
Linear Algebra Concepts

Nuno Vasconcelos

(Ken Kreutz-Delgado)

UCSD

Vector spaces

• Definition: a vector space is a set H where

– addition and scalar multiplication are defined and satisfy:

1) x+(x’+x’’) = (x+x’)+x” 5) lx H

2) x+x’ = x’+x H 6) 1x = x

3) 0 H, 0 + x = x 7) l(l’ x) = (ll’)x

4) –x H, -x + x = 0 8) l(x+x’) = lx + lx’

(l = scalar; x, x’, x” H) 9) (l+l’)x = lx + l’x

• the canonical example is Rd with standard

vector addition and scalar multiplication

e1

e2

ed

x

x’

x+x’

e2

e1

ed

x

lx

Vector spaces

• But there are much more interesting examples

• E.g., the space of functions f:X → R with

(f + g)(x) = f(x) + g(x) (lf)(x) = lf(x)

• Rd is a vector space of

finite dimension, e.g.

– f = (f1 , ... , fd)T

• When d goes to infinity

we have a function

– f = f(t)

• The space of all functions

is an infinite dimensional

vector space

• In this course we will talk a lot about “data”

• Data will always be represented in a vector space:

– an example is just a point (“datapoint”) on such a space

– from above we know how to perform basic operations on datapoints

– this is nice, because datapoints can be quite abstract

– e.g. images:

▪ an image is a function

on the image plane

▪ it assigns a color f(x,y) to

each image

location (x,y)

▪ the space Y of images

is a vector space (note: assumes

that images can be negative)

▪ this image is a point in Y

Data Vector Spaces

• Because of this we can manipulate images by

manipulating their vector representations

• E.g., Suppose one wants to “morph” a(x,y) into b(x,y):

– One way to do this is via the path along the line from a to b.

c(a) = a + a (b-a)

= (1-a) a + a b

– for a = 0 we have a

– for a = 1 we have b

– for a in (0,1) we have a point

on the line between a and b

• To morph images we can simply

apply this rule to their vector

representations!

Images

b

a

b-a

a (b-a)

• When we make

c(x,y) = (1-a) a(x,y) + a b(x,y)

we get “image morphing”:

• The point is that this is possible because the images are

points in a vector space.

Images

b

a

b-a

a(b-a)

a=0 a=0.2 a=0.4

a=0.6 a=0.8 a=1

• Images are usually represented as points in Rd

– Sample (discretize) an image on a finite grid to get an array of pixels

a(x,y) → a(i,j)

– Images are always stored like this on digital computers

– stack all the rows into a vector. E.g. a 3 x 3 image is converted into

a 9 x 1 vector as follows:

– In general a n x m image vector is transformed into a nm x 1 vector

– Note that this is yet another vector space

• The point is that there are generally multiple different, but

isomorphic, vector spaces in which the data can be

represented

Images

→

Text

• Another common type

of data is text

• Documents are

represented by

word counts:

– associate a counter

with each word

– slide a window through

the text

– whenever the word

occurs increment

its counter

• This is the way search

engines represent

web pages

Text

• E.g. word counts for three

documents in a certain corpus

(only 12 words shown for clarity)

• Note that:

– Each document is a d = 12

dimensional vector

– If I add two word-count vectors (documents), I get a new word-

count vector (document)

– If I multiply a word-count vector (document) by a scalar, I get a

word-count vector

– Note: once again we assume word counts could be negative (to

make this happen we can simply subtract the average value)

• This means:

– We are once again in a vector space (positive subset of Rd)

– A document is a point in this space

Bananas

• Any object can be mapped into a vector space.

• E.g. bananas: I can measure

– Ripeness r

– Weight w

– Length l

– Diameter d

– Color c

– and represent a banana by the vector 𝑣 = (𝑟, 𝑤, 𝑙, 𝑑, 𝑐)𝑇

– The five measurements are called features.

Bilinear forms
• Inner product vector spaces are popular because they

allow us to measure distances between data points

• We will see that this is crucial for classification

• The main tool for this is the inner product (“dot-product”).

