts:

– associate a counter

with each word

– slide a window through

the text

– whenever the word

occurs increment 

its counter

• This is the way search

engines represent

web pages



Text

• E.g. word counts for three 

documents in a certain corpus

(only 12 words shown for clarity)

• Note that:

– Each document  is a d = 12 

dimensional vector

– If I add two word-count vectors (documents), I get a new word-

count vector (document)

– If I multiply a word-count vector (document) by a scalar, I get a 

word-count vector

– Note: once again we assume word counts could be negative (to 

make this happen we can simply subtract the average value)

• This means:

– We are once again in a vector space (positive subset of Rd )

– A document is a point in this space



Bananas

• Any object can be mapped into a vector space.

• E.g. bananas: I can measure

– Ripeness r

– Weight w

– Length l

– Diameter d

– Color c

– and represent a banana by the vector 𝑣 = (𝑟, 𝑤, 𝑙, 𝑑, 𝑐)𝑇

– The five measurements are called features.



Bilinear forms
• Inner product vector spaces are popular because they 

allow us to measure distances between data points

• We will see that this is crucial for classification

• The main tool for this is the inner product (“dot-product”).

• We can define the dot-product using the notion of a 
bilinear form.

• Definition: a bilinear form on a real vector space H is a 
bilinear mapping

Q: H x H → R

(x,x’) → Q(x,x’)

“Bi-linear” means that "x,x’,x’’  H

i)  Q[(lx+l’x’),x”] = lQ(x,x”) + l’Q(x’,x”)
ii) Q[x”,(lx+l’x’)] = lQ(x”,x) + l’Q(x”,x’) 



Inner Products
• Definition: an inner product on a real vector space H is 

a bilinear form
<.,.>: H x H → R

(x,x’) → <x,x’>

such that

i)  <x,x>  0,  " x H

ii) <x,x> = 0  if and only if  x = 0

iii) <x,y> = <y,x> for all x and y

• The positive-definiteness conditions i) and ii) make the 

inner product a natural measure of similarity

• This becomes more precise with introduction of a norm



Inner Products and Norms
• Any inner product induces a norm via 

||x||2 = <x,x>

• By definition, any norm must obey the following properties

– Positive-definiteness: ||x||  0, & ||x|| = 0 iff x = 0

– Homogeneity: ||l x|| = |l| ||x||

– Triangle Inequality: ||x + y|| ≤ ||x|| + ||y||

• A norm defines a corresponding metric

d(x,y) = ||x-y||

which is a measure of the distance between x and y

• Always remember that the induced norm changes with a 

different choice of inner product!



Inner Product

• Back to our examples:

– In Rd the standard inner product is 

– Which leads to the standard Euclidean norm in Rd

– The distance between two vectors is the standard Euclidean 
distance in Rd
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Inner Products and Norms
• Note, e.g., that this immediately gives 

a measure of similarity 

between web pages

– compute word count vector xi

from page i, for all i

– distance between page i and

page j can be simply defined as:

– This allows us to find, in the web, the most similar page i to any given 

page j.

• In fact, this is very close to the measure of similarity used by 

most search engines!

• What about images and other continuous valued signals?
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Inner Products and Norms
• And since any object can be mapped to a vector space

• I can measure the similarity between any objects

• By measuring the similarity between their feature vectors

– compute feature vector xi

from banana i, for all i

– distance between banana i and

banana j can be simply defined as:

– This allows us to find the most similar banana i to any given banana 

j.

• What about images and other continuous valued signals?
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Inner Products on Function Spaces

• Recall that the space of functions is an infinite 

dimensional vector space

– The standard inner product is the natural extension of that in Rd

(just replace summations by integrals)

– The norm becomes the “energy” of the function 

– The distance between functions the energy of the difference 

between them

( ), ( ) ( ) ( )f x g x f x g x dx  = 

2 2( ) ( )f x f x dx= 

2 2( ( ), ( )) ( ) ( ) [ ( ) ( )]d f x g x f x g x f x g x dx= − = −



Basis Vectors
• We know how to measure distances in a vector space

• Another interesting property is that we can fully 

characterize the vector space by one of its bases

• A set of vectors x1, …, xk is a basis of a vector space H if 

and only if (iff)

– they are linearly independent

– and they span H : for any v in H, v can be written as

• These two conditions mean that any can be 

uniquely represented in this form.
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Basis

• Note that

– By making the vectors xi the columns of a matrix X, these two 

conditions can be compactly written as

– Condition 1.  The vectors xi are linear independent:

– Condition 2.  The vectors  xi span H

• Also, all bases of H  have the same number of vectors, 
which is called the dimension of H 

– This is valid for any vector space!

