Linear Algebra Concepts

Nuno Vasconcelos
(Ken Kreutz-Delgado)

UCSD

Vector spaces

- Definition: a vector space is a set \mathcal{H} where
- addition and scalar multiplication are defined and satisfy:

1) $x+\left(x^{\prime}+x^{\prime \prime}\right)=\left(x+x^{\prime}\right)+x^{\prime \prime}$
2) $\lambda x \in \mathcal{H}$
3) $x+x^{\prime}=x^{\prime}+x \in \mathcal{H}$
4) $0 \in \mathcal{H}, 0+x=x$
5) $1 x=x$
6) $-\mathrm{x} \in \mathscr{H},-\mathrm{x}+\mathrm{x}=0$
7) $\lambda\left(\lambda^{\prime} x\right)=\left(\lambda \lambda^{\prime}\right) x$
($\lambda=$ scalar; $\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{x}{ }^{\prime \prime} \in \mathcal{H}$)
8) $\lambda\left(x+x^{\prime}\right)=\lambda x+\lambda x^{\prime}$
9) $\left(\lambda+\lambda^{\prime}\right) x=\lambda x+\lambda^{\prime} x$

- the canonical example is R^{d} with standard vector addition and scalar multiplication

Vector spaces

- But there are much more interesting examples
- E.g., the space of functions $\mathrm{f}: X \rightarrow \mathrm{R}$ with

$$
(f+g)(x)=f(x)+g(x) \quad(\lambda f)(x)=\lambda f(x)
$$

- R^{d} is a vector space of finite dimension, e.g.
- $\boldsymbol{f}=\left(\boldsymbol{f}_{1}, \ldots, f_{d}\right)^{T}$
- When d goes to infinity we have a function
$-f=f(t)$
- The space of all functions is an infinite dimensional vector space

Data Vector Spaces

- In this course we will talk a lot about "data"
- Data will always be represented in a vector space:
- an example is just a point ("datapoint") on such a space
- from above we know how to perform basic operations on datapoints
- this is nice, because datapoints can be quite abstract
- e.g. images:
- an image is a function on the image plane
- it assigns a color $f(x, y)$ to each image location (x, y)
- the space Ψ of images is a vector space (note: assumes that images can be negative)
- this image is a point in Ψ

Images

- Because of this we can manipulate images by manipulating their vector representations
- E.g., Suppose one wants to "morph" $a(x, y)$ into $b(x, y)$:
- One way to do this is via the path along the line from a to b .

$$
\begin{aligned}
c(\alpha) & =a+\alpha(b-a) \\
& =(1-\alpha) a+\alpha b
\end{aligned}
$$

- for $\alpha=0$ we have a
- for $\alpha=1$ we have b
- for α in $(0,1)$ we have a point on the line between a and b
- To morph images we can simply apply this rule to their vector
 representations!

Images

- When we make

$$
c(x, y)=(1-\alpha) a(x, y)+\alpha b(x, y)
$$

we get "image morphing":

- The point is that this is possible because the images are points in a vector space.

Images

- Images are usually represented as points in $\mathbf{R}^{\mathbf{d}}$
- Sample (discretize) an image on a finite grid to get an array of pixels $a(x, y) \rightarrow a(i, j)$
- Images are always stored like this on digital computers
- stack all the rows into a vector. E.g. a 3×3 image is converted into a 9×1 vector as follows:

- In general a $n x m$ image vector is transformed into a $n m x 1$ vector
- Note that this is yet another vector space
- The point is that there are generally multiple different, but isomorphic, vector spaces in which the data can be represented

Text

- Another common type of data is text
- Documents are represented by word counts:
- associate a counter with each word
- slide a window through the text
- whenever the word occurs increment its counter
- This is the way search engines represent web pages

Text

- E.g. word counts for three documents in a certain corpus (only 12 words shown for clarity)
- Note that:
- Each document is a $d=12$ dimensional vector

- If I add two word-count vectors (documents), I get a new wordcount vector (document)
- If I multiply a word-count vector (document) by a scalar, I get a word-count vector
- Note: once again we assume word counts could be negative (to make this happen we can simply subtract the average value)
- This means:
- We are once again in a vector space (positive subset of R^{d})
- A document is a point in this space

Bananas

- Any object can be mapped into a vector space.
- E.g. bananas: I can measure
- Ripeness r

BANANA RIPENESS CHART

- Weight w
- Length I
- Diameter d
- Color c

- and represent a banana by the vector $v=(r, w, l, d, c)^{T}$
- The five measurements are called features.