• We can define the dot-product using the notion of a
bilinear form.

• Definition: a bilinear form on a real vector space H is a
bilinear mapping

Q: H x H → R

(x,x’) → Q(x,x’)

“Bi-linear” means that "x,x’,x’’ H

i) Q[(lx+l’x’),x”] = lQ(x,x”) + l’Q(x’,x”)
ii) Q[x”,(lx+l’x’)] = lQ(x”,x) + l’Q(x”,x’)

Inner Products
• Definition: an inner product on a real vector space H is

a bilinear form
<.,.>: H x H → R

(x,x’) → <x,x’>

such that

i) <x,x> 0, " x H

ii) <x,x> = 0 if and only if x = 0

iii) <x,y> = <y,x> for all x and y

• The positive-definiteness conditions i) and ii) make the

inner product a natural measure of similarity

• This becomes more precise with introduction of a norm

Inner Products and Norms
• Any inner product induces a norm via

||x||2 = <x,x>

• By definition, any norm must obey the following properties

– Positive-definiteness: ||x|| 0, & ||x|| = 0 iff x = 0

– Homogeneity: ||l x|| = |l| ||x||

– Triangle Inequality: ||x + y|| ≤ ||x|| + ||y||

• A norm defines a corresponding metric

d(x,y) = ||x-y||

which is a measure of the distance between x and y

• Always remember that the induced norm changes with a

different choice of inner product!

Inner Product

• Back to our examples:

– In Rd the standard inner product is

– Which leads to the standard Euclidean norm in Rd

– The distance between two vectors is the standard Euclidean
distance in Rd

i

d

i

i

T yxyxyx
=

==
1

,

=

==
d

i

i

T xxxx
1

2

=

−=−−=−=
d

i

ii

T yxyxyxyxyxd
1

2)()()(),(

Inner Products and Norms
• Note, e.g., that this immediately gives

a measure of similarity

between web pages

– compute word count vector xi

from page i, for all i

– distance between page i and

page j can be simply defined as:

– This allows us to find, in the web, the most similar page i to any given

page j.

• In fact, this is very close to the measure of similarity used by

most search engines!

• What about images and other continuous valued signals?

)()(),(ji

T

jijiji xxxxxxxxd −−=−=

Inner Products and Norms
• And since any object can be mapped to a vector space

• I can measure the similarity between any objects

• By measuring the similarity between their feature vectors

– compute feature vector xi

from banana i, for all i

– distance between banana i and

banana j can be simply defined as:

– This allows us to find the most similar banana i to any given banana

j.

• What about images and other continuous valued signals?

)()(),(ji

T

jijiji xxxxxxxxd −−=−=

Inner Products on Function Spaces

• Recall that the space of functions is an infinite

dimensional vector space

– The standard inner product is the natural extension of that in Rd

(just replace summations by integrals)

– The norm becomes the “energy” of the function

– The distance between functions the energy of the difference

between them

(), () () ()f x g x f x g x dx =

2 2() ()f x f x dx=

2 2((), ()) () () [() ()]d f x g x f x g x f x g x dx= − = −

Basis Vectors
• We know how to measure distances in a vector space

• Another interesting property is that we can fully

characterize the vector space by one of its bases

• A set of vectors x1, …, xk is a basis of a vector space H if

and only if (iff)

– they are linearly independent

– and they span H : for any v in H, v can be written as

• These two conditions mean that any can be

uniquely represented in this form.

 "==
i iii icxc ,00

=
i iixcv

vH

Basis

• Note that

– By making the vectors xi the columns of a matrix X, these two

conditions can be compactly written as

– Condition 1. The vectors xi are linear independent:

– Condition 2. The vectors xi span H

• Also, all bases of H have the same number of vectors,
which is called the dimension of H

– This is valid for any vector space!