00 == cXc

0, 0 such that v c v Xc"    =



Basis

• example

– A basis 

of the vector 

space of images 

of faces

– The figure

only shows the

first 16 basis

vectors but

there actually

more

– These vectors are 

orthonormal



Orthogonality

• Two vectors are orthogonal iff their inner product is zero

– e.g.

in the space of functions defined on [0,2p], cos(ax) and sin(ax) 

are orthogonal 

• Two subspaces V and W are orthogonal,  V     W,  if 

every vector in V is orthogonal to every vector in W

• a set of vectors x1, …, xk is called

– orthogonal if all pairs of vectors are orthogonal.

– orthonormal if all vectors also have unit norm.
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Matrix

• an m x n matrix represents a linear operator that maps a vector 
from the domain X = Rn to a vector in the codomain Y = Rm

• E.g. the equation y = Ax

sends x in Rn to y in Rm

according to 

X Y

• note that there is nothing magical about this, it follows rather    

mechanically from the definition of matrix-vector multiplication
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Matrix-Vector Multiplication I

• Consider y = Ax, i.e. yi = j=1
n aijxj

• We can think of this as

• where “(– ai –)” means the ith row of A.  Hence

– the ith component of y is the inner product of (– ai –) and x.

– y is the projection of x on the subspace (of the domain space) spanned 

by the rows of A
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Matrix-Vector Multiplication II

• But there is more. Let y = Ax, i.e. yi = j=1
n aijxj , now be written as

• where ai with “|” above and below means the ith column of A.

• hence

– xi is the ith component of y in the subspace (of the co-domain) spanned 

by the columns of A

– y is a linear combination of the columns of A
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Matrix-Vector Multiplication

• two alternative (dual) pictures of y = Ax:

– y = coordinates of x in row space of A (The X = Rn  viewpoint)

– x = coordinates of y in column space of A (Y = Rm viewpoint)
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A cool trick

• the matrix multiplication formula

also applies to “block matrices” when these are defined 

properly

• for example, if A,B,C,D,E,F,G,H are matrices,

• only but important caveat: the sizes of A,B,C,D,E,F,G,H 

have to be such that the intermediate operations make 

sense! (they have to be “conformal”)
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Matrix-Vector Multiplication

• This makes it easy to derive the two alternative pictures

• The row space picture (or viewpoint):

is just like scalar multiplication,  with blocks (–ai-) and x

• The column space picture (or viewpoint):

is just a inner product, with (scalar) blocks xi and the 

column blocks of A.
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Matrix-Vector Multiplication

• two alternative (dual) pictures of y = Ax:

– y = coordinates of x in row space of A (The X = Rn viewpoint)

– x = coordinates of y in column space of A (Y = Rm viewpoint)
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Square n x n matrices

• in this case m = n and the row and column subspaces are 

both equal to (copies of) Rn
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Orthogonal matrices

• A matrix is called orthogonal  if it is square and has 

orthonormal columns.

• Important properties: 

– 1) The inverse of an orthogonal matrix is its transpose

▪ this can be easily shown with the block matrix trick. (Also see later.)

– 2) A proper (det(A) = 1) orthogonal matrix is a rotation matrix

▪ this follows from the fact that it does not change the norms (“sizes”) 

of the vectors on which it operates,

and does not induce a reflection.
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Rotation matrices

• The combination of

1. “operator” interpretation 

2. “block matrix trick” 

is useful in many situations

• Poll:

– “What is the matrix R that rotates the plane R2 by  degrees?”
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Rotation matrices

• The key is to consider how the matrix operates on the 

vectors ei of the canonical basis

– note that R sends e1 to e’1

– using the column space picture

– from which we have the first column of the matrix

















=

0

1
'

2221

1211

1
rr

rr
e









=








+








=

21

11

22

12

21

11

1 01'
r

r

r

r

r

r
e

e1

e2



cos 

sin 









=








=

22

12

22

12

1
sin

cos
'

r

r

r

r
eR







Rotation Matrices

• and we do the same for e2

– R sends e2 to e’2

– from which

– check e1

e2
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Analysis/synthesis

• one interesting case is that of matrices with orthogonal 

columns

• note that, in this case, the columns of A are

– a basis of the column space of A

– a basis of the row space of AT

• this leads to an interesting interpretation of the two 

pictures

– consider the projection of x into the row space of AT

y = AT x

– due to orthonormality, x can then be synthesized by using the 

column space picture

x’ = A y



Analysis/synthesis

• note that this is your most common use of basis

• let the columns of A be the basis vectors ai

– the operation  y = AT x projects the vector x into the basis, e.g.