Bilinear forms

- Inner product vector spaces are popular because they allow us to measure distances between data points
- We will see that this is crucial for classification
- The main tool for this is the inner product ("dot-product").
- We can define the dot-product using the notion of a bilinear form.
- Definition: a bilinear form on a real vector space \mathcal{H} is a bilinear mapping

$$
\begin{aligned}
& Q: \mathcal{H} x \mathcal{H} \rightarrow \mathrm{R} \\
& \left(x, x^{\prime}\right) \rightarrow \boldsymbol{Q}\left(x, x^{\prime}\right)
\end{aligned}
$$

"Bi-linear" means that $\forall x, x^{\prime}, x " \in \mathcal{H}$
i) $Q\left[\left(\lambda x+\lambda^{\prime} x^{\prime}\right), x^{\prime \prime}\right]=\lambda Q\left(x, x^{\prime \prime}\right)+\lambda^{\prime} Q\left(x^{\prime}, x^{\prime \prime}\right)$
ii) $Q\left[x^{\prime \prime},\left(\lambda x+\lambda^{\prime} x^{\prime}\right)\right]=\lambda Q\left(x^{\prime \prime}, x\right)+\lambda^{\prime} Q\left(x^{\prime \prime}, x^{\prime}\right)$

Inner Products

- Definition: an inner product on a real vector space \mathcal{H} is a bilinear form

$$
\begin{aligned}
& <,>: \mathcal{H} \boldsymbol{X} \mathscr{H} \rightarrow \mathrm{R} \\
& \left(x, x^{\prime}\right) \rightarrow\left\langle\boldsymbol{R}, \boldsymbol{x}^{\prime}\right\rangle
\end{aligned}
$$

such that

$$
\begin{aligned}
& \text { i) }\langle x, x\rangle \geq 0, \forall x \in \mathcal{H} \\
& \text { ii) }\langle x, x\rangle=0 \text { if and only if } x=0 \\
& \text { iii) }\langle x, y\rangle=\langle y, x\rangle \text { for all } x \text { and } y
\end{aligned}
$$

- The positive-definiteness conditions i) and ii) make the inner product a natural measure of similarity
- This becomes more precise with introduction of a norm

Inner Products and Norms

- Any inner product induces a norm via

$$
\|x\|^{2}=\langle x, x\rangle
$$

- By definition, any norm must obey the following properties
- Positive-definiteness: $\quad\|x\| \geq 0, \&\|x\|=0$ iff $x=0$
- Homogeneity:
$\|\lambda x\|=|\lambda|\|x\|$
- Triangle Inequality:
$\|x+y\| \leq\|x\|+\|y\|$
- A norm defines a corresponding metric

$$
d(x, y)=\|x-y\|
$$

which is a measure of the distance between x and y

- Always remember that the induced norm changes with a different choice of inner product!

Inner Product

- Back to our examples:
- In R^{d} the standard inner product is

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{d} x_{i} y_{i}
$$

- Which leads to the standard Euclidean norm in $\mathbf{R}^{\text {d }}$

$$
\|x\|=\sqrt{x^{T} x}=\sqrt{\sum_{i=1}^{d} x_{i}^{2}}
$$

- The distance between two vectors is the standard Euclidean distance in $\mathbf{R}^{\text {d }}$

$$
d(x, y)=\|x-y\|=\sqrt{(x-y)^{T}(x-y)}=\sqrt{\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}}
$$

Inner Products and Norms

- Note, e.g., that this immediately gives
a measure of similarity between web pages
- compute word count vector x_{i} from page i, for all i
- distance between page iand page j can be simply defined as:

$$
d\left(x_{i}, x_{j}\right)=\left\|x_{i}-x_{j}\right\|=\sqrt{\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{j}\right)}
$$

- This allows us to find, in the web, the most similar page i to any given page j.
- In fact, this is very close to the measure of similarity used by most search engines!
-What about images and other continuous valued signals?

Inner Products and Norms

- And since any object can be mapped to a vector space
- I can measure the similarity between any objects
- By measuring the similarity between their feature vectors
- compute feature vector x_{i} from banana i, for all i
- distance between banana i and banana j can be simply defined as:

$$
d\left(x_{i}, x_{j}\right)=\left\|x_{i}-x_{j}\right\|=\sqrt{\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{j}\right)}
$$

- This allows us to find the most similar banana i to any given banana j.
-What about images and other continuous valued signals?