00 == cXc

0, 0 such that v c v Xc" =

Basis

• example

– A basis

of the vector

space of images

of faces

– The figure

only shows the

first 16 basis

vectors but

there actually

more

– These vectors are

orthonormal

Orthogonality

• Two vectors are orthogonal iff their inner product is zero

– e.g.

in the space of functions defined on [0,2p], cos(ax) and sin(ax)

are orthogonal

• Two subspaces V and W are orthogonal, V W, if

every vector in V is orthogonal to every vector in W

• a set of vectors x1, …, xk is called

– orthogonal if all pairs of vectors are orthogonal.

– orthonormal if all vectors also have unit norm.

22 2

0 0

sin
sin() cos() 0

2

ax
ax ax dx

a

pp

= =

=

=

ji

ji
xx ji

 if ,1

 if ,0
,

⊥

Matrix

• an m x n matrix represents a linear operator that maps a vector
from the domain X = Rn to a vector in the codomain Y = Rm

• E.g. the equation y = Ax

sends x in Rn to y in Rm

according to

X Y

• note that there is nothing magical about this, it follows rather

mechanically from the definition of matrix-vector multiplication

=

nmnm

n

m x

x

aa

aa

y

y

1

1

1111

e1

e2

en

x

e1

em

y
A

Matrix-Vector Multiplication I

• Consider y = Ax, i.e. yi = j=1
n aijxj

• We can think of this as

• where “(– ai –)” means the ith row of A. Hence

– the ith component of y is the inner product of (– ai –) and x.

– y is the projection of x on the subspace (of the domain space) spanned

by the rows of A

()
1

1

1

n

i i in ij j i

j

n

x

y a a a x a x

x
=

 = = = − −

e1

e2

en

x A’s action in X

-am-

-a1-

x

y1

ym

-a2-

y2

, i = 1,…,m

(m rows)

X X

Matrix-Vector Multiplication II

• But there is more. Let y = Ax, i.e. yi = j=1
n aijxj , now be written as

• where ai with “|” above and below means the ith column of A.

• hence

– xi is the ith component of y in the subspace (of the co-domain) spanned

by the columns of A

– y is a linear combination of the columns of A

nn

nmnm

nnn

j

jij

m

xaxa

xaxa

xaxa

xa

y

y

++

=

++

++

=

=

=

|

|

|

|

11

11

1111

1

1

e1

e2

en

x

A maps from X to Y

|

an

|

y

x1
|

a1

|

xn

X
Y

Matrix-Vector Multiplication

• two alternative (dual) pictures of y = Ax:

– y = coordinates of x in row space of A (The X = Rn viewpoint)

– x = coordinates of y in column space of A (Y = Rm viewpoint)

e1

e2

en

x A

-am-

-a1-

x

y1

ym

-a2-

y2

|

an

|

y

x1
|

a1

|

xn

() (rows)i i my a x

= − −

1 1

| |

| |

n ny a x a x

= + +

Domain X = Rn

Domain X = Rn viewpoint

Codomain Y = Rm viewpoint

A cool trick

• the matrix multiplication formula

also applies to “block matrices” when these are defined

properly

• for example, if A,B,C,D,E,F,G,H are matrices,

• only but important caveat: the sizes of A,B,C,D,E,F,G,H

have to be such that the intermediate operations make

sense! (they have to be “conformal”)

==
k

kjikij bacABC

A B E F AE BG AF BH

C D G H CE DG CF DH

+ +
=

+ +

Matrix-Vector Multiplication

• This makes it easy to derive the two alternative pictures

• The row space picture (or viewpoint):

is just like scalar multiplication, with blocks (–ai-) and x

• The column space picture (or viewpoint):

is just a inner product, with (scalar) blocks xi and the

column blocks of A.