– The vector x can then be reconstructed by computing  x’ = A y, 

e.g.

– Q: is the synthesized x’ always equal to x?
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Projections

• A: not necessarily! Recall

– y = AT x and  x’ = A y

– x’ = x if and only if AAT = I !

– this means that A has to be orthonormal.

• what happens when this is not the case?

– we get the projection of x on the column space of A

– e.g. let then

and 
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Null Space of a Matrix

• What happens to the part that is lost?

• This is the “null space” of AT

– In the example, this is comprised of  all vectors of the type        since

• FACT:  N(A) is always orthogonal to the row space of A:

– x is in the null space iff it is orthogonal to all rows of A

• For the previous example this means that N(AT) is 

orthogonal to the column space of A
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Orthonormal matrices

• Q: why is the orthonormal case special?

• because here there is no null space of AT

• recall that for all x in N(AT)

–

• the only vector in the null space is 0 

• this makes sense:

– A has n orthonormal columns, e.g.

– these span all of Rn

– there is no extra room for an orthogonal space

– the null space of AT has to be empty

– the projection into row space of AT (=column space of A) is the 

vector x itself

• in this case, we say that the matrix has full rank
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The Four Fundamental Subspaces

• These exist for any matrix:

– Column Space: space spanned by the columns

– Row Space: space spanned by the rows

– Nullspace: space of vectors orthogonal to all rows (also known as 

the orthogonal complement of the row space)

– Left Nullspace: space of vectors orthogonal to all columns (also 

known as the orthogonal complement of the column space)

• You can think of these in the following way

– Row and Nullspace characterize the domain space (inputs)

– Column and Left Nullspace characterize the codomain space 

(outputs)



• Domain X = Rn

– y = coordinates of x in row space of A

– Row space: space of “useful inputs”, 

which A maps to non-zero output

– Null space: space of “useless inputs”,

mapped to zero

– Operation of a matrix on its domain X = Rn

– Q: what is the null space of a low-pass filter?
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• Codomain Y = Rm

– x = coordinates of y in column space of A 

– Column space: space of “possible outputs”, 

which A can reach

– Left Null space: space of “impossible 

outputs”, cannot be reached

– Operation of a matrix on its codomain Y = Rm

– Q: what is the column space of a low-pass filter?

Codomain viewpoint

e1

e2

en

x A

 0|)( == AyyAL T

Left Null 

space

1 1

| |

| |

n ny a x a x

   
   

= + +
   
      

|

an

| y

x1
|

a1

|

xn



The Four Fundamental Subspaces

Assume Domain of A = Codomain of A.  Then:

• Special Case I: Square Symmetric Matrices (A = AT):

– Column Space is equal to the Row Space

– Nullspace is equal to the Left Nullspace, and is therefore 

orthogonal to the Column Space

• Special Case II: nxn Orthogonal Matrices (ATA = AAT = I) 

– Column Space = Row Space = Rn

– Nullspace = Left Nullspace = {0} = the Trivial Subspace



Linear systems as matrices

• A linear and time invariant system 

– of impulse response h[n]

– responds to signal x[n] with output 

– this is the convolution of x[n] with h[n]

• The system is characterized by a matrix

– note that 

– the output is the projection of the input on the space spanned by 

the functions gn[k]
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Linear systems as matrices

• the matrix 

– characterizes the response of the system to any input

– the system projects the input into shifted and flipped copies of its 

impulse response h[n]

– note that the column space is the space spanned by the vectors 

h[n], h[n-1], …

– this is the reason why the impulse response determines the 

output of the system

– e.g. a low-pass filter is a filter such that the column space of A 

only contains low-pass low pass signals

– e.g. if h[n] is the delta function, A is the identity
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