Inner Products on Function Spaces

- Recall that the space of functions is an infinite dimensional vector space
- The standard inner product is the natural extension of that in R^{d} (just replace summations by integrals)

$$
\langle f(x), g(x)\rangle=\int f(x) g(x) d x
$$

- The norm becomes the "energy" of the function

$$
\|f(x)\|^{2}=\int f^{2}(x) d x
$$

- The distance between functions the energy of the difference between them

$$
d(f(x), g(x))=\|f(x)-g(x)\|^{2}=\int[f(x)-g(x)]^{2} d x
$$

Basis Vectors

- We know how to measure distances in a vector space
- Another interesting property is that we can fully characterize the vector space by one of its bases
- A set of vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ is a basis of a vector space \mathcal{H} if and only if (iff)
- they are linearly independent

$$
\sum_{i} c_{i} x_{i}=0 \Leftrightarrow c_{i}=0, \forall i
$$

- and they span \mathcal{H} : for any vin \mathcal{H}, v can be written as

$$
v=\sum_{i} c_{i} x_{i}
$$

- These two conditions mean that any $v \in \mathrm{H}$ can be uniquely represented in this form.

Basis

- Note that
- By making the vectors x_{i} the columns of a matrix X, these two conditions can be compactly written as
- Condition 1. The vectors x_{i} are linear independent:

$$
X c=0 \Leftrightarrow c=0
$$

- Condition 2. The vectors x_{i} span \mathcal{H}

$$
\forall v \neq 0, \exists c \neq 0 \text { such that } v=X c
$$

- Also, all bases of \mathscr{H} have the same number of vectors, which is called the dimension of \mathscr{H}
- This is valid for any vector space!

Basis

- example
- A basis of the vector space of images of faces
- The figure only shows the first 16 basis vectors but there actually more
- These vectors are orthonormal

Orthogonality

- Two vectors are orthogonal iff their inner product is zero
- e.g.

$$
\int_{0}^{2 \pi} \sin (a x) \cos (a x) d x=\left.\frac{\sin ^{2} a x}{2 a}\right|_{0} ^{2 \pi}=0
$$

in the space of functions defined on $[0,2 \pi], \cos (a x)$ and $\sin (a x)$ are orthogonal

- Two subspaces V and W are orthogonal, $V \perp W$, if every vector in V is orthogonal to every vector in W
- a set of vectors x_{1}, \ldots, x_{k} is called
- orthogonal if all pairs of vectors are orthogonal.
- orthonormal if all vectors also have unit norm.

$$
\left\langle x_{i}, x_{j}\right\rangle=\left\{\begin{array}{l}
0, \text { if } i \neq j \\
1, \text { if } i=j
\end{array}\right.
$$

Matrix

- an $m \times n$ matrix represents a linear operator that maps a vector from the domain $\mathfrak{X}=\mathbf{R}^{\boldsymbol{n}}$ to a vector in the codomain $\mathscr{y}=\mathbf{R}^{\boldsymbol{m}}$
- E.g. the equation $y=A x$ sends x in $\mathbf{R}^{\boldsymbol{n}}$ to y in $\mathbf{R}^{\boldsymbol{m}}$ according to

- note that there is nothing magical about this, it follows rather mechanically from the definition of matrix-vector multiplication

Matrix-Vector Multiplication I

- Consider $y=A x$, i.e. $y_{i}=\sum_{j=1}{ }^{n} a_{i j} x_{j}, i=1, \ldots, m$
- We can think of this as

$$
\left[\begin{array}{c}
\vdots \tag{mrows}\\
y_{i} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\vdots & & \vdots \\
a_{i 1} & \cdots & a_{i n} \\
\vdots & & \vdots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\sum_{j=1}^{n} a_{i j} x_{j} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\left(-a_{i}-\right) x \\
\vdots
\end{array}\right]
$$

- where " $\left(-a_{i}-\right)$ " means the $i^{\text {th }}$ row of A. Hence
- the $i^{\text {th }}$ component of y is the inner product of $\left(-a_{i}-\right)$ and x.
- y is the projection of x on the subspace (of the domain space) spanned by the rows of A