() ()

−−=

−−=

=

xaxa

x

x

aay inxxni

n

inini 11

1

()

()

=

=

=

i

ii

xn

x

mxmx

n

n

inini xa

x

x

aa

x

x

aay

|

|

||

||

11

111

11

1

1

Matrix-Vector Multiplication

• two alternative (dual) pictures of y = Ax:

– y = coordinates of x in row space of A (The X = Rn viewpoint)

– x = coordinates of y in column space of A (Y = Rm viewpoint)

e1

e2

en

x A

-am-

-a1-

x

y1

ym

-a2-

y2

|

an

|

y

x1
|

a1

|

xn

() (rows)i i my a x

= − −

1 1

| |

| |

n ny a x a x

= + +

Domain X = Rn

Domain X = Rn viewpoint

Codomain Y = Rm viewpoint

Square n x n matrices

• in this case m = n and the row and column subspaces are

both equal to (copies of) Rn

e1

e2

en

x A

-an-

-a1-

x

y1

yn

-a2-

y2

|

an

|

y

x1
|

a1

|

xn

|

a2

|

x2

Orthogonal matrices

• A matrix is called orthogonal if it is square and has

orthonormal columns.

• Important properties:

– 1) The inverse of an orthogonal matrix is its transpose

▪ this can be easily shown with the block matrix trick. (Also see later.)

– 2) A proper (det(A) = 1) orthogonal matrix is a rotation matrix

▪ this follows from the fact that it does not change the norms (“sizes”)

of the vectors on which it operates,

and does not induce a reflection.

()
1

1

1 0 0
|

0 1 0

|
0 0 1

T T

i jn

n

A A a a

 = − − =

2 2() () || || ,T T T TAx Ax Ax x A Ax x x x= = = =

Rotation matrices

• The combination of

1. “operator” interpretation

2. “block matrix trick”

is useful in many situations

• Poll:

– “What is the matrix R that rotates the plane R2 by degrees?”

e1

e2

Rotation matrices

• The key is to consider how the matrix operates on the

vectors ei of the canonical basis

– note that R sends e1 to e’1

– using the column space picture

– from which we have the first column of the matrix

=

0

1
'

2221

1211

1
rr

rr
e

=

+

=

21

11

22

12

21

11

1 01'
r

r

r

r

r

r
e

e1

e2

cos

sin

=

=

22

12

22

12

1
sin

cos
'

r

r

r

r
eR

Rotation Matrices

• and we do the same for e2

– R sends e2 to e’2

– from which

– check e1

e2

cos

sin

cos

-sin

=

+

=

=

22

12

22

12

21

11

2221

1211

2 10
1

0
'

r

r

r

r

r

r

rr

rr
e

 −
==

cossin

sincos
'' 21 eeR

IRRT =

 −

−
=

cossin

sincos

cossin

sincos

Analysis/synthesis

• one interesting case is that of matrices with orthogonal

columns

• note that, in this case, the columns of A are

– a basis of the column space of A

– a basis of the row space of AT

• this leads to an interesting interpretation of the two

pictures

– consider the projection of x into the row space of AT

y = AT x

– due to orthonormality, x can then be synthesized by using the

column space picture

x’ = A y

Analysis/synthesis

• note that this is your most common use of basis

• let the columns of A be the basis vectors ai

– the operation y = AT x projects the vector x into the basis, e.g.

– The vector x can then be reconstructed by computing x’ = A y,

e.g.

– Q: is the synthesized x’ always equal to x?

=

=

nnnn x

x

x

y

y

y

x

x

x

y

y

y

2

1

2

1

2

1

2

1

100

010

001

=

=

++

+

=

nn

n

n x

x

x

y

y

y

yyy

x

x

x

2

1

2

1

21

2

1

1

0

0

0

1

0

0

0

1

'

'

'

this is called

the canonical

basis of Rn

Projections

• A: not necessarily! Recall

– y = AT x and x’ = A y

– x’ = x if and only if AAT = I !

– this means that A has to be orthonormal.

• what happens when this is not the case?

– we get the projection of x on the column space of A

– e.g. let then

and

=

0

1

0

0

0

1

A

=

=

2

1

3

2

1

0

0

1

0

0

1

x

x

x

x

x

y

=

+

=

=

00

0

0

0

0

1

0

0

0

1

' 2

1

2

1

2

1
x

x

x

x

x

x
x

e1

e2e3

x

x’

column space of A =

row space of AT

Null Space of a Matrix

• What happens to the part that is lost?