Matrix-Vector Multiplication II

- But there is more. Let $y=A x$, i.e. $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$, now be written as

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\sum_{j=1}^{n} a_{i j} x_{j} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}
\end{array}\right]=\left[\begin{array}{c}
\mid \\
a_{1} \\
\mid
\end{array}\right] x_{1}+\cdots+\left[\begin{array}{c}
\mid \\
a_{n} \\
\mid
\end{array}\right] x_{n}
$$

- where a_{i} with "|" above and below means the $\mathrm{i}^{\text {th }}$ column of A.
- hence
- x_{i} is the $i^{\text {ith }}$ component of y in the subspace (of the co-domain) spanned by the columns of A
- y is a linear combination of the columns of A

Matrix-Vector Multiplication

- two alternative (dual) pictures of $y=A x$:
- $\mathrm{y}=$ coordinates of x in row space of A (The $\mathscr{X}=\mathrm{R}^{n}$ viewpoint)

$-x=$ coordinates of y in column space of $A\left(y=R^{m}\right.$ viewpoint $)$

A cool trick

- the matrix multiplication formula

$$
C=A B \Leftrightarrow c_{i j}=\sum_{k} a_{i k} b_{k j}
$$

also applies to "block matrices" when these are defined properly

- for example, if A, B, C, D, E, F, G, H are matrices,

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

- only but important caveat: the sizes of A,B,C,D,E,F,G,H have to be such that the intermediate operations make sense! (they have to be "conformal")

Matrix-Vector Multiplication

- This makes it easy to derive the two alternative pictures
- The row space picture (or viewpoint):

$$
\left[\begin{array}{c}
\vdots \\
y_{i} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\vdots & & \vdots \\
a_{i n} & \cdots & a_{i n} \\
\vdots & & \vdots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\left(-a_{i}-\right)_{1 x n} \\
\vdots
\end{array}\right] x_{n x 1}=\left[\begin{array}{c}
\vdots \\
\left(-a_{i}-\right) x \\
\vdots
\end{array}\right]
$$

is just like scalar multiplication, with blocks ($-a_{i}-$) and x

- The column space picture (or viewpoint):

$$
\left[\begin{array}{c}
\vdots \\
y_{i} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\vdots & & \vdots \\
a_{i n} & \cdots & a_{i n} \\
\vdots & & \vdots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
a_{1} & \cdots & a_{n} \\
\mid & & \left.\right|_{m \times 1} \\
m \times x
\end{array}\right]\left[\begin{array}{c}
\left(x_{1}\right)_{1 \times 1} \\
\vdots \\
\left(x_{n}\right)_{1 x 1}
\end{array}\right]=\sum_{i}\left(\begin{array}{c}
\mid \\
a_{i} \\
\mid
\end{array}\right) x_{i}
$$

is just a inner product, with (scalar) blocks x_{i} and the column blocks of A.

Matrix-Vector Multiplication

- two alternative (dual) pictures of $y=A x$:
- $\mathrm{y}=$ coordinates of x in row space of A (The $\mathscr{X}=\mathrm{R}^{n}$ viewpoint)

$-x=$ coordinates of y in column space of $A\left(y=R^{m}\right.$ viewpoint $)$

Square $n \times n$ matrices

- in this case $m=n$ and the row and column subspaces are both equal to (copies of) R^{n}

Orthogonal matrices

- A matrix is called orthogonal if it is square and has orthonormal columns.
- Important properties:
- 1) The inverse of an orthogonal matrix is its transpose
- this can be easily shown with the block matrix trick. (Also see later.)

$$
A^{T} A=\left[\begin{array}{c}
\vdots \\
\left(-a_{i}^{T}-\right)_{1 \times n} \\
\vdots
\end{array}\right]\left[\ldots\left(\begin{array}{c}
\mid \\
a_{j} \\
\mid
\end{array}\right)_{n \times 1} \quad \ldots\right]=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

- 2) A proper $(\operatorname{det}(A)=1)$ orthogonal matrix is a rotation matrix
- this follows from the fact that it does not change the norms ("sizes") of the vectors on which it operates,

$$
\|A x\|^{2}=(A x)^{T}(A x)=x^{T} A^{T} A x=x^{T} x=\|x\|^{2}
$$

and does not induce a reflection.

Rotation matrices

- The combination of

1. "operator" interpretation
2. "block matrix trick"
is useful in many situations

- Poll:
- "What is the matrix \mathbf{R} that rotates the plane \mathbf{R}^{2} by θ degrees?"