• This is the “null space” of AT

– In the example, this is comprised of all vectors of the type since

• FACT: N(A) is always orthogonal to the row space of A:

– x is in the null space iff it is orthogonal to all rows of A

• For the previous example this means that N(AT) is

orthogonal to the column space of A

() | 0T TN A x A x= =

a

0

0

0
0

0
0

0

0

0

1

0

0

1
=

=

= a

a

xAT

e1

e2e3

x

x’

column space of A =

row space of AT

null space

of AT

Orthonormal matrices

• Q: why is the orthonormal case special?

• because here there is no null space of AT

• recall that for all x in N(AT)

–

• the only vector in the null space is 0

• this makes sense:

– A has n orthonormal columns, e.g.

– these span all of Rn

– there is no extra room for an orthogonal space

– the null space of AT has to be empty

– the projection into row space of AT (=column space of A) is the

vector x itself

• in this case, we say that the matrix has full rank

000 === AxxAT

=

100

010

001

A

The Four Fundamental Subspaces

• These exist for any matrix:

– Column Space: space spanned by the columns

– Row Space: space spanned by the rows

– Nullspace: space of vectors orthogonal to all rows (also known as

the orthogonal complement of the row space)

– Left Nullspace: space of vectors orthogonal to all columns (also

known as the orthogonal complement of the column space)

• You can think of these in the following way

– Row and Nullspace characterize the domain space (inputs)

– Column and Left Nullspace characterize the codomain space

(outputs)

• Domain X = Rn

– y = coordinates of x in row space of A

– Row space: space of “useful inputs”,

which A maps to non-zero output

– Null space: space of “useless inputs”,

mapped to zero

– Operation of a matrix on its domain X = Rn

– Q: what is the null space of a low-pass filter?

Domain viewpoint

e1

e2

en

x A

() (rows)i i my a x

= − −

-am-

-a1-

x

y1

ym

 0|)(== AxxAN

Null

space

• Codomain Y = Rm

– x = coordinates of y in column space of A

– Column space: space of “possible outputs”,

which A can reach

– Left Null space: space of “impossible

outputs”, cannot be reached

– Operation of a matrix on its codomain Y = Rm

– Q: what is the column space of a low-pass filter?

Codomain viewpoint

e1

e2

en

x A

 0|)(== AyyAL T

Left Null

space

1 1

| |

| |

n ny a x a x

= + +

|

an

| y

x1
|

a1

|

xn

The Four Fundamental Subspaces

Assume Domain of A = Codomain of A. Then:

• Special Case I: Square Symmetric Matrices (A = AT):

– Column Space is equal to the Row Space

– Nullspace is equal to the Left Nullspace, and is therefore

orthogonal to the Column Space

• Special Case II: nxn Orthogonal Matrices (ATA = AAT = I)

– Column Space = Row Space = Rn

– Nullspace = Left Nullspace = {0} = the Trivial Subspace

Linear systems as matrices

• A linear and time invariant system

– of impulse response h[n]

– responds to signal x[n] with output

– this is the convolution of x[n] with h[n]

• The system is characterized by a matrix

– note that

– the output is the projection of the input on the space spanned by

the functions gn[k]

 −==
k

nn knhkgkgkxny][][with],[][][

−−

−−

−−−

=

−−

−−

−−

=

][

]2[

]1[

]0[]2[]1[

)]2([]0[]1[

)]1([]1[]0[

][

]2[

]1[

2

1

nx

x

x

hnhnh

nhhh

nhhh

x

g

g

g

ny

y

y

n

 −=
k

knhkxny][][][

Linear systems as matrices

• the matrix

– characterizes the response of the system to any input

– the system projects the input into shifted and flipped copies of its

impulse response h[n]

– note that the column space is the space spanned by the vectors

h[n], h[n-1], …

– this is the reason why the impulse response determines the

output of the system

– e.g. a low-pass filter is a filter such that the column space of A

only contains low-pass low pass signals

– e.g. if h[n] is the delta function, A is the identity

−−

−−

−−−

=

]0[]2[]1[

)]2([]0[]1[

)]1([]1[]0[

hnhnh

nhhh

nhhh

A