Rotation matrices

- The key is to consider how the matrix operates on the vectors \mathbf{e}_{i} of the canonical basis
- note that R sends \mathbf{e}_{1} to $\mathbf{e}^{\prime}{ }_{1}$

$$
e_{1}^{\prime}=\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- using the column space picture

$$
e_{1}^{\prime}=\binom{r_{11}}{r_{21}} \times 1+\binom{r_{12}}{r_{22}} \times 0=\binom{r_{11}}{r_{21}}
$$

- from which we have the first column of the matrix

$$
R=\left[\begin{array}{ll}
& r_{12} \\
e_{1}^{\prime} \\
& r_{22}
\end{array}\right]=\left[\begin{array}{ll}
\cos \theta & r_{12} \\
& \\
\sin \theta & r_{22}
\end{array}\right]
$$

Rotation Matrices

- and we do the same for \boldsymbol{e}_{2}
- \boldsymbol{R} sends \boldsymbol{e}_{2} to \boldsymbol{e}_{2}

$$
e_{2}^{\prime}=\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\binom{r_{11}}{r_{21}} \times 0+\binom{r_{12}}{r_{22}} \times 1=\binom{r_{12}}{r_{22}}
$$

- from which

$$
R=\left[\begin{array}{ll}
e_{1}^{\prime} & e_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- check

$$
R^{T} R=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=I
$$

Analysis/synthesis

- one interesting case is that of matrices with orthogonal columns
- note that, in this case, the columns of A are
- a basis of the column space of A
- a basis of the row space of A^{\top}
- this leads to an interesting interpretation of the two pictures
- consider the projection of x into the row space of A^{\top}

$$
y=A^{\top} x
$$

- due to orthonormality, x can then be synthesized by using the column space picture

$$
x^{\prime}=A y
$$

Analysis/synthesis

- note that this is your most common use of basis
- let the columns of A be the basis vectors a_{i}
- the operation $\mathrm{y}=\mathrm{A}^{\top} \mathrm{x}$ projects the vector x into the basis, e.g.

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

this is called the canonical basis of R^{n}

- The vector x can then be reconstructed by computing $\mathrm{x}^{\prime}=\mathrm{A} y$, e.g.

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] y_{1}+\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] y_{2}+\cdots+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] y_{n}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$-Q$: is the synthesized x ' always equal to x ?

Projections

- A: not necessarily! Recall
- $y=A^{T} x$ and $x^{\prime}=A y$
- $x^{\prime}=x$ if and only if $A A^{T}=1$!
- this means that A has to be orthonormal.
- what happens when this is not the case?
- we get the projection of x on the column space of A
- e.g. let

$$
y=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

and

$$
x^{\prime}=\left[\begin{array}{l}
10 \\
01 \\
00
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left(\begin{array}{l}
x_{1} \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
x_{2} \\
0
\end{array}\right)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right]
$$

Null Space of a Matrix

- What happens to the part that is lost?
- This is the "null space" of A^{T}

$$
N\left(A^{T}\right)=\left\{x \mid A^{T} x=0\right\}
$$

- In the example, this is comprised of all vectors of the type $[0]$ since

$$
A^{T} x=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\alpha
\end{array}\right]=\alpha\binom{0}{0}=0
$$

- FACT: $N(A)$ is always orthogonal to the row space of A :
- x is in the null space iff it is orthogonal to all rows of A
- For the previous example this means that $N\left(A^{T}\right)$ is orthogonal to the column space of A

Orthonormal matrices

- Q: why is the orthonormal case special?
- because here there is no null space of A^{T}
- recall that for all x in $N\left(A^{T}\right)$
- $A^{T} x=0 \Leftrightarrow x=A 0=0$
- the only vector in the null space is 0
- this makes sense:
- A has n orthonormal columns, e.g. $\quad A=\begin{array}{lll}0 & 1 & 0\end{array}$
- these span all of R^{n}
$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- there is no extra room for an orthogonal space
- the null space of A^{T} has to be empty
- the projection into row space of $A^{T}(=$ column space of $A)$ is the vector x itself
- in this case, we say that the matrix has full rank

The Four Fundamental Subspaces

- These exist for any matrix:
- Column Space: space spanned by the columns
- Row Space: space spanned by the rows
- Nullspace: space of vectors orthogonal to all rows (also known as the orthogonal complement of the row space)
- Left Nullspace: space of vectors orthogonal to all columns (also known as the orthogonal complement of the column space)
- You can think of these in the following way
- Row and Nullspace characterize the domain space (inputs)
- Column and Left Nullspace characterize the codomain space (outputs)

Domain viewpoint

- Domain $X=\mathrm{R}^{n}$
- $y=$ coordinates of x in row space of A
- Row space: space of "useful inputs", which A maps to non-zero output
- Null space: space of "useless inputs",

$$
\left[\begin{array}{c}
\vdots \\
y_{i} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\left(-a_{i}-\right) x \\
\vdots
\end{array}\right] \quad(m \text { rows })
$$

$$
N(A)=\{x \mid A x=0\}
$$ mapped to zero

- Operation of a matrix on its domain $\mathscr{X}=\mathrm{R}^{n}$

- Q: what is the null space of a low-pass filter?

Codomain viewpoint

- Codomain $y=\mathrm{R}^{m}$
$\begin{aligned} & \text { - } \mathrm{x}=\text { coordinates of } \mathrm{y} \text { in column space of } \mathrm{A} \\ & \text { - Column space: space of "possible outputs", }\end{aligned} \quad y=\left[\begin{array}{c}a_{1} \\ 1\end{array}\right] \quad x_{1}+\cdots+\left[\begin{array}{c}a_{n} \\ 1\end{array}\right] x_{n}$ which A can reach
- Left Null space: space of "impossible

$$
L(A)=\left\{y \mid y^{T} A=0\right\}
$$ outputs", cannot be reached

- Operation of a matrix on its codomain $y=R^{m}$

- Q: what is the column space of a low-pass filter?

The Four Fundamental Subspaces

Assume Domain of $\boldsymbol{A}=$ Codomain of \boldsymbol{A}. Then:

- Special Case I: Square Symmetric Matrices ($A=A^{\top}$):
- Column Space is equal to the Row Space
- Nullspace is equal to the Left Nullspace, and is therefore orthogonal to the Column Space
- Special Case II: nxn Orthogonal Matrices $\left(A^{\top} A=A A^{T}=\Lambda\right)$
- Column Space = Row Space $=$ R n
- Nullspace $=$ Left Nullspace $=\{0\}=$ the Trivial Subspace

Linear systems as matrices

- A linear and time invariant system
- of impulse response $h[n]$
- responds to signal $x[n]$ with output $y[n]=\sum_{k} x[k] h[n-k]$
- this is the convolution of $x[n]$ with $h[n]$
- The system is characterized by a matrix
- note that

$$
y[n]=\sum_{k} x[k] g_{n}[k], \quad \text { with } g_{n}[k]=h[n-k]
$$

- the output is the projection of the input on the space spanned by the functions $g_{n}[k]$

$$
\left[\begin{array}{c}
y[1] \\
y[2] \\
\vdots \\
y[n]
\end{array}\right]=\left[\begin{array}{c}
-g_{1}- \\
-g_{2}- \\
\vdots \\
-g_{n}-
\end{array}\right] x=\left[\begin{array}{cccc}
h[0] & h[-1] & \cdots & h[-(n-1)] \\
h[1] & h[0] & \cdots & h[-(n-2)] \\
& & \ddots & \\
h[n-1] & h[n-2] & \cdots & h[0]
\end{array}\right]\left[\begin{array}{c}
x[1] \\
x[2] \\
\vdots \\
x[n]
\end{array}\right]
$$

Linear systems as matrices

- the matrix

$$
A=\left[\begin{array}{cccc}
h[0] & h[-1] & \cdots & h[-(n-1)] \\
h[1] & h[0] & \cdots & h[-(n-2)] \\
& & \ddots & \\
h[n-1] & h[n-2] & \cdots & h[0]
\end{array}\right]
$$

- characterizes the response of the system to any input
- the system projects the input into shifted and flipped copies of its impulse response $h[n]$
- note that the column space is the space spanned by the vectors $\mathrm{h}[\mathrm{n}], \mathrm{h}[\mathrm{n}-1], \ldots$
- this is the reason why the impulse response determines the output of the system
- e.g. a low-pass filter is a filter such that the column space of A only contains low-pass low pass signals
- e.g. if $h[n]$ is the delta function, A is the identity